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1 INTRODUCTION & PROJECT GOAL 
Winneshiek County, located in northeast Iowa, features a karst topography that gives the county its 
iconic natural beauty and landscape. This natural beauty, coupled with abundant cold water streams 
that support significant trout populations, bring many tourists to the area. When mining companies 
started to express interest in exploiting the easily accessible high quality quartz silica sand in the county, 
the county board of supervisors voted to place a moratorium on such mining activity to allow for 
adequate investigation and modeling of the impacts such activity would have. Due to significant 
industrial secrecy, the county does not have a complete understanding of where silica sand mining 
operations are likely to be located. Since location of likely mines is a critical component to conduct 
appropriate impact analysis, it is the goal of this project to determine where in the county such sand 
mining operations are likely to be located. 

Winneshiek County has entered into a partnership with the Iowa Institute for Sustainable Communities 
(IISC) to conduct analysis of several current issues facing the county. The potential for large scale silica 
sand mining for use in hydraulic fracturing has received a high degree of public interest. Several 
departments at the University of Iowa are engaged with this project, conducting economic, legal, GIS, 
statistical, and engineering analysis of various questions surrounding the issue. The focus of this project 
is to integrate what has been learned from three different approaches to the question of where frac 
sand mines may likely be established once the moratorium on such activity is lifted. The spatial location 
of future mining operations is of acute interest since location has profound impacts on the inputs for 
other analysis. 

To date three different attempts have been made to produce information to aid in prediction of future 
frac sand mining activity. Dr. David Bennett’s GIS for Environmental Studies course conducted a 
laboratory exercise in which publically available data from the Iowa DNR was combined via a weighted 
linear combination scheme. The results of this analysis showed that the resulting likelihood predictions 
were quite sensitive to perturbations in the weights vector. Several assumptions about relative 
importance of component criteria were made due to the fact that no published transportation costs or 
other decision criteria could be found. The criteria weights used are arbitrarily defined, thus this analysis 
can be dubbed as preliminary at best. 

In an attempt to more rigorously derive weights for the various model criterion, a group of graduate 
students who are a part of the Geoinformatics for Environmental and Energy Modeling and Prediction 
(GEEMaP) IGERT developed a spatially sensitive statistical model and derived beta weights from 
analogous data for the state of Wisconsin. The intent of this model was to improve upon the high 
degree of uncertainty in the criterion weights for each of the modeled criteria. After completing the first 
iteration of analysis, the derived relative importance of input criterions made intuitive sense with the 
exception of the relative weight of geology criteria. This likely occurred due to the fact that much of the 
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study area upon which the model was developed in Wisconsin contained some form of minable 
sandstone. Therefore, increasing the weight of geologic criteria for Winneshiek County is advisable. 

A preliminary analysis of the geological sampling point data available for Winneshiek County was 
conducted to get a better parameterization of the bedrock formations of interest. The preliminary 
analysis faced significant difficulty when interpolating the depth of the bedrock features of interest. This 
project extends the preliminary analysis of the geologic stratigraphic point data to improve upon earlier 
interpolation challenges. Through an alternative approach to geologic interpolation, two different 
derived data products are produced to be incorporated into a final predictive model. 

Finally, an attempt is made to integrate aspects learned and improved upon from all three forms of 
analysis through an “informed linear combination of criterion” method. With this final method, the 
flexibility and option for subjective component weights is taken from the weighted linear criterion 
model. The degree of importance and the relative relationship amongst criterion constraints is taken 
from the Bayesian statistical model coefficients. Finally, significantly enhanced geological data is 
interpolated and the two resulting derived data products are used as new criterion components for final 
mine location predictions. 

2 INTERPOLATION AND CRITERION SYNTHESIS - LITERATURE REVIEW 

2.1 BEDROCK INTERPOLATION 
A brief overview of the literature was conducted to understand previous approaches and expert 
knowledge in the area of bedrock point data interpolation. The overarching theme from the overview 
conducted revealed a broad range of manual, semi-automated, and automated interpolations schemes. 
In addition, there were many cases where the interpolation method used was highly dependent upon 
the available input data quality and format.  

Drawing from an era before mature computerized geospatial data analysis, Horsman el al discusses how 
geologic characterization of a smaller site is conducted from sample point data (Horsman & Bethel, 
1995). He discusses the importance of a 3-D model of geology but the methods by which interpolation is 
conducted are quite simple with linear or hand drawn interpolation. Also from an older era, Shaw 
discusses using a beta spline curve approximation method to mathematically parameterize the thickness 
variation between sections (Shaw, 1978).   

While methods ranging from basic to mathematically complex were conducted prior to mature digital 
mapping analysis capabilities, since the advent of this technology others have developed more 
computationally intensive methods.  Patel et al describe a 2D algorithm to interpolate well log data 
using basic inverse distance weighting or linear interpolation but also using seismic information to 
detect abrupt changes (Patel & McMechan, 2003). Most recently, Calcagno et al discuss an original 
method using a cokriging method to interpolate continuous three dimensional geology features. 
(Calcagno, Chiles, Courrioux, & Guillen, 2008). One key component of their method is the two 
dimensional potential-field which identifies interface locations between bedrock layers. Finally, 
Kaufmann et al make an effort to develop a model that is flexible and capable of using publically 
available data in a variety of forms (Kaufmann & Martin, 2008). Using the computational resources of 
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modern digital mapping, he derives an approach that combines information from geological maps, 
cross-sections, digital elevation models, and borehole and outcrop descriptions. 

2.2 CRITERION SYNTHESIS  
The literature contains numerous examples of GIS applications to derive site suitability for a wide range 
of activities. During the quick review of the literature, it appeared that informed weighted linear 
criterion coupled with “expert knowledge” is often used in application. There are certainly examples of 
attempts to develop a more analytically robust method but examples of successful application of these 
methods are limited. 

Charabi et al use a fuzzy multi-criteria evaluation method that really is extremely similar to a weighted 
linear criterion approach (Charabi & Gastil, 2011). The primary difference between the two methods is 
the fuzzy method Charabi describes integrates both Boolean numerically scaled criteria and has 
advantages for sensitivity analysis. Also Vasiljevic et al discuss a similar method of criterion synthesis for 
determining suitable placement of a landfill site in Serbia using experts from different fields and an 
analytic hierarchy process to derive appropriate weights (Vasiljevic, Srdjevic, Bajcetic, & Miloradov, 
2011). It is clear that from this review that linear weighted criterion analysis is commonly used and 
accepted for use in multi-criterion decisions. 

3 GEOLOGIC INTERPOLATION REVISITED 
As mentioned in the project overview, one of the greatest shortcomings of past attempts to predict 
locations for frac sand mining in Winneshiek County was due to limited information about sandstone 
geology characteristics in the county. However, geological data available from the Iowa DNR is of 
superior quality compared to that available for other neighboring states. The lack of high quality geology 
data for the state of Wisconsin resulted in unintended assumptions in the original model developed by 
the GEEMaP group (Cowles, et al., 2014). Even though there is higher quality data easily available for 
Iowa, the previous linear criterion analysis only used readily available GIS layers. Specifically, a depth to 
bedrock raster and a shape file containing polygons of top bedrock layer type were used without 
consideration of their quality. While this analysis was a good first cut, there are several aspects that can 
be improved upon. 

First, by masking the estimation area to only those locations within the St. Peter geology polygon, this 
assumes both that the polygon is accurate and that mining companies are unwilling to mine sites in 
which the formation of interest lies beneath another layer. While the depth to bedrock raster can 
effectively approximate the depth to the St. Peter formation for areas in which St. Peter is the top layer 
of bedrock, this is not possible in areas where this is not the case. Also, in previous models, no input for 
thickness of the St. Peter sandstone is used. This information is critical as the mining companies cost for 
overburden removal must be directly weighed against the economic benefit potential of extraction of 
the sand resource. Certainly a major component of this calculation would be the quantity of frac sand 
available. 

To address these issues, water well and other geo referenced drilling point data in the Iowa GEOSAM 
database was extracted, analyzed, and interpolated. This dataset contains top and bottom elevations for 
each bedrock type encountered during drilling. From this information, a “depth to St. Peter” as well as a 
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“thickness of St. Peter” raster was derived. The processing steps along with the interpolation technique 
used for the derivation follow. 

First, Iowa stratigraphic point data is obtained from the GEOSAM database via the Iowa DNR with a 10 
km buffer around the boundary of Winneshiek County. This buffer is necessary to minimize degradation 
of interpolation along the county boundaries. All sample point data lying within the boundary is selected 
for analysis. Unfortunately, since Winneshiek County shares a northern border with Minnesota, 
sampling data from the Iowa GEOSAM database is not available outside the state of Iowa. The 
Minnesota Geological Survey maintains a digitized well locations point dataset. However, further 
investigation into this dataset revealed that it does not contain adequate information to derive upper 
and lower elevations for each layer. Therefore, this analysis is limited to Iowa GEOSAM sampling points 
falling within the 10 km buffer of Winneshiek County with no buffer on the northern state boundary 
border. 

The GEOSAM data is comprised of a single table with an entry for each stratigraphy unit at each 
location. Thus, if a single well drilled through five different formations, there would be five rows in the 
dataset corresponding to this site, each coded with identical location coordinates, but different 
stratigraphy for each row. An example of the data table structure with St. Peter stratigraphy units 
highlighted is shown below in figure 1. 

 

Figure 1 

Next, a selection was performed to choose all points containing elevation data for the St. Peter 
formation. This selection resulted in 368 sample points that contain the St. Peter formation. With this 
new subset of St. Peter data points, the unit elevation column provides a measure of the upper St. Peter 
elevation at each sample location. This measurement is more useful for interpolation than the 
“BedrockDepth” variable because it is less sensitive to changes in surface topology. With an upper 
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elevation of the St. Peter formation, a depth below the surface can easily be derived with a high 
resolution digital elevation model of the county. A Kriging method of statistical interpolation included in 
the geo-statistical analyst toolbox is then used with the upper elevation value to interpolate the top 
elevation of the St. Peter formation. For this particular interpolation, simple normal score Kriging 
without any order trend removal was used. In addition, ten-fold cross validation was used to tune the 
interpolation parameters. The semivariogram and error plot associated with the interpolation are shown 
below in figures 2 and 3.  

 

Figure 2 

 

Figure 3 

Based on the error plot, it is reasonable to state that the interpolation technique adequately captures 
the variability in the data and produces a useable surface. The resulting RMS error for this interpolation 
is 39.09 feet. While this amount of error is certainly not ideal, it is the best approximation we can obtain 
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from the current sampling density. It must also be noted that this is a global error metric therefore, the 
error changes based on proximity to sample points. Below figure 4 the resulting derived depth to St. 
Peter map (depth below the surface) for the entire county. Depths are reported in feet. 

 

Figure 4 

The economic viability of a particular mining operation is largely dependent upon the amount of 
overburden that must be removed to extract the sand. Based on review of available published data, 
analysis of existing silica sand mining operations, and discussion with miners, there seems to be a fairly 
universal rule of thumb that the overburden must be 50 feet or less in order to be profitable. Based on 
this information, raster pixels with a depth to St. Peter of 50 ft. or less are selected. The resulting area is 
shown in red in figure 5 below. 
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Figure 5 

The long tail that extends to the left is the bottom of a riverbed and thus is not suitable for mining. Once 
this tail is removed, the resulting region is the area of most likely interest to frac sand mining companies. 
Figure 6 shows the region of interest colored by depth to the St. Peter layer. 
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Figure 6 

Next in order to get a reasonable estimate of the thickness of the St. Peter we needed to do more than 
simply interpolate the “UnitThickness” variable in the dataset. Any attempt to interpolate this variable 
reveals very low spatial autocorrelation. Upon close inspection of the dataset, many of the St. Peter 
sample points had lower elevations equal to the minimum elevation of the drilling. In other words, the 
well was not drilled all the way through the St. Peter layer, thus the lower elevation recorded was 
artificially high. In order to limit the effects of these points on the interpolation, a selection is performed 
to remove all points for which the St. Peter layer was not fully penetrated. This process removed 167 
points, leaving 201 remaining for interpolating the lower depth. The distribution of complete and 
incomplete drillings is shown in figure 7 below. 

50 
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Figure 7 

Even when the points without full penetration are removed, direct interpolation of the thickness values 
is not useful since there is very little spatial autocorrelation in these values. Next an attempt was made 
to use the lower elevation of the St. Peter points to interpolate a lower elevation using only points with 
full penetration. With a lower elevation interpolation, a thickness layer can be derived by taking the 
difference between the upper and lower elevation surfaces. The lower elevation measurements do 
exhibit a sufficient degree of spatial autocorrelation to make interpolation viable. However, after 
deriving the thickness layer, the predicted thickness was compared to known thicknesses at sample 
locations. This analysis revealed some significant discrepancies especially around the northeast corner of 
interest. 

These discrepancies prompted discussions with geology expert, Dr. Emily Finzel, who helped formulate 
the next methodological iteration for deriving the St. Peter thickness. Upon closer analysis of the error 
at sample locations, the problem appeared to be linked to variation in the upper St. Peter elevation not 
captured by the interpolated upper elevation layer. This problem appeared to occur most in regions of 
lower surface elevations with high bluffs nearby. Dr. Finzel suggested that a layer’s exposure to erosion 
could be assessed based on the stratigraphy unit lying directly on top of the St. Peter sandstone. Figure 
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8 below shows the region of interest, as well as the distribution of sample points. Those containing St. 
Peter sandstone are highlighted in green. The fact that many of the lower elevation sample points within 
the region of interest do not contain St. Peter suggests that this layer exists in the surrounding bluffs but 
perhaps has eroded away in the lower lying areas. Because we see many sandstone outcrops identified 
in this area it is reasonable to suppose that they are the result of erosion. 

 

Figure 8 

In order to assess exposure to erosion at each sample location, the data was restructured to include an 
adjacent unit column in which the stratigraphy unit directly on top of each St. Peter sample point was 
populated. If the unit directly above the St. Peter sandstone at a sample location is a glacial till or there 
is nothing above the St. Peter layer, this suggests that the St. Peter layer has likely been exposed to 
erosion. By selecting only points for which the unit directly above the St. Peter suggests limited erosion, 
a digital elevation model can later be used to correct for erosion effects. A visual diagram of this effect 
along with a count of the stratigraphy unit directly on top of each of the St. Peter sample points is shown 
in figures 9-11 below. The stratigraphy units highlighted in figure 9 in yellow are those identified by Dr. 
Finzel that suggest limited or no exposure to top level erosion. 
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          Figure 9 

 

Figure 11 

When the upper St. Peter elevation recorded in the center of the valley is removed from the 
interpolation, the upward trend in the layer elevation is better captured than with the valley point 
included. The shaded region between below the green line (in figure #) and the surface elevation can 
easily be reconciled with the use of a digital elevation model. 

Using this approach, an upper elevation of St. Peter is interpolated using only sample points for which 
the stratigraphy unit directly above is highlighted in yellow in the table above. Next this upper elevation 
layer is compared to the surface elevation for each raster cell. If the interpolated upper St. Peter 
elevation is greater than the surface elevation, the upper St. Peter elevation is updated to the surface 

Figure 10 - The well drilling in the middle of the valley shown above has been exposed to errosion 
and causes noise in the upper elevation data interpolation. Such noise lowers local spatial 
autocorrelation and can degreade results.  
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elevation. The lower elevation of St. Peter is interpolated from the sample locations where the St. Peter 
was fully penetrated. Finally, the lower elevation is subtracted from the upper elevation to create the 
final St. Peter thickness prediction. The predicted thickness of the St. Peter along with the observed 
thickness at sampled locations are shown by figure 12 below. Thicknesses are reported in feet. 

 

Figure 12 

Figure 13 below also shows the derived St. Peter thickness but this time with the observed error at each 
sample location color coded. The error is denoted by “ThicknessCheck” and is presented as predicted 
value minus the true (observed) value. 
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Figure 13 

 This visualization of the sample points enables both perception of the constraints for the interpolation 
and an assessment of the local accuracy of interpolation within a localized region. Finally, a histogram on 
the interpolation error at all sampled location is provided below in figure 14. The shape of this 
distribution suggests that the residual error is normally distributed. This suggests that without additional 
expert input, the error is due to random noise and thus the data provides a reasonable estimate given 
the limitations of the input data. 

+: Over predicted 
-: Under predicted 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 
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Figure 14 

4 INTEGRATING ENHANCED GEOLOGY INTO MINE LOCATION PREDICTION 

4.1 SELECTION OF A MASK 
Since mining companies are unlikely to be interested in mining locations in which the St. Peter 
sandstone is over 50 feet below the surface, including locations where this criterion is not met does not 
make sense. Also inclusion of such area can lead to modifiable area unit problems that could lead to 
degradation of the analysis. Due to the fact that the St. Peter sandstone polygon provided by the Iowa 
DNR and the derived area where St. Peter lies within 50 feet of the surface are nearly identical, the St. 
Peter sandstone polygon for Winneshiek County is used as a mask for all analysis. 

4.2 SELECTION OF MODEL CRITERION 
The previous linear weighted approach included many criterion in the model. The selection of these 
criterion was done in a rather ad hoc manner. For this final analysis, included criterion are based on 
what was learned from the statistical model trained on Wisconsin. Given all similar datasets, the Akaike 
Information Criterion suggests that only three criteria have a significant impact on site selection. These 
criteria are depth to bedrock, distance to rail, and distance to major roads. In addition to these criteria, I 
postulate that the depth of the St. Peter formation in a particular location will be significant. Thus four 
criteria are used in the final model. The weights given in table 1 below are informed by relative 
magnitude of the coefficients in the previous statistical model. 

Criteria Weight 
Minimize Distance to Major Roads 0.15 

Minimize Distance to Rail 0.2 
Minimize Depth to St. Peter Sandstone 0.3 
Maximize Depth of St. Peter Sandstone 0.35 

Table 1 

Graph of Interpolation Error Distribution
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4.3 CRITERION LAYERS 
In order to better understand resulting predictions each new criterion layer is shown in figures 15 and 
16 below. The depth to the St. Peter and the thickness of St. Peter are the same as those presented in 
the previous section. 

 

Figure 15 
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Figure 16 

  

4.4 FINAL PREDICTIONS 
In order it aggregate all criteria, the inputs must first be normalized. For this analysis a linear 
normalization scale is applied within the selected mask. The resulting prediction map using the criteria 
weights reported in the table 1 is shown in figure 17 below. 
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Figure 17 

5 POSSIBILITIES FOR FUTURE IMPROVEMENT 
One easy and likely beneficial extension of this work would be to derive similar data products for the 
Jordan sandstone geology in the County as it is also of interest for frac sand mining. The exclusion of the 
Jordan Sandstone in this analysis was primarily due to time constraints and a similar analytical approach 
could be followed for Jordan Sandstone to provide a more comprehensive analysis. 

Another factor that is likely quite important to mining companies that is still not factored into the new 
derived model is a metric of sand purity and grain size. Both the grain size and the purity of the sand 
resource have significant economic viability implications for mining companies. The grain size has a 
significant impact on the expected market price of the sand. Also, the purity has implications for the 
degree to which the sand must be washed prior to being sold. While these are important factors to 
consider when placing mining operations, variability in grain size and purity is extremely variable and 
thus statistical methods similar to those applied in this analysis would be unlikely to provide any 
estimates within any useful bounds of uncertainty. 
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