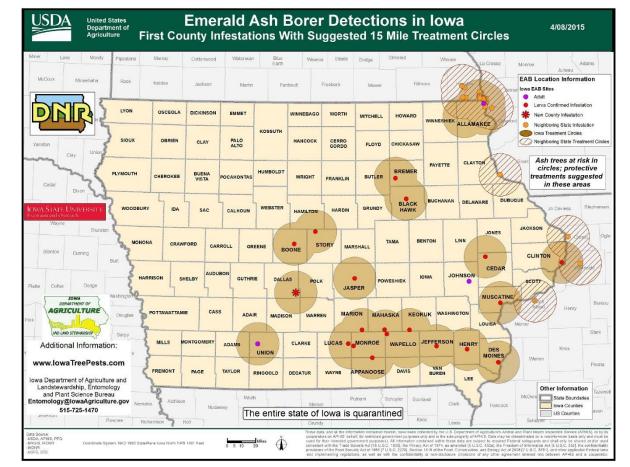

# Emerald Ash Borer: Monitoring and Management Recommendations for the City of Iowa City, Iowa

Charlie Cigrand, Eric Hawkinson, Killian Laughead, Jason McCurdy, Jacob Mirfield, and Darien Vonk

#### Introduction

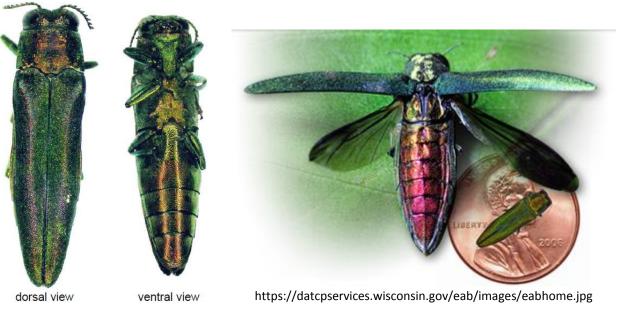

- Emerald ash borer (EAB) is an invasive beetle first detected in the US in 2002
- Inadvertently introduced in the 1990s via contaminated shipping materials
- Rapidly spread to 25 states and 2 Canadian provinces
- Already resulted in the loss of millions of ash trees at a significant cost to governments and private property owners



http://www.emeraldashborer.info/images/homepagemap.gif

## **Statement of Purpose**

- EAB is expected to arrive in Johnson County in the near future
- Monitoring and management strategies are necessary
- This presentation will assist the City of Iowa City by:
  - 1) Providing information on the ecology of EAB
  - 2) Completing an inventory of ash trees in the Iowa City area
  - 3) Suggesting methods for monitoring EAB
  - 4) Recommending treatment or replacement options for ash trees




http://www.iowatreepests.com/images/Iowa\_Q\_Map.jpg

## **Emerald Ash Borer: Identification**



- Adult similar to Agrilus species native to North America
  - Larger and brighter green
- Overall metallic green color may include brassy, coppery, or reddish reflections
- Dorsal surface of abdomen is bright metallic coppery-red; most visible when wing covers and wings are raised



Length: 26.0-32.0 mm



http://static1.squarespace.com/static/502d2cede4b0ab396 711e089/t/553e43d3e4b0bfb591520753/1430143960167/

- Larvae are white to cream-colored; head is brown
- Abdomen is flattened rather than round, has 10 segments, brown, pincer-like appendages

## Emerald Ash Borer: Ecology

- Complete life cycle in 1-2 years
- Upon hatching, larvae bore through bark of ash tree and feed on phloem in tunnels called galleries
- Feed into the fall, overwinter in bark
- Pupation occurs the following spring
- Adults emerge from distinctive Dshaped holes between May and July
- Live for 3-6 weeks, feeding on leaves but causing little damage
- Following mating females lay eggs on the bark of ash trees



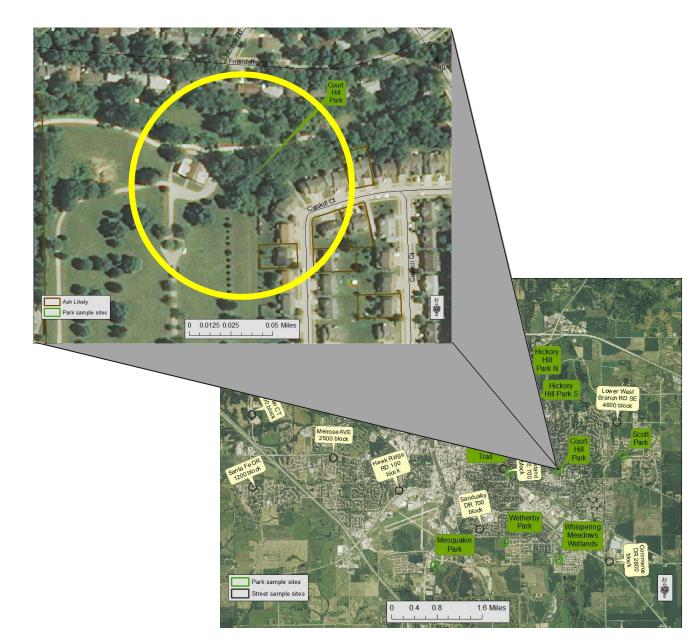


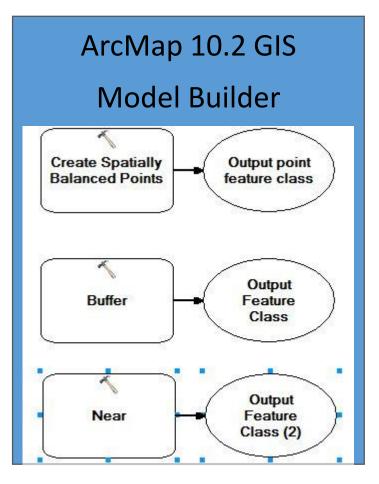
http://mdc.mo.gov/sites/default/files/ media/images/2010/08/36.jpg

http://www.nyis.info/images/5428789.jpg

#### Impacts on Native Ash Trees

- Phloem-feeding beetle
  - This disrupts nutrient and water transport
- Recently infested trees show few external symptoms
- Thinning of canopy and branch dieback occurs as infestation advances
  - Woodpecker flecking is an indicator for EAB
- Epicormic shoots may emerge from trunk or branches
- Trees die within 2-4 years of infestation





Epicormic shoots on girdled ash.



Flecking caused by woodpecker damage.

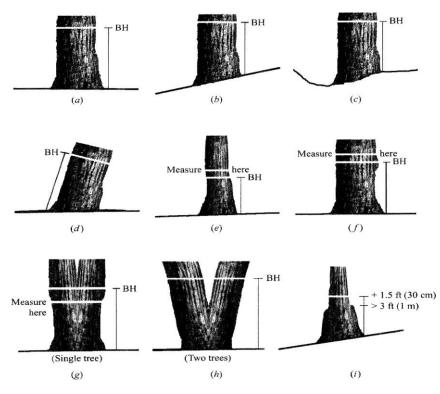
#### **Site Selection Protocols**





This site selection process was performed by UI Graduate Student, Cody Hodson.

- Identify and count ash trees
- Record GPS coordinates
- Measure diameter at breast height
- Measure tree height
- Measure tree's average crown width



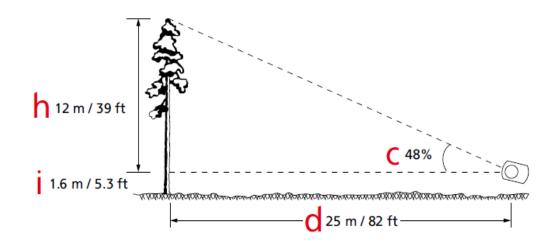



- Diameter at Breast Height
  - Trunk is the best indicator of tree size
  - Measured at 1.37m from ground
  - Data collected in centimeters

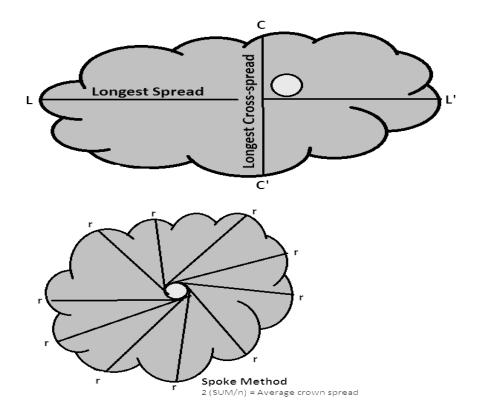




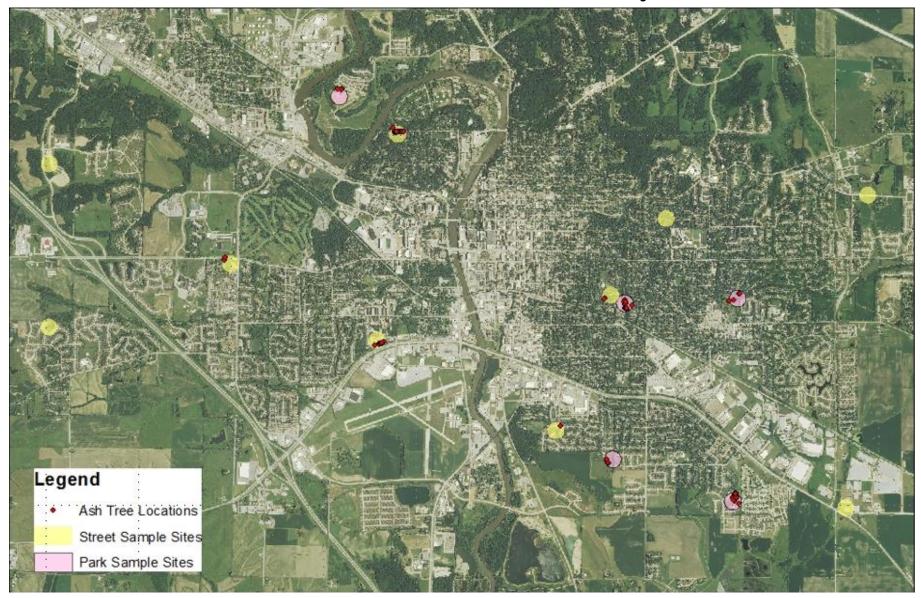



#### • Tree Height

- Used clinometer and range finder
- Measured distance from tree with range finder
- Clinometer found percentage angle to top of tree
- Height found by formula CxD+I=H





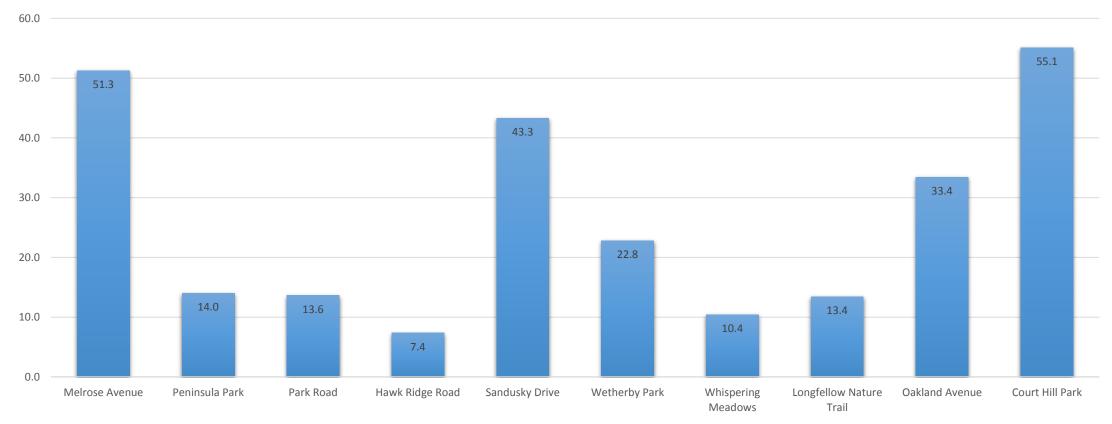


https://honeybros.com/Item/Suunto\_Clinometer\_PM5-1520



- Average Crown Width
  - Measured longest spread by the longest cross-spread
  - Formula for this method is (narrowest length + widest length)/2
  - Spoke method is an alternative



#### Ash Tree Locations by Site



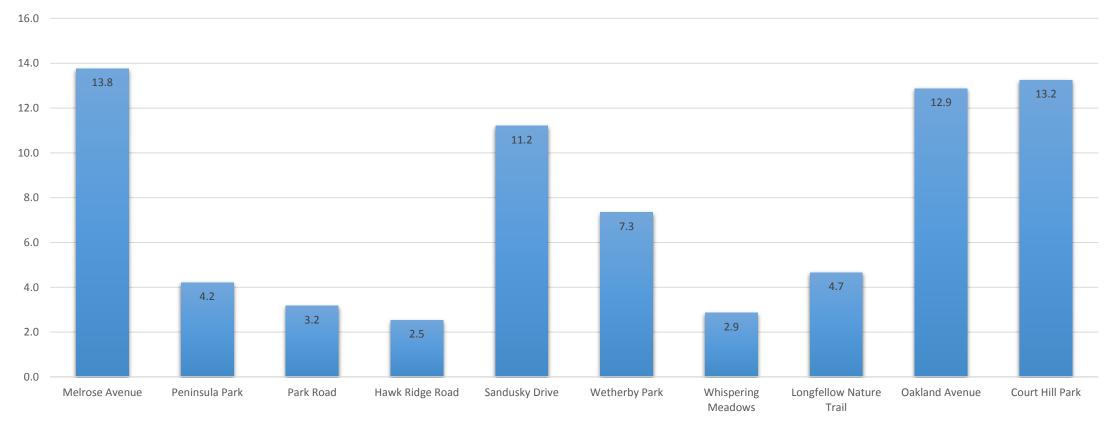

#### Tree Count Table

| Site                    | Non-ash Trees | Non-Ash Saplings | Ash Trees | All Trees |
|-------------------------|---------------|------------------|-----------|-----------|
| Santa Fe Drive          | 11            | 0                | 0         | 11        |
| Ryan Court              | 0             | 0                | 0         | 0         |
| Melrose Avenu e         | б             | 0                | 2         | 8         |
| Peninsula Park          | 229           | 1104             | 4         | 233       |
| Park Road               | 186           | 96               | 24        | 306       |
| Hawks Ridge Road        | 49            | 294              | 14        | 357       |
| Mesquakie Park          | N/A           | N/A              | N/A       | N/A       |
| Sandusky Drive          | 10            | 0                | 1         | 11        |
| Wetherby Park           | 29            | 0                | 4         | 33        |
| Whispering Meadows      | 93            | 71               | 26        | 190       |
| Commerce Drive          | 87            | 44               | 0         | 131       |
| Longfellow Nature Trail | 234           | 240              | 19        | 493       |
| Oakland Avenue          | 73            | 3                | 3         | 79        |
| Glendal e Road          | 1             | 0                | 0         | 1         |
| Court Hill Park         | 284           | 570              | 5         | 859       |
| Scott Park              | N/A           | N/A              | N/A       | N/A       |
| Lower West Branch Road  | 0             | 0                | 0         | 0         |
| Hickory Hill South      | N/A           | N/A              | N/A       | N/A       |
| Hickory Hill North      | N/A           | N/A              | N/A       | N/A       |
| Shimek Ravine           | N/A           | N/A              | N/A       | N/A       |
| Total                   | 1292          | 2422             | 102       | 2712      |

#### **Tree Diameter**

Average DBH (cm) for sites with ash trees




#### Tree Height

Average height (m) for sites with ash trees



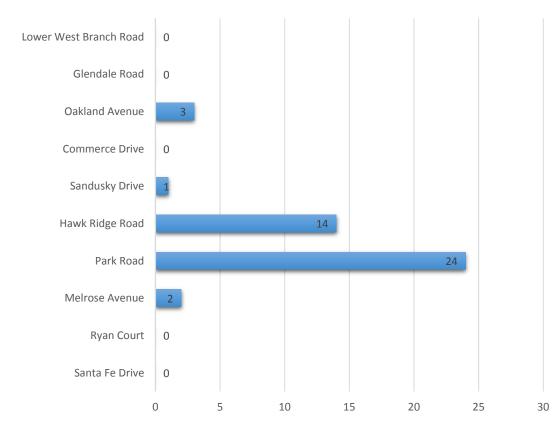
#### Crown Width

Average crown width (m) for sites with ash trees



#### Number of Ash Trees by Site




#### Ash Tree Count

Peninsula Park

0

5

#### Number of ash at street sites



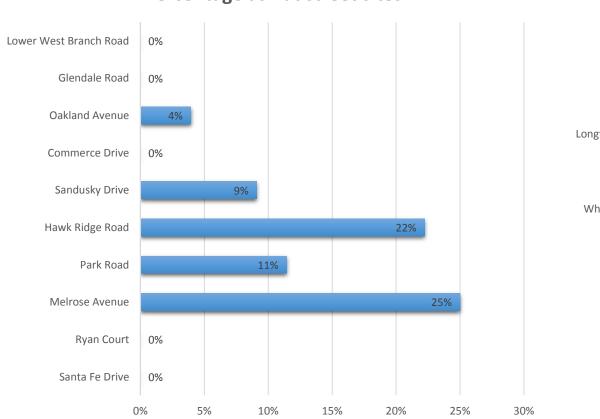
# Court Hill Park 5 Longfellow Nature Trail 19 Whispering Meadows 26 Wetherby Park 4

10

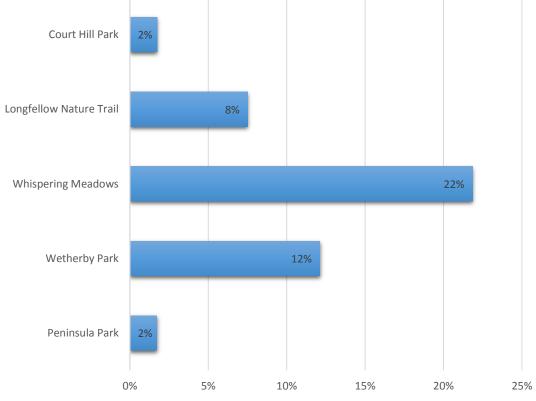
15

20

25


30

#### Number of ash at park sites

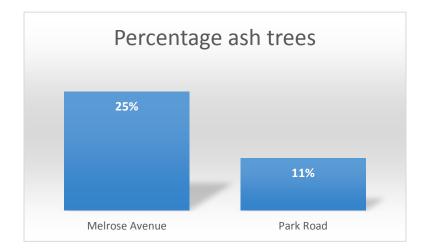

#### Percentage of Ash Trees by Site



#### Ash Tree Percentages



#### Percentage ash at street sites



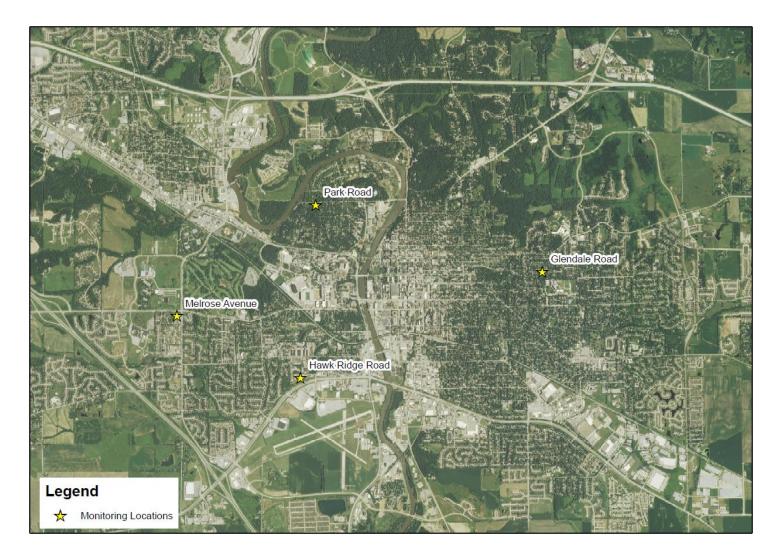

#### Percentage ash at park sites

## Ash Tree Percentages by Age of Neighborhood

| Sites by Decede         | 1960s | 1980s | 1990s | 2000s |
|-------------------------|-------|-------|-------|-------|
| Sites by Decade         | 19005 | 19002 | 19905 |       |
| Santa Fe Drive          |       |       |       | х     |
| Ryan Court              |       |       |       | х     |
| Melrose Avenue          | х     |       |       |       |
| Peninsula Park          |       |       |       | х     |
| Park Road               | х     |       |       |       |
| Hawk Ridge Road         |       | х     |       | х     |
| Mesquakie Park          |       |       | х     |       |
| Sandusky Drive          |       | х     |       |       |
| Wetherby Park           |       |       |       | х     |
| Whispering Meadows      |       |       |       | х     |
| Commerce Drive          |       |       | х     |       |
| Longfellow Nature Trail |       |       |       | х     |
| Oakland Avenue          |       |       | х     |       |
| Glendale Road           | х     | х     |       |       |
| Court Hill Park         |       |       |       | х     |
| Scott Park              |       |       |       | х     |
| Lower West Branch Road  |       |       |       | х     |
| Hickory Hill South      |       |       | х     |       |
| Hickory Hill North      |       |       |       | х     |
| Shimek Ravine           |       |       | х     |       |
|                         |       |       |       |       |

- Dutch elm disease responsible for the death of thousands of elm trees in Iowa in 1963
- Sampled streets sites from 1960's are Melrose Avenue and Park Road
  - Both sites exhibit higher percentages of ash trees (25% and 11.4% respectively)




## Results

- Based on our sample design, it's possible lowa City could lose approximately one tenth of its street tree population.
- The sampled park sites had 6.3 percent ash
- The sampled streets sites 9.4 percent ash.
- Combined all trees, 7.3 percent were ash.



## Where to Monitor for EAB

- Focus on Street sites
  - Glendale Rd
  - Hawk Ridge Rd
  - Melrose Ave
  - Park Rd
- Park sites are of secondary concern
  - Natural setting, trees not hazards



#### How to Monitor for EAB

- Canopy traps (PPT and double-decker PPT)
  - EAB attracted to color, baited with oils similar to those found in ash, glue traps beetles
  - Research has suggested that double-decker traps are more effective in areas with low EAB density
- Girdling
  - Low-tech, destructive to tree
    - Not recommended for street trees
- Surveillance
  - Beetle itself
  - Signs of infestation
    - Branch and canopy die-off
    - Epicormic shoots
    - Woodpecker damage



## Atanycolus hicoriae

- Study conducted in Michigan
- Parasitoid of the two-lined chestnut borer and bronze birch borer, possibly feeds on EAB
- Small wasp species that develops singly
- Impact is dependent on how well life cycles match; EAB and A. hicoriae are not well synced
- EAB on two-year life cycle were more affected by parasitism
- Found higher rate of parasitism than previous studies



http://www.biocontrol.entomology.cornell.edu/images/parasitoids/a\_cappaerti1.jpg

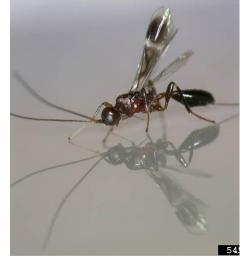
# Oobius agrilli

- Wasp parasitoid found in China
- Sole host is the EAB
- 53-61% parasitism in July/August
- Preferentially attacks EAB over other species



http://www.ars.usda.gov/SP2UserFiles/Place/80100000/JJDuan/Balchaindica.jpg

## Tetrastichus planipennisi


- Parasitic wasp species of N Asia
- Shown to kill up to 50% EAB larvae
- Can survive winter as larvae inside host- very good at establishing continuous population
- Only host is the EAB
- Only attacks EAB larvae that are actively feeding



http://www.discoverlife.org/IM/I\_BUR/0000/mx/Tetrastichus\_planipennisi,I\_BUR2.jpg

## Spathius agrili

- Parasitic wasp species of N Asia
- Small tree host range but highly effective- up to 90%
- EAB is only host species
- Lifecycle of EAB and host coincide well



http://www.insectimages.org/browse/detail.cfm?imgnum=5451604

#### Cedar Rapids EAB Management Plan

- Around 30% of city street trees are ash trees
- Estimated: 15,000 ash trees
- Slow the spread approach: combining tree removal and insecticide use
  - Limits dispersal of EAB and lessens it impact over a greater timeframe
- Buffers the loss of ash tree canopy so new trees can get larger and form a new canopy
- Allows tree removal crews more time to remove all ash trees



City of Five Seasons®

#### Ash Tree Treatment

#### **TREE-age Injection (emamectin benzoate)**

- \$5 per inch of tree diameter (\$120 24" DBH tree)
- Treatment lasts 2-3 years
- 90% effective (not guaranteed)

#### **Plans for Treatment**

- Create a treatment buffer along infected sites
- Treat sentinel ash trees & well-formed mature ash trees
- City blocks with primarily ash trees: ≈50% will be treated to allow new tree species to grow while minimizing canopy loss



http://www.greenvelvet.com/wpcontent/uploads/2012/11/Treeag e-Always-Ready-Bottle.jpg

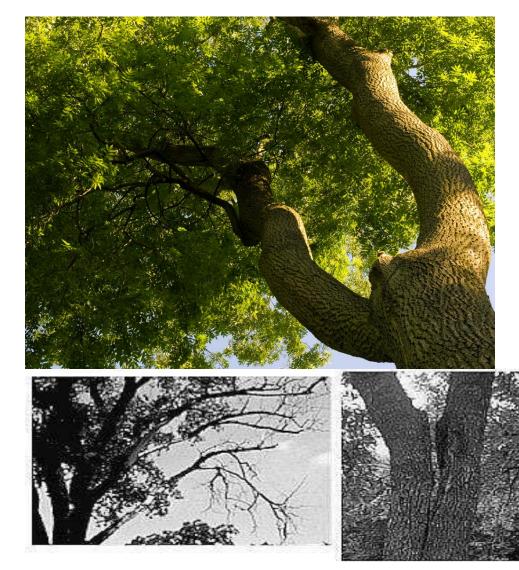
#### Ash Tree Removal

- Cedar Rapids has removed over 1000 ash trees since 2009
  - (150-300 per year)
- Become more aggressive once EAB infestation occurs
  - Remove 500-1000 trees per year
- Remove all ash trees within 2 block radius of infected tree

#### **Trees to Remove**

- Poor form
- Safety hazard
- Poor location
- Declining ash tree




Poor location (under power lines)

#### **Examples of Trees to Remove**

Declining ash are more prone to storm damage and falling limbs



Ash trees with co-dominant leaders can be more prone to splitting and storm damage



#### Management Costs

- \$400,000 to conduct ash tree survey & identify trees to have to treat all 15,000 trees:
- \$3.15 million for initial treatment
- \$20.4 26.7 million to treat over a 16 year period (depending on 2-3 yr treatment plan)
- Does not factor in removal of treated trees overcome by EAB

#### To remove all 15,000 trees:

- \$11.25 million to remove within 10 years
- \$15.22 million total to remove and replace all ash trees

#### Middle approach:

- Save some trees and remove some
- \$16.1 million over 18 years with chemical treatment every 3 years
- \$17.6 million with chemical treatment every 2 years

## Cedar Rapids Tree Survivability

- Conducted a tree survey for street trees planted from 2009-2012 (3087 trees)
- Found an average of 82% survivability & 18% mortality rates

Most successful trees were able to handle stress

- Soil compaction
- Road salt
- Reduced groundwater filtration (impermeable surfaces)
- Excessive heat radiation
- Pollution

#### **Best Tree Replacements (From CR Data)**

| Tree Species        | Trees Planted | Trees Alive |        | Dead/Replaced<br>Trees |                    |
|---------------------|---------------|-------------|--------|------------------------|--------------------|
|                     | neesnanted    | #           | %      | #                      | %                  |
| Manchurian Alder    | 20            | 20          | 100.0% | 0                      | 0.0%               |
| Amur Corktree       | 49            | 47          | 95.9%  | 2                      | <mark>4.1%</mark>  |
| Black Locust        | 42            | 40          | 95.2%  | 2                      | <mark>4.8%</mark>  |
| Tartarian Maple     | 15            | 14          | 93.3%  | 1                      | 6.7%               |
| Amur Maple          | 12            | 11          | 91.7%  | 1                      | 8.3%               |
| Shumard Oak         | 12            | 11          | 91.7%  | 1                      | 8.3%               |
| Hackberry           | 179           | 164         | 91.6%  | 15                     | <mark>8.4%</mark>  |
| Crabapple           | 70            | 64          | 91.4%  | 6                      | <mark>8.6%</mark>  |
| Japanese Zelkova    | 66            | 60          | 90.9%  | 6                      | <mark>9.1%</mark>  |
| Kentucky Coffeetree | 230           | 208         | 90.4%  | 22                     | <mark>9.6%</mark>  |
| Horse Chestnut      | 31            | 28          | 90.3%  | 3                      | 9.7%               |
| Miyabei Maple       | 121           | 109         | 90.1%  | 12                     | <mark>9.9%</mark>  |
| Hybrid Elm          | 302           | 268         | 88.7%  | 34                     | <mark>11.3%</mark> |
| Swamp White Oak     | 193           | 167         | 86.5%  | 26                     | 13.5%              |
| Honeylocust         | 191           | 165         | 86.4%  | 26                     | 13.6%              |
| London Planetree    | 139           | 120         | 86.3%  | 19                     | 13.7%              |
| Shingle Oak         | 36            | 31          | 86.1%  | 5                      | 13.9%              |
| Dawn Redwood        | 13            | 11          | 84.6%  | 2                      | 15.4%              |
| Ginkgo              | 276           | 228         | 82.6%  | 48                     | 17.4%              |
| Lacebark Elm        | 63            | 52          | 82.5%  | 11                     | 17.5%              |
| Bald Cypress        | 112           | 92          | 82.1%  | 20                     | 17.9%              |
| Japanese Tree Lilac | 77            | 63          | 81.8%  | 14                     | 18.2%              |
| Sawtooth Oak        | 11            | 9           | 81.8%  | 2                      | 18.2%              |
| Hills Oak           | 15            | 12          | 80.0%  | 3                      | 20.0%              |
| Bur Oak             | 29            | 23          | 79.3%  | 6                      | 20.7%              |

#### Worst Tree Replacements

| Tree Species        | Trees Planted | Trees Alive |       | Dead/Replaced<br>Trees |       |
|---------------------|---------------|-------------|-------|------------------------|-------|
|                     |               | #           | %     | #                      | %     |
| Serviceberry        | 11            | 6           | 54.5% | 5                      | 45.5% |
| Blue Beech          | 17            | 10          | 58.8% | 7                      | 41.2% |
| Japanese Pagodatree | 13            | 8           | 61.5% | 5                      | 38.5% |
| Tulip Tree          | 94            | 58          | 61.7% | 36                     | 38.3% |
| Black Alder         | 33            | 21          | 63.6% | 12                     | 36.4% |
| Norway Maple        | 25            | 16          | 64.0% | 9                      | 36.0% |
| White Oak           | 27            | 18          | 66.7% | 9                      | 33.3% |
| Sweet Gum           | 27            | 19          | 70.4% | 8                      | 29.6% |
| Goldenraintree      | 23            | 17          | 73.9% | 6                      | 26.1% |
| European Hornbeam   | 73            | 55          | 75.3% | 18                     | 24.7% |
| Black Maple         | 29            | 22          | 75.9% | 7                      | 24.1% |
| Sugar Maple         | 224           | 174         | 77.7% | 50                     | 22.3% |
| Chinquapin Oak      | 106           | 83          | 78.3% | 23                     | 21.7% |

## Summary of Recommendations

- Monitor Street Sites
  - Glendale Rd, Hawks Ridge Rd, Melrose Ave, and Park Rd
- Utilize double-decker prism traps
- Increase surveillance efforts in these areas
  - Insect, secondary signs of infestation
- Treat sentinel and large mature ash trees
- Create quarantine buffers around infested ash when possible
- Replace removed ash trees with emphasis on natives over exotic species

#### References

Bauer, Leah, Jian Duan, and Gould Juli. "XVII Emerald Ash Borer." USDA Forest Service. 1 Sept. 2014. Web. 7 May 2015.

Cappaert D, D.G. McCullough, T.M. Poland, N.W. Siegert. 2005. "Emerald ash borer in North America: a research and regulatory challenge." *American Entomologist*. 51:152–63

Duan, J.J., L. Bauer, K.J. Abell, and R.G. van Driesche. 2012. "Population responses of hymenopteran parasitoids to the emerald ash borer (Coleoptera: Buprestidae) in recently invaded areas in north central United States." *BioControl* 57:199–209

Herms, D.A and D.G. McCullough. 2013. "Emerald ash borer: ecology and management." Encyclopedia of Pest Management. doi: 10.1081/E-EPM-120041656

Houping, Liu, Leah Bauer, Deborah Miller, Tonghai Zhao, Ruitong Gao, Liwen Song, Qingshu Luan, Ruozhong Jin, and Changqi Gao. "Seasonal Abundance of Agrilus Planipennis (Coleoptera: Buprestidae) and Its Natural Enemies Oobius Agrili (Hymenoptera: Encyrtidae) and Tetrastichus Planipennisi (Hymenoptera: Eulophidae) in China." Emerald Ash Borer. Elsevier, 31 Mar. 2007. Web. 7 May 2015.

Iowa Department of Agriculture and Land Stewardship. 2015. "Iowa Tree Pests: Emerald Ash Borer." Retrieved 22 February 2015. <<u>http://www.iowatreepests.com/eab\_home.html</u>>

Iowa Department of Natural Resources. 2015. "Emerald Ash Borer." Retrieved 23 February 2015. <<u>http://www.iowadnr.gov/Environment/Forestry/ForestHealth/EmeraldAshBorer.aspx</u>>

Parsons, G.L. 2008. "Emerald Ash Borer: A guide to identification and comparison to similar species [Fact Sheet]. Department of Entomology, Michigan State University. Retrieved 21 February 2015. <<u>http://www.emeraldashborer.info/files/eab\_id\_guide.pdf</u>>

USDA Forest Service. 2008. Pest Alert: Emerald Ash Borer [Fact Sheet]. Retrieved 20 February 2015. < http://www.emeraldashborer.info/files/eab.pdf >