

FINAL DELIVERABLE

Title Completed By	Clinton - Downtown Commercial Building Rehabilitation (239 5th Ave South) Brad Brown, Jarod Concha, Sean Stevens	
Date Completed	December 2019	T
UI Department	Department of Civil & Environmental Engineering	
Course Name	CEE:4850:0001 Project Design & Management	
Instructor	Christopher Stoakes	
Community Partners	Downtown Clinton Alliance	

This project was supported by the Iowa Initiative for Sustainable Communities (IISC), a community engagement program at the University of Iowa. IISC partners with rural and urban communities across the state to develop projects that university students and IISC pursues a dual mission of enhancing quality of life in Iowa while transforming teaching and learning at the University of Iowa.

Research conducted by faculty, staff, and students of The University of Iowa exists in the public domain. When referencing, implementing, or otherwise making use of the contents in this report, the following citation style is recommended:

[Student names], led by [Professor's name]. [Year]. [Title of report]. Research report produced through the Iowa Initiative for Sustainable Communities at the University of Iowa.

This publication may be available in alternative formats upon request.

Iowa Initiative for Sustainable Communities The University of Iowa 347 Jessup Hall Iowa City, IA, 52241 Phone: 319.335.0032 Email: iisc@uiowa.edu Website: http://iisc.uiowa.edu/

The University of Iowa prohibits discrimination in employment, educational programs, and activities on the basis of race, creed, color, religion, national origin, age, sex, pregnancy, disability, genetic information, status as a U.S. veteran, service in the U.S. military, sexual orientation, gender identity, associational preferences, or any other classification that deprives the person of consideration as an individual. The University also affirms its commitment to providing equal opportunities and equal access to University facilities. For additional information contact the Office of Equal Opportunity and Diversity, (319) 335-0705.

COMMERCIAL BUILDING REHABILIATION

239 5TH AVENUE SOUTH CLINTON, IOWA 52732

PREPARED FOR: KAREN ROWELL, DIRECTOR OF DOWNTOWN CLINTON ALLIANCE

DATE SUBMITTED: DECEMBER 13TH, 2019

SUBMITTED BY: JBS CONSULTANTS

BRAD BROWN, PROJECT MANAGER JAROD CONCHA, REPORT PRODUCTION SEAN STEVENS, TECH SERVICES

TABLE OF CONTENTS

SECTION I: EXECUTIVE SUMMARY1
SECTION II: ORGANIZATION QUALIFICATIONS AND EXPERIENCE2
SECTION III: DESIGN SERVICES
SECTION IV: CONSTRAINTS, CHALLENGES AND IMPACTS6
SECTION V: ALTERNATIVE SOLUTION CONSIDERATIONS8
SECTION VI: FINAL DESIGN DETAILS9
SECTION VII: COST ESTIMATE13
SECTION VIII: APPENDIX A: DESIGN CALCULATIONS15
SECTION IX: APPENDIX B: DETAILED COST ESTIMATE16
SECTION X: CITATIONS19

I. EXECUTIVE SUMMARY

The following report comprises the analysis, design, and cost estimate for the rehabilitation of three two-story buildings at 239 5th Ave. S, Clinton, Iowa. The main objective of this project is to renovate the second floors of the buildings to be used as residential space. This goal opened many possibilities for design, including the addition of parking garages to the first floor, new back entrances to the apartments, and second floor balconies. Other objectives expressed by the client include the restoration of the building façade, removal of the boilers and hazardous materials in the basement and partitioning the bar to better utilize the space. The existing structural systems, including floors and bearing walls, were sized and analyzed to ensure the buildings provide adequate strength for habitation. Due to limited access to the second-floor system, joist sizes had to be assumed and analyzed to resist residential live and dead loads. Arrangement of the partition walls of the second-floor residential units were made to accommodate one- and two-bedroom apartments. Demolition of existing and installation of new partition walls has been proposed to augment the floor plans of all the second-floor residential units and two of the first-floor commercial spaces.

Proposed additions to the buildings' structural systems, from the ground up, include twocar parking garages for residential use, entrance and exit staircases, a raised hallway, and walkout balconies. The garages would be behind the insurance office and bar (middle building). The garage floors have been designed as slab-on-grade, with granular backfill subgrade supported by a mechanically reinforced concrete retaining wall. Demolition of part of the existing first floor system and south-side exterior wall is required to excavate and install the concrete garage pad and new garage openings. Header members have been sized to support the garage doors. Addition of a garage would coincide with changes in the floor plan of the bar to better utilize the space. The interior staircases are necessary to provide back entrance/exit points for the residential units and coincides with changes in the floor plan of the collector's shop and second floor apartment. The balconies would be installed in the apartments above the collector's shop (easternmost building) and the insurance office (westernmost building). Due to differing elevations in the existing floor and roof systems, installation of the balconies would include demolition of part of the existing roof to make space for the new framing members.

Cost estimates have been conducted for the demolition and construction of new structural systems, as well as for the refurbishment of the building façade and cleanup of the basements and apartments. The façade of the collector's shop will be restored to its original condition by removing the existing cladding. Although there are parts of the façade that are in obvious need of repair, contingencies have been included in the cost estimates for tuckpointing and replacement of clay masonry where visual inspection cannot be conducted. This includes places where the original façade is obstructed by existing cover materials that will be removed. Basement renovations include grouting of the limestone foundation walls and removal of the large cast iron boilers that are no longer in use. One of the boilers is set into a concrete pad that is at a lower elevation than the existing floor; this recess will be filled after removal of the boiler. Also included is the abatement of hazardous materials in the basements. For the apartments, old floor

cover and parts of the sheathing will be removed and replaced. When going through the demolition, it is recommended to ensure the joists in the second-floor system are at least as large as the sizes used in design. If not, they will need to be replaced to support ASCE 7-16 residential live loads.

II. ORGANIZATION QUALIFICATIONS AND EXPERIENCE

Organization Name: JBS Consultants

Organization Location and Contact Information

Location:

Seamans Center 103 South Capitol Street Iowa City, IA 52242

Contact Information:

Brad Brown (Project Manager) Email: <u>bradley-brown@uiowa.edu</u> Cell Phone: (815)-341-5140

Organization and Design Team Description

The JBS design team consists of a group of civil engineering students enrolled in the Senior Capstone Design Course at the University of Iowa. At JBS Consultants, our expertise is in structural design and we aim to deliver a product that is not only safe, but also accommodates our clients' desires. Each of the team members role in the project and area of expertise are as follows:

Brad Brown, Project Manager: Brad is a 4th year student pursuing a civil engineering major with a business administration minor. Brad's project roles include communication with the client, coordination of meetings, and cost estimate production. Brad has management experience through his internship with Golf Construction. Throughout his tenure at Golf he shadowed various project managers and assisted them with tasks that included assistance with estimates and concrete inspections. He was also able to gain some experience in façade restoration where he learned the various repairs that may come up during a restoration project.

Jarod Concha, Report Production: Jarod is a 4th year civil engineering major with a focus in prearchitecture. Jarod's role in the project was to conduct the structural analysis and structural design for all three of the existing buildings. Jarod has expertise in programs like MathCAD and is well-versed in structural analysis. Jarod has had past engineering experience on various design projects, including designing apartment foundations in Champaign, IL and designing wood framing for floor, roof, and bearing walls.

Sean Stevens, Technology Services: Sean is a 4th year civil engineering major with a focus in structures. Sean's role in the project was to produce the Revit model as well as construction drawings for the team's designs. Sean has experience in various computer design programs including AutoCAD, Revit, Robot and ArcGIS. Sean has also gained structural design experience through the courses he took at the University of Iowa. The structural design courses include Design of Wood Structures, Foundation of Structures and Structural Systems for Buildings. In Design of Wood Structures, he gained experience with analyzing various roof and truss systems. In Foundation of Structures, Sean gained experience in analyzing foundations and retaining walls. In Structural Systems for Buildings, he was able to analyze building systems using Revit.

III. DESIGN SERVICES

Project Scope

The main objective of this project is to rehabilitate the second-floor spaces to accommodate one- and two-bedroom apartments. Included in this is the addition of amenities such as parking and balconies, and the addition of new entrance and exit stairways to comply with the 2012 International Building Code (IBC). Other requests expressed by the client include restoring the brick façade, removing boilers and hazardous materials from the basement, and partitioning the bar to better utilize the space. Proposed changes in the bar were discussed with the client, including the addition of a back patio or garage parking for tenants. It was determined that garages would be preferable, as it would increase the value of the apartments. Originally, the foundation walls, floor, and roof systems were to be analyzed to ensure they provide adequate strength for residential and commercial use. However, it was determined that only those systems that would receive new loads would need to be assessed. These systems include the first and second floor joists and beams as well as the clay masonry bearing walls. Since no modifications are being made to the roof, it was deemed unnecessary to analyze the roof framing. As for the foundation, after visual inspection the design team concluded that re-grouting and tuckpointing is required to maintain structural strength of the limestone.

Currently, the residential spaces above the insurance office and bar have an open floor plan. They share a hallway that leads to the front and back entrances, but the floor elevations differ by approximately two feet. The design team proposed two solutions to the change in floor elevation. The first solution was to raise the floor and roof system above the bar to increase the south-facing windows and add space for a balcony. The second solution was to raise part of the connecting hallway. The latter design alternative was chosen because raising the floor and roof systems would be too expensive. The units above the collector's shop are partitioned but require complete redesign of the floor layout in accordance with client request and the IBC window to floor area ratio. The client gave JBS Consultants the freedom to choose how to partition the residential spaces, and it was determined that one- and two-bedroom units would best suit the needs of potential tenants. Two, two-bedroom units have been proposed for the spaces above the collector's shop and bar, and two one-bedroom units for the space above the insurance office.

Existing and proposed floor plans, as well as demolition plans, have been drawn to specify the extent of work for the residential spaces. Design of the garage includes the addition of a mechanically stabilized concrete retaining wall to support the backfill to the slab-on-grade pad of the garage floor. Demolition of the floor system and excavation under the bar is required for this addition, as well as changes to the layout of the bar. Minor changes to the floor plan of the collector's shop are also included to accommodate the new exit staircases. The second-floor residential units above the collector's shop and insurance office will receive balconies that span from bearing wall to bearing wall. Ten-foot parapet privacy walls have also been included with the balcony design. Contingencies have been included in the cost estimate for façade demolition and repair, as well as cost estimates for removal of the boilers and general cleaning in the basements.

Work Plan

The following Gantt Chart shows the work schedule that was utilized for the design that was created. All project activities were completed over a 14-week period. Design work began on Monday, September 9th, 2019 and concluded on Friday, December 13th, 2019.

											_			_	_	-	_	_						_		_	
Clinton, Iowa Building Rehabilitation	_																										
Company: JBS Consultants						10			-																		
			Sep 9	, 2019			Sep 1	6, 201	9			Sep	23, 2	2019				Sep	30,	201	9		Oct /	, 201	9		
·		-	9 10	11 12	2 13 1	14 15	16 17	18	19 20	21	22	23 2	24 2	25 26	5 27	28	29	30	12	3 .	45	67	78	9 10	11	12	13
TASK	START	END	MT	w T		5 5	M T	w	T F	5	s	м	T	w T	F	S	5	м	TW	Ŧ	FS	S N		N T	F	\$	s
Existing Structural Member Analysis	9/9/19	9/23/19																									
Proposed Apartment Floor Plan Layout	9/9/19	9/23/19																									
Balcony Design	9/23/19	10/7/19																									
Stair Design	10/7/19	10/21/19																									
Garage Design	10/21/19	11/4/19																									
Foundation Wall Design	10/21/19	11/4/19																									
Structural Plan	9/23/19	10/23/19										1															
Architectural Plan	9/23/19	10/23/19										1															
Demolition Plan	10/23/19	11/6/19																									
Construction Drawing Sheet Generation	11/6/19	11/13/19																									
Cost estimate	10/31/19	11/16/19																									
3D Render Creation	11/16/19	11/20/19																									
Draft Design Report	11/16/19	11/22/19																									
Draft Design Presentation	11/16/19	11/22/19																									
Draft Design Poster	11/16/19	11/22/19																									
Project Revisions	11/25/19	12/13/19																									
Final Report Submittal	12/13/19	12/13/19																									
Final Project Drawing Set Submittal	12/13/19	12/13/19																									
Final Presentation Slides Submittal	12/6/19	12/6/19																									
Project Presentations	12/6/19	12/13/19																									

Figure 1: Displays Gantt Chart for Work Completed from the September 9th, 2019 - October 13th, 2019

Clinton, Iowa Building Rehabilitation	7			11														77Y	
Company: JBS Consultants		-																	
		Oct 14, 2 14 15 1	2019 6 17 18	19 20	Oct 21 21 22	L, 2019 23 24	25 26	6 27 2	Oct 28, 20)19 31 1	23	Nov	4, 20 6 7	19 8 9 10	No 11	v 11, 12 1	2019 3 14	15 16	5 17
TASK	START END	M T V	/ T F	5 5	M T	W T	FS	S I	и т w	TF	5 S	MT	W T	FSS	M	τV	N T	FS	5
Existing Structural Member Analysis	9/9/19 9/23/19																		
Proposed Apartment Floor Plan Layout	9/9/19 9/23/19																		
Balcony Design	9/23/19 10/7/19																		
Stair Design	10/7/19 10/21/1)															_		
Garage Design	10/21/19 11/4/19																		
Foundation Wall Design	10/21/19 11/4/19																		
Structural Plan	9/23/19 10/23/1	9																	
Architectural Plan	9/23/19 10/23/1	9																	
Demolition Plan	10/23/19 11/6/19																		
Construction Drawing Sheet Generation	11/6/19 11/13/1)											-						
Cost estimate	10/31/19 11/16/1)						1	_	1									
3D Render Creation	11/16/19 11/20/1)																	
Draft Design Report	11/16/19 11/22/1)															-		
Draft Design Presentation	11/16/19 11/22/1	9	_														_		
Draft Design Poster	11/16/19 11/22/1)						1											
Project Revisions	11/25/19 12/13/1	9									_						_		
Final Report Submittal	12/13/19 12/13/1)						1											
Final Project Drawing Set Submittal	12/13/19 12/13/1)	_					_			_			_	_		_		
Final Presentation Slides Submittal	12/6/19 12/6/19																_		_
Project Presentations	12/6/19 12/13/1	9																	

Figure 2: Displays Gantt Chart for Work Completed from the October 14th, 2019 – November 17th, 2019

Clinton, Iowa Building Rehabilitation	-		8																									
Company: JBS Consultants																												
			No	v 18	, 20:	19			1	Nov	25,	, 201	19				Dec	: 2, :	201	9	are	De	c 9,	201	19	1020	12121	
TASK	START	END	18	19	20 w	21	22	23 2 s	24 2 s	25 M	26	27	28	29	30 s	1	23 MT	4 w	5	67 FS	8 5	9	10	11 w	12	13	14	15
Existing Structural Member Analysis	9/9/19	9/23/19																										
Proposed Apartment Floor Plan Lavout	9/9/19	9/23/19	-										-					1		-								_
Balcony Design	9/23/19	10/7/19																										
Stair Design	10/7/19	10/21/19																										
Garage Design	10/21/19	11/4/19																										
Foundation Wall Design	10/21/19	11/4/19																										
Structural Plan	9/23/19	10/23/19																										
Architectural Plan	9/23/19	10/23/19																										
Demolition Plan	10/23/19	11/6/19																										
Construction Drawing Sheet Generation	11/6/19	11/13/19																										
Cost estimate	10/31/19	11/16/19																										
3D Render Creation	11/16/19	11/20/19																										
Draft Design Report	11/16/19	11/22/19																										
Draft Design Presentation	11/16/19	11/22/19																										
Draft Design Poster	11/16/19	11/22/19																										
Project Revisions	11/25/19	12/13/19																										
Final Report Submittal	12/13/19	12/13/19																										
Final Project Drawing Set Submittal	12/13/19	12/13/19																										
Final Presentation Slides Submittal	12/6/19	12/6/19																										
Project Presentations	12/6/19	12/13/19																										

Figure 3: Displays Gantt Chart for Work Completed from November 18th, 2019 – December 7th, 2019

IV. CONSTRAINTS, CHALLENGES AND IMPACTS

Constraints

One of the major constraints posed by this project was time. The size of these buildings and the amount of structural and architectural design work required to ensure their adequate stability and habitation was quite challenging to complete within five months. Due to the time constraint, many engineering assumptions had to be made to complete the major tasks of the project. Prioritizing was key to keep the work flowing; for example, design calculations had to come before installation of member sizes into the Revit model, which then came before estimating the price of materials. Thus, clear communication between team members was essential to complete the design tasks in this project.

Another constraint the team faced was the fact that these are existing buildings. There were no previous drawings of the layout of the buildings, so measurements of the interiors had to be conducted by the design team during site visits. The measuring tools used are accurate, but a certain margin of error must be assumed for the existing layout. Another issue this constraint posed is that the façade and second floor members are obscured by cover materials. Since these aspects of the existing architecture could not be observed without demolition, contingencies had to be included in the cost estimate for the façade restoration and floor joists designed for the second-floor system.

Although JBS Consultants was not given a budget for this project, it was made clear by the client to provide designs that were cost effective. This constrained the team from making major structural changes to the buildings, like raising the floor and roof system above the bar as previously mentioned. Project costs also drove decision making for design alternatives for the layout of the bar. Garage parking for residential use was determined to be the most profitable option for the building owner, since a back patio would not significantly increase the value of the commercial space.

Challenges

Difficulties that stood out in this project mostly arose from the existing characteristics of the buildings. The spacing between bearing walls was measured as 25 feet, which required larger than typical joist sizes to satisfy design requirements. The apartments above the insurance office and bar use the same hallway for access, which is problematic because they are at two different elevations. To resolve this issue, it was deemed necessary to raise the hallway and add a short staircase to bring the hallway to the higher floor level. This allowed the team to utilize the existing back stairway as an alternative entrance for both apartment units. This is one of multiple issues posed by the existing buildings, as they are not entirely uniform.

Another challenge was the fact that many of the structural systems were obscured by existing floor covers, ceiling materials, and wall finish. The basements were especially tricky, as the geometry of the walls made it difficult to accurately measure and place the foundations. The

second-floor system was entirely obscured by the ceiling panels on the ground level and floor cover on the second. This meant the second-floor framing members had to be designed.

One major dilemma that had to be considered was determining mechanical properties for existing materials. Wood type was assumed to be spruce-pine-fir No. 2, as it is a cheap and widely used lumber with moderate strength. This was a conservative assumption so that actual loads would not exceed design strength. The bearing walls were composed of structural clay masonry, which historically has been widely used throughout the United States. The compressive strength of the walls was determined from research on historic clay brick conducted by Witzany, SyKora, and Holicky and published by *The Journal of Civil Engineering and Management*; this value was also taken as the lowest reported strength to remain conservative.

From an environmental standpoint, it is imperative that all working activities are protected from potential hazards. More specifically, there must be precautions taken when working on the exterior of the building and in the basements. The basements must be accounted for because of the large amounts of mold and asbestos. Since these buildings are occupied by businesses, it must be ensured that none of the materials contaminate the commercial spaces while being removed. The next environmental impact that must be accounted for is the dust that may come about when working on the exterior of the buildings. The team's designs call for the rehabilitation of the facades of these buildings. The work that is to be completed will have the potential to create dust that will spread into the air. For JBS Consultants' work strategies, the team must ensure that all designs will allow the potential contractor to place enough protections to prevent the transmission of hazardous particulates.

Societal Impacts

An important impact this project has is the addition of new housing for the residents of Clinton. With the four new units that have been added to these buildings, the previously unused space will help draw young professionals to the downtown area. This is important for a city that has experienced a slight population decline over the past 10 years. One of the client goals is to attract more young people to the Clinton area. With the mean age being above the national average, it is important to the social health of the city to attract a younger demographic.

Another impact brought by this project is aiding the restoration of downtown Clinton. As a city with over 160 years of history, it is important to preserve the historic aesthetic of the buildings in the downtown area. The brick facades are a staple of Iowa architecture, and represent over 100 years of industry. Upholding that cultural heritage and historic charm plays a substantial role in attracting more people to the city.

As these buildings currently provide commercial space to tenants, it is necessary to consider the impact changes will have on current and future businesses. The biggest changes to the first-floor space comes with the bar, which is being reduced in total square footage to allow the installation of a garage for residential use. The team considers the change in space a positive, as it coincides with better use of the front area which is currently separated from the rest of the bar. This will make for a more inviting social atmosphere, as the street side entrance will be favored over the alley entrance in the back.

The economic impact these renovations may bring was also considered. Designs for the first-floor plan were left open to allow for other prospective businesses to be leased from the commercial space and contribute to the Clinton economy. The second-floor residential space could attract professionals who will fill important jobs in the area. Filling these residential spaces will also provide income for the building owner, who may use that revenue to further invest in the city. This renovation project could provide many new businesses and living opportunities to downtown Clinton and serves as a testament to the growth the Downtown Clinton Alliance strives for.

V. ALTERNATIVE SOLUTION CONSIDERATIONS

There were multiple alternatives that were presented to the client. Walkout balconies for the apartments, residential garages, a patio for the bar, and a raised floor system were among the proposed changes. Other rehabilitation work includes the restoration of the historic façade, cleanup of the basements, and rework of the floor plans. After considering the square footage of the second floors, various layouts for one- and two- bedroom apartments were proposed. Three floor plans were discussed: first, six one-bedroom units, two in each building; second, three twobedroom units, one in each building, and third, a combination of the two, with two two-bedroom units above the collector's shop and bar and two one-bedroom units above the insurance office. The final floor layout was determined after discussing Clinton residential demographics with the client.

One major consideration that was decided against was raising the floor system of the apartment above the bar. The reasoning for this was to make the floor of the connected apartments above the bar and insurance office level and allow for balconies to be installed for the unit above the bar. However, this was decided against because of the significant cost associated with raising the floors and possibly even the roof system. As a compromise, the hallway that connects these two apartment spaces was raised to allow for the front and back stairwells to be utilized by tenants of both units. Another design decision was the choice of the use of the south portion of the bar. The team chose between a patio and a residential garage; after discussing the alternatives with the building owner, the garage was chosen because it made the second-floor apartments more attractive to residents. Although the patio would provide a lively addition to the bar, the garage presented the opportunity to increase rental income.

Aside from the patio and raised floor system, all design considerations have been carried out by the JBS team. Apartment floor plans have been detailed, and an additional exit stairwell for the apartment above the collector's shop has been designed to comply with code egress requirements. Structural systems for the balconies, stairs, and retaining walls, as well as existing floors and bearing walls have been analyzed and designed for. It was decided early on that most of the existing structural systems are in good condition. The limestone foundation was deemed structurally sound, but tuckpointing and grouting is required to maintain stability. Only those structures that are being changed for design purposes were analyzed; this means the roof and foundation were not analyzed and presumed adequate for serviceability.

VI. FINAL DESIGN DETAILS

It should be noted that most of this structure, existing and new additions, consists of wood dimensional lumber. An assumption was made before any designs or analyses were conducted that the wood is spruce-pine-fir (SPF) No. 2, as it is a widely available type of wood that has relatively low strength. This was a conservative assumption, so that if the existing lumber species is different from SPF, it would most likely have stronger characteristics. The Allowable Strength Design (ASD) method was used to size each member, and standard sizes and strength properties were taken from the National Design Specification (NDS) Design Values for Wood Construction Manual and Supplement. All members were analyzed to resist bending moment, shear force, and deflection serviceability requirements using standard design loads.

Load Calculations

Standard weights of architectural materials such as floor covers, ceiling fixtures, lighting, and insulation were determined using the Boise Cascade weights of building materials. Dead load and live loads were determined in pounds per square foot (PSF), then converted to pounds per linear foot to analyze structural members as two-dimensional simply supported beams. Live loads were determined from ASCE 7-16 Chapter 4 Live Loads. Residential live loads were used for both the floor and stair systems. The balconies were designed to sustain uniform and unbalanced snow loads, whose calculations are detailed in Appendix A Section I of this report. The unit weight of snow and maximum average ground snow load for the Clinton area were taken from ASCE 7-16 Chapter 7 Snow Loads.

Second Floor Joists Analysis

The second-floor system was assumed to be consistent through all three buildings, so that one set of calculations would suffice for strength analysis. As the existing floor framing was obscured by the floor and ceiling cover, the existing floor joists were designed using a 25-foot span and loads calculated as described above. The joists were determined to be 3x12 with 12 inches on-center (O.C.) spacing. Supporting calculations for the second-floor framing can be found in Appendix A Section II.

First Floor Joists Analysis

The first-floor system was dimensioned during the team's first site visit. The existing framing for the first-floor was determined to be 2x12 @ 16" O.C. The span was significantly less

than the second floor, because the joists are supported by a continuous beam with column reinforcements going into the foundation. The span of these joists was measured as 12 feet; supporting calculations are provided in Appendix A Section III.

First Floor Beam Design

The existing beam that supports the first-floor joists was measured and analyzed to resist the design loads applied by current and proposed additions. This beam was measured as 8x10 dimensional lumber with a maximum unbraced length of 9.5 feet. It was modeled as a continuous beam to reduce the applied negative bending moment, which governed the design. Supporting calculations for this analysis can be found in Appendix A Section IV.

Bearing Wall Analysis

The bearing walls of the buildings were assumed to be 12-inch clay wythe made of historic brick. Strength properties for the clay masonry were determined from research conducted by Witzany et al. and published by *The Journal of Civil Engineering and Management*; the lowest reported compressive strength of 2466 psi was used to remain conservative with the analysis. Even with this characteristic, the compressive strength greatly exceeded the maximum applied load. Further details on this conclusion can be found in Appendix A Section V.

Design of Stair System

A stair system was designed in order to allow for entrance and exit to the units above the collector's shop. The stair system consisted of three subsystems that needed to be designed for: the stringers, landing joists, and landing studs. The stairs were designed with a width of four feet, which exceeds the minimum stairway width of three feet according to the IBC. This is to allow for the potential installation of an ADA accessible chairlift. The stringers were designed as sawtooth 3x14 dimensional lumber, with an effective depth of 7.25 inches. The design length of the stringers was 16.25 feet, which was the longest spanning staircase. Design calculations for the stringers can be found in Appendix A Section VI-i. The landing joists were designed to be 2x4 @ 16" O.C. and spanned the three-foot width of the landing. Design calculations for the landing joists can be found in Appendix A Section VI-ii. The landing studs were designed to be 2x4 @ 16" O.C. and support the joists. Design calculations for the landing studs can be found in Appendix A Section VI-ii. The landing studs were designed to be 2x4 @ 16" O.C. and support the joists. Design calculations for the landing studs were designed to be 2x4 @ 16" O.C. and support the joists. Design calculations for the landing studs were designed to be 2x4 @ 16" O.C. and support the joists. Design calculations for the landing studs were designed to be 2x4 @ 16" O.C. and support the joists. Design calculations for the landing studs can be found in Appendix A Section VI-ii. The landing studs can be found in Appendix A Section VI-iii. The landing studs can be found in Appendix A Section VI-iii.

Two shorter spanning stair and raised floor systems were added. One was added to the shared hallway between the apartments above the insurance office and bar to compromise the change in second-floor elevation. The other was added to the southern unit above the insurance office to provide access to the balcony. These stairs and raised hallway were designed with the same member sizes as the stair system and landing to the apartment above the collector's shop.

Figure 4: Proposed Stair Detail for Collector's Shop

Design of Balcony System

The balconies consist of two systems: the joists and a built-up beam. Properties of the TJI engineered wood I joists were taken from the Weyerhaeuser design catalogue. The balcony joists span 25 feet from bearing wall to bearing wall and are separated at 12" O.C. extending six feet from the end of the second floor. The specific name of the joists is TJI 360 with 16-inch depth. Design calculations for the balcony joists can be found in Appendix A Section VII-i. The back-exterior brick wall of the apartments was also accounted for in the balcony system by supporting it with a built-up beam. The beam was designed to span 25 feet, much like the joists, with the added dead load of the brick wall. It was designed to be (3) 3x14 timbers. Supporting calculations for this built-up beam section can be found in Appendix A Section VII-ii. The balcony details can be seen in Figure 5.

Figure 5: Proposed Balcony Details

Garage Design

The garage design is composed of two new additions: a header to support the garage door and a retaining wall to support the slab-on-grade concrete pad for vehicle parking. The header was designed to be 2.0E grade LVL whose properties were taken from the Weyerhaeuser design catalogue. The header has a depth of 9.25 inches and breadth of 3.5 inches and spans 19 feet, which is the width of the opening to the garage. Design calculations for the header can be found in Appendix A Section VIII-i. The slab-on-grade is composed of a 4-inch reinforced concrete pad with 6x6-W2.9xW2.9 steel wire mesh, 2 mm vapor barrier, and 4-inch crushed stone layer with 250 cubic yards of granular backfill subgrade. The mechanically stabilized retaining wall was designed as a precast concrete gravity wall with galvanized steel strip reinforcement to support the backfill. Detailed calculations for the design of the gravity wall and reinforcing strips can be found in Appendix A Section VIII-ii. The detail for the garage header can be seen in Figure 6.

Figure 6: Proposed Garage Header Detail

Apartment Layout

The second floor has received a complete alteration to the floor layout. All the existing partition walls in the space above the collector's shop have been removed and replaced to create a two-bedroom, two-bathroom apartment. Part of the existing second floor system has been demolished and replaced to make room for a new stair system that provides a second southfacing entrance. A balcony has been installed in the south end of the apartment, which brings the total area to 1410 square feet. The space above the bar has also been partitioned into a two-bedroom, two-bathroom apartment, but due to constraints in the floor elevation will not receive a balcony. This unit will have a total area of 1190 square feet. The space above the insurance office has been separated into two, one-bedroom one-bathroom apartments. The southern apartment will receive a balcony and short stairway to compromise the change in elevation between the balcony and existing apartment floor. With the addition of a balcony, this brings the total area of the southern unit to 912 square feet, which is equal to the northern single bedroom apartment. The layout for this floor plan can be seen below in Figure 7.

Figure 7: Proposed Apartment Layout with Balconies

VII. COST ESTIMATE

All cost estimate data was obtained using the 2018 RSMeans Data and Craftsman's 2019 National Construction Estimator by Richard Pray. The following spreadsheet shows our full estimate for the designed project. The total estimated cost includes the construction cost, any overhead costs, the general contractors projected profit markup and any project contingencies. The total cost of the project is estimated to be approximately \$561,000.00.

239 5th Ave. S., Clinton, IA 52732	Building Rehabilitation Cost Estimate	
Earthwork Total Estimate		\$2,500.00
Existing Conditions Total Estimate		\$26,000.00
Concrete Total Estimate		\$60,000.00
Masonry Total Estimate		\$40,200.00
Wood and Composites Total Estimate		\$53,000.00
Thermal and Moisture Protection Total Estimate		\$3,075.00
Openings Total Estimate		\$72,500.00
Plumbing Total Estimate		\$50,000.00
HVAC Total Estimate		\$43,000.00
Electrical Total Estimate		\$73,000.00
Indirect Overhead Estimate		\$32,000.00
Direct Overhead Estimate		\$28,000.00
Building Inspection Total Estimate		\$3,000.00
Total Construction Cost	\$426,500.00	
Overhead (53% Indirect; 47% Direct)	\$60,000.00	
Profit (Rate is 7.5%)	\$32,000.00	
Contingencies (10%)	\$42,650.00	
Total Estimate	\$561,000.00	

Figure 8: Summarized Cost Estimate

Prices from	Rounded to the nearest
\$.01 to \$5.00	\$.01
\$5.01 to \$20.00	\$.05
\$20.01 to \$100.00	\$.50
\$100.01 to \$300.00	\$1.00
\$300.01 to \$1,000.00	\$5.00
\$1,000.01 to \$10,000.00	\$25.00
\$10,000.01 to \$50,000.00	\$100.00
\$50,000.01 and above	\$500.00

Figure 9: RS Means Rounding Criteria for Cost Estimates

VIII. APPENDIX A: DESIGN CALCULATIONS

Table of Contents	
I. Load Calculations	g. 2
II. 2nd (Residential) Floor Joist Analysis	g. 5
III. 1st (Commercial) Floor Joist Analysis	g. 13
IV. First Floor Beam Design pg	g. 21
V. Bearing Wall Analysis	g. 30
VI. Design of Stair System percent of the system percento of the system percentoo o	g. 32 g. 33 g. 40 g. 45 g. 50 g. 50
ii. Built-up Beam Design	g. 58
VIII. Garage Design pg i. Header Design pg ii. Foundation Retaining Wall Design pg	g. 64 g. 64 g. 70

I. Load Calculations -floor sheathing and underl -ASCE 7-16 standard live lo -residential live load is 4 -roof live load is 20psf	ons ayment is 1" thick ads are used 0psf		
Define Variables			
residential floor live load	$LL_{floors} \coloneqq 40 \ psf$	unit weight of water	$\gamma_w \coloneqq 62.4 \ rac{lbf}{ft^3}$
roof live load	$LL_{roof} \coloneqq 20 \ psf$	gross area of 3x12 solid sawn	$A_{i} = 28.13 \ in^2$
stair live load	$LL_{stairs} \coloneqq 100 \ psf$	lumber	11
garage live load	$LL_g \coloneqq 40 \ psf$		
ground snow load	$p_g \coloneqq 25 \ psf$		
specific gravity of spruce-pine-fir	SG := 0.42	tributary width of joists	$t_b \coloneqq 12$ in
live load element factor (for interior beams)	K_{LL} := 2	length of longest joist	l _j :=25 ft

Design Calculations		
determine floor dead load using dead	load calculat	or
Floor Dead Load Components		
Floor Finish Materials	weight (psf)	(psf)
1. Lightweight	110	(pcf)
Concrete Thickness	0	(in)
5. Wood panel, underlayment, 1/4 in	0.8	(psf)
4. Plywood/OSB, 5/8 in	2	(psf)
Floor Framing	0	(psf)
7. Loose insulation, fiberglass	0.04	(psf/in)
Ceiling Insulation Thickness	0	(in)
8. Suspended steel channel system w	3	(psf)
Lighting - Lights and conduit	1	(psf)
Mechanical - Duct allowance	4	(psf)
Plumbing - Piping allowance	1	(psf)
Determine total dead load	11.80	(psf)
dead load of floor cover materials	DL_{cover} :=	=11.8 psf
determine dead load due to self-weig	nt of joists	
lbf		
$DL_{joists} \coloneqq A_j \cdot SG \cdot \gamma_w = 5.12 \frac{100}{44}$		
J.		
determine total dead load of floor sys	tem	
DLioiste		
$DL_{floors} \coloneqq DL_{cover} + \frac{Joists}{t} = 16.9$	2 psf	
use live load reduction for joist design	1	
calculate tributary area of	$A_T \coloneqq t_b \cdot l$	$t_j = 25 ft^2$
iongest joist		
	4 24	TV 1 10
use unitiess values in the	$A_T \coloneqq 24$	$K_{LL} \cdot A_T = 48$

determine reduced live load

$$LL_{reduced} := LL_{floors} \cdot \left(0.25 + \left(\frac{15}{\sqrt[2]{K_{LL} \cdot A_T}}\right)\right) = 96.603 \text{ psf}$$
 *tributary area At is too small to use live load reduction
Design Summary
Dead and live loads were determined using typical material weights and ASCE 7-16, respectively. They are as follows:
dead load: $DL_{floors} = 16.92 \text{ psf}$
live load: $LL_{floors} = 40 \text{ psf}$

II. 2nd Floor Joist Analysis

Assumptions	
-all wood members are spruce-pine-fir (SPF) No. 2	
-all floor joists are 3x12 @12" OC	
-lateral support is provided to prevent LTB	
-joists rest on brick bearing wall	

Define Variables

reference desig	n values	section properties									
specific gravity of SPF	SG := 0.42	length	$l \coloneqq 25 \ ft$								
modulus of elasticity	<i>E</i> := 1400000 <i>psi</i>	depth	d≔11.25 in								
	$E_{min} \coloneqq 510000 \ psi$	breadth	b≔2.5 in								
bending strength	$F_b \coloneqq 875 \ psi$	tributary width	$t_b\!=\!12$ in								
tension parallel to grain	${\boldsymbol{F}}_t\!\coloneqq\!450~{\boldsymbol{psi}}$	section modulus	$S \coloneqq 52.73 \ in^3$								
shear parallel to grain	$F_v \coloneqq 135 \ psi$	moment of inertia	$I := 296.6 \ in^4$								
compression perpendicular to grain	F_{c_p} :=425 psi										
compression parallel to grain	F _c :=1150 psi										

Design Calculations				
determine applicable adjustme	ent factors			
load duration factor	$C_D\!\coloneqq\!1.0$			
wet service factor	$C_M\!\coloneqq\!1.0$			
temperature factor	$C_t \coloneqq 1.0$			
size factor				
for bending $C_{F_b} \coloneqq 1.0$ for	tension $C_{F_t} \coloneqq 1$.	0for (para	compression llel to grain)	$C_{F_c}\!\coloneqq\!1.0$
flat use factor	$C_{fu}\!\coloneqq\!1.0$			
incising factor	$C_i\!\coloneqq\!1.0$			
repetitive member factor	$C_r := 1.15$			
column stability factor	$C_p\!\coloneqq\!1.0$			
buckling stiffness factor	$C_T \coloneqq 1.0$			
bearing area factor	$C_b \! := \! 1.0$			
beam stability factor (CL)				
determine effective length of	joist $\frac{l}{d} = 2$	6.667	$\frac{l}{d} \ge 7 = 1$	
$l_e\!\coloneqq\!1.63\!\cdot\!l\!+\!3\!\cdot\!d\!=\!43.563$	ft			
calculate slenderness ratio				
$R_B \coloneqq \sqrt[2]{\frac{l_e \cdot d}{b^2}} = 30.675$			$R_B < 50 = 1$	
calculate reference bending des	ign value			
$F_{b\#} \coloneqq F_b \boldsymbol{\cdot} C_D \boldsymbol{\cdot} C_M \boldsymbol{\cdot} C_t \boldsymbol{\cdot} C_{F_b} \boldsymbol{\cdot}$	$C_i \cdot C_r = E_m$	$_{in}' \coloneqq E_{min} \cdot 0$	$C_M \cdot C_t \cdot C_i \cdot C_T$	$p = (5.1 \cdot 10^5) psi$
$F_{bE} \coloneqq \frac{1.2 \cdot E_{min'}}{R_{B}^{2}} = (9.366 \cdot 10)$	$p^4) psf$			

$$\begin{aligned} & \text{calculate beam stability factor} \\ & L &= \frac{1 + \left(\frac{F_{bE}}{F_{b\#}}\right)}{1.9} - \frac{2}{\sqrt{\left(\frac{1 + \left(\frac{F_{bE}}{F_{b\#}}\right)}{1.9}\right)^2 - \frac{\left(\frac{F_{bE}}{F_{b\#}}\right)}{0.95}} = 0.601 \\ & \text{*assume joists have adequate lateral bracing to prevent LTB:} \qquad C_L \coloneqq 1.0 \\ & \text{convert loads into linearly distributed loads} \\ & \text{calculate dead load (plf)} \qquad w_{DL} \coloneqq DL_{floors} \cdot t_b = 16.92 \frac{lbf}{ft} \\ & \text{calculate live load (plf)} \qquad w_{LL} \coloneqq LL_{floors} \cdot t_b = 40 \frac{lbf}{ft} \end{aligned}$$

Bending Moment Design

bending strength of No. 2 SPF $F_b = 875 \ psi$

calculate adjusted bending strength

$$F_b' \coloneqq F_b \cdot C_D \cdot C_M \cdot C_t \cdot C_L \cdot C_F \cdot C_{fu} \cdot C_i \cdot C_r$$

determine applied loads using load analysis program (ftool)

Page 7 of 74

determine reaction force at column P
length of longest span beam
$$l=25 \ ft$$

 $P:=0.5 \cdot l \cdot w_{floors}=711.496 \ lbf$
 $f_{c_p}:=\frac{P}{A_b}=(1.025 \cdot 10^4) \ psf$
apply appropriate adjustment factors to design values
 $F_{c_p}=425 \ psi$

$$F_{c_{-}p}' \coloneqq F_{c_{-}p} \cdot C_M \cdot C_t \cdot C_b = (6.694 \cdot 10^4) \ psf$$

ensure bearing is satisfied

Design Equation:
$$F_{c_p}' \ge f_{c_p} = 1$$

DCR: $\frac{f_{c_p}}{F_{c_p}'} = 0.153$

Design Summary

Joists were designed to resist moment, shear, and deflection; the corresponding design equations are shown below:

moment

$$F_b' = (1.449 \cdot 10^5) \ psf$$
 $f_b = (1.459 \cdot 10^5) \ psf$
 $DCR \coloneqq \frac{f_b}{F_b'} = 1.007$

 shear
 $F_{v'} = (1.944 \cdot 10^4) \ psf$
 $f_v = (5.468 \cdot 10^3) \ psf$
 $DCR \coloneqq \frac{f_v}{F_{v'}} = 0.281$

III. 1st Floor Joist Analysis

Assumptions	
-all wood members are spruce-pine-fir (SPF) No. 2	
-all floor joists are 2x12 @16" OC	
-lateral support is provided	

Define Variables

reference design values		section properties		
specific gravity of SPF	$SG \coloneqq 0.42$	length	<i>l</i> := 12 <i>ft</i>	
modulus of elasticity	E:=1400000 psi	depth	$d \coloneqq 11.25 \ \textit{in}$	
	E_{min} := 510000 psi	breadth	b≔1.5 in	
bending strength	$F_b \coloneqq 875 \ psi$	tributary width	$t_b \coloneqq 16 \ in$	
tension parallel to grain	$F_t \! \coloneqq \! 450 \ psi$	section modulus	$S \coloneqq 31.64 \ in^3$	
shear parallel to grain	$F_v \coloneqq 135 \ psi$	moment of inertia	$I \coloneqq 178 \ in^4$	
compression perpendicular to grain	F_{c_p} :=425 psi			
compression parallel to grain	<i>F_c</i> :=1150 <i>psi</i>			

Design Calculations					
Α	djustment Factor	<u>s</u>			
load duration factor	$C_D := 1.0$				
wet service factor	$C_M \coloneqq 1.0$				
temperature factor	$C_t := 1.0$				
size factor					
for bending $C_{F_b} \coloneqq 1.0$ for	tension $C_{F_t} = 1.0$	for compression $C_{F_c} \coloneqq 1.0$ (parallel to grain)			
flat use factor	$C_{fu} := 1.0$				
incising factor	$C_i := 1.0$				
repetitive member factor	$C_r := 1.15$				
column stability factor	$C_p \! \coloneqq \! 1.0$				
buckling stiffness factor	$C_T \coloneqq 1.0$				
bearing area factor	$C_b := 1.0$				
beam stability factor (CL)					
determine effective length of joist $\frac{l}{d} = 12.8$ $\frac{l}{d} \ge 7 = 1$					
$l_e := 1.63 \cdot l + 3 \cdot d = 22.373 \ ft$					
calculate slenderness ratio					
$R_B \coloneqq \sqrt[2]{\frac{l_e \cdot d}{b^2}} = 36.638$		$R_B \! < \! 50 \! = \! 1$			
calculate reference bending des	ign value				
$F_{b\#} \coloneqq F_b \boldsymbol{\cdot} C_D \boldsymbol{\cdot} C_M \boldsymbol{\cdot} C_t \boldsymbol{\cdot} C_{F_b} \boldsymbol{\cdot}$	$C_i \cdot C_r \qquad E_{min}' \coloneqq E_{min}$	$_{h} \cdot C_{M} \cdot C_{t} \cdot C_{i} \cdot C_{T} = \left(5.1 \cdot 10^{5}\right) \ psi$			
$F_{bE} \coloneqq \frac{1.2 \cdot E_{min'}}{{R_B}^2} = \left(6.565 \cdot 10^{-10}\right)$	⁴) psf				

Page 14 of 74

calculate beam stability factor

r

$$\begin{aligned} \sum_{L_{t}} \sum_{l=1}^{t} \left(\frac{F_{hk}}{F_{hx}} \right) - \frac{2}{\sqrt{\left(\frac{1 + \left(\frac{F_{hk}}{F_{hx}} \right)}{1.9} \right)^2 - \left(\frac{F_{hk}}{F_{hx}} \right)}} - \frac{2}{0.95} = 0.436 \end{aligned}$$
* assume joists have adequate lateral bracing to prevent LTB: $C_{L} \approx 1.0$
convert loads into linear distributed loads
calculate dead load (plf) $w_{DL} \approx DL_{floors} \cdot t_{b} = 22.56 \frac{lbf}{ft}$
calculate live load (plf) $w_{LL} \approx LL_{floors} \cdot t_{b} = 53.333 \frac{lbf}{ft}$
bending strength of No. 2 SPF $F_{b} \approx 875 \text{ psi}$
calculate adjusted bending $F_{b}' \approx F_{b} \cdot C_{D} \cdot C_{M} \cdot C_{t} \cdot C_{F,b} \cdot C_{fu} \cdot C_{t} \cdot C_{r}$
determine applied loads using load analysis program (ftool)
$$w_{foors} \approx w_{DL} + w_{LL} = 75.893 \frac{lbf}{ft}$$

$$\frac{72 \text{ loft}}{Fgure 2.1 \text{ Distributed loading over joist}}$$

determine reaction force at column P
length of longest span beam
$$l=12 ft$$

 $P:=0.5 \cdot l \cdot w_{floors}=455.357 lbf$
 $f_{c_p}:=\frac{P}{A_b}=(1.093 \cdot 10^4) psf$
apply appropriate adjustment factors to design values

$$F_{c_p} = 425 \ psi$$

$$F_{c_p}' \coloneqq F_{c_p} \cdot C_M \cdot C_t \cdot C_i \cdot C_b = (6.694 \cdot 10^4) \ psf$$

ensure bearing is satisfied

Design Equation:
$$F_{c_p'} \ge f_{c_p} = 1$$

DCR: $\frac{f_{c_p}}{F_{c_p'}} = 0.163$

Design Summary

Joists were designed to resist moment, shear, and deflection; the corresponding design equations are shown below:

moment

$$F_b' = (1.449 \cdot 10^5) \ psf$$
 $f_b = (7.078 \cdot 10^4) \ psf$
 $DCR := \frac{f_b}{F_b'} = 0.488$
 $DCR := \frac{f_b}{F_b'} = 0.488$

 shear
 $F_v' = (1.944 \cdot 10^4) \ psf$
 $f_v = (5.53 \cdot 10^3) \ psf$
 $DCR := \frac{f_v}{F_v'} = 0.284$
 $DCR := \frac{f_v}{F_v'} = 0.284$

 deflection
 $\Delta_{st} = 0.4 \ in$
 $\delta_{st} = 0.05 \ in$
 $DCR := \frac{\delta_{st}}{\Delta_{st}} = 0.125$
 $DCR := \frac{\delta_{st}}{\Delta_{st}} = 0.125$

IV. First Floor Bea	am Design				
Assumptions					
-beams are No. 3 SPF dimen -LTB is prevented by lateral	sional lumber bracing from joist	S			
Define Variables					
beam breadth $b \coloneqq 8$ in (actual)	beam depth (actual)	d ≔ 10 in			
beam breadth $b_n = 8 in$ (nominal)	beam depth (nominal)	$d_n \coloneqq 10$			
beam section modulus	$S \coloneqq 112.8 \ in^3$	5			
beam MoI	$I := 535.9 \ in^4$				
unbraced length	$l := 9.5 \ ft$		$\gamma \cdot SG = 26.20$	8 <u>lbf</u>	
tributary width	$t_b \coloneqq 12.5 \ ft$		<i>Tw</i> 20.20	$\int ft^3$	
section weight in lbf/ft	$w_b \coloneqq 13 \frac{lbf}{ft}$				
applicable dead loads					
$DL_{floors} = 16.92 \ psf$ LL	$L_{floors} = 40 \ psf$	DL_{beams}	$s \coloneqq \frac{w_b}{t_b} = 1.04 \ ps$	f	

Design Calculations		
Ac	ljustment Factors	
load duration factor	$C_D \coloneqq 1.0$	
wet service factor	$C_M \coloneqq 1.0$	
temperature factor	$C_t\!\coloneqq\!1.0$	
size factor		
for bending $C_{F_b} \coloneqq 1.0$ f	or tension $C_{F_t} = 1.0$	for compression $C_{F_c} \coloneqq 1.0$ (parallel to grain)
flat use factor	$C_{fu} \coloneqq 1.0$	
incising factor	$C_i\!\coloneqq\!1.0$	
repetitive member factor	$C_r \coloneqq 1.0$	
column stability factor	$C_p\!\coloneqq\!1.0$	
buckling stiffness factor	$C_T \coloneqq 1.0$	
bearing area factor	$C_b \! \coloneqq \! 1.0$	
beam stability factor (CL)		
determine effective length	of joist $\frac{l}{d} = 11.4$	$\frac{l}{d} \ge 7 = 1$
$l_e\!:=\!1.63 \cdot l + 3 \cdot d = \!17.98$	35 <i>ft</i>	
calculate slenderness ratio		
$R_B := \sqrt[2]{\frac{l_e \cdot d}{b^2}} = 5.807$		$R_B \! < \! 50 \! = \! 1$
calculate reference bending d	esign value	
$F_{b\#} \coloneqq F_b \cdot C_D \cdot C_M \cdot C_t \cdot C_{F}$	$_{b} \cdot C_{i} \cdot C_{r} \qquad E_{min}' \coloneqq E_{m}$	$_{in} \cdot C_M \cdot C_t \cdot C_i \cdot C_T = \left(5.1 \cdot 10^5 \right) \ psi$
$F_{bE} \coloneqq \frac{1.2 \cdot E_{min'}}{{R_B}^2} = (2.613 \cdot$	10 ⁶) psf	

Page 24 of 74

Page 25 of 74

using load analysis program (ftool)		
782 lb/ft 782	lb/ft 782 lb/ft	782 lb/ft 782 lb/ft 782 lb/ft 782 lb/ft 782 lb/ft
${\longrightarrow}$	Δ	
Fi	gure 3.14 Distribute	ed loading for total deflection
DY = 5.887e-03		DY = 1.710e-03 DY = 3,909e-04
DY = -6.992e-02	DY = -3.485e-	$02 \underline{\bigwedge} DY = -3.825e \cdot 03 \\ \underline{\bigwedge} DY = -2.677e \cdot 02 \\ \underline{\bigwedge} DY = -3.556e \cdot 02 \\ \underline{\bigwedge} DY = -1.557e \cdot 02 \\ \underline{A} DY = -1.5$
Fi	gure 3.15 Deflectio	n diagram for total deflection
$\delta_{tot}\!\coloneqq\!0.06992$	2 in	
Design Equation:	$\Delta_{st} \ge \delta_{st} = 1$	deflection requirements check out
DCR:	$rac{\delta_{st}}{\Delta_{st}}$ =0.049	
Design Equation:	$\Delta_{tot} \!\geq\! \delta_{tot} \!=\! 1$	deflection requirements check out
DCR:	$\frac{\delta_{tot}}{\Delta_{tot}} = 0.147$	
	B	earing Design
bearing length paralle	l to grain	$l_b \coloneqq 6 \ in$
bearing breadth perpe grain	endicular to	$b_b := b = 8$ in
define bearing area	$A_b := b$	$b_b \cdot b_b = 48 \ in^2$
define bearing area fa	ctor $C_b := \cdot$	$\frac{l_b + 0.375 \ in}{l_b}$
determine reaction force at column P		
length of longes	t span beam	$l = 9.5 \ ft$
$P := 0.5 \cdot l \cdot w_{floors} = (3.441 \cdot 10^3) \ lbf$		

$$f_{c_p} \coloneqq \frac{P}{A_b} = (1.032 \cdot 10^4) \ psf$$

apply appropriate adjustment factors to design values

$$F_{c_p}$$
=425 psi

$$F_{c_{-}p}' \coloneqq F_{c_{-}p} \cdot C_M \cdot C_t \cdot C_b = (6.503 \cdot 10^4) \ psf$$

ensure bearing is satisfied

Design Equation:
$$F_{c_p}' \ge f_{c_p} = 1$$

DCR:
$$\frac{f_{c_p}}{F_{c_p}} = 0.159$$

Design Summary

The continuous beam was analyzed to resist moment, shear, deflection, and bearing; the corresponding design equations are shown below:

moment	$F_{b}' = (1.257 \cdot 10^{5}) \ psf$	$f_b = (9.058 \cdot 10^4) \ psf$
	$DCR \coloneqq \frac{f_b}{F_b'} =$	0.721
shear	$F_v' = (1.944 \cdot 10^4) \ psf$	$f_v = (3.353 \cdot 10^3) \ psf$
	$DCR \coloneqq \frac{f_v}{F_v'} =$	0.172
deflection	Δ_{st} =0.317 <i>in</i>	$\delta_{st} = 0.016 \ in$
	$DCR \coloneqq \frac{\delta_{st}}{\Delta_{st}} =$	• 0.049
	$\Delta_{tot} = 0.475 \ in$	$\delta_{tot} = 0.07 \ in$
	$DCR \coloneqq \frac{\delta_{tot}}{\Delta_{tot}}$	=0.147
bearing	$F_{c_p'} = (6.503 \cdot 10^4) \ psf$	$f_{c_p} = (1.032 \cdot 10^4) \ psf$
	$DCR \coloneqq \frac{f_{c_p}}{F_{c_p'}}$	= 0.159

V. Bearing Wa	all Analysis		
Assumptions -12" clay wythe bearin -first floor system rests -loads acting on bearin roof loads residential floor liv dead load due to -maximum unsupporte	g walls (use ASCE 7-16 s on foundation wall ng wall include: ve and dead loads self weight of bearing y ed height to thickness r	5 for dead load) wall atio (h/t) = 10	
Define Variables			
dead load from residential floor system	$DL_{floors} = 16.92 \ psf$	dead load from self-weight of brick bearing walls	$DL_{brick} \coloneqq 115 \ psf$
live load from residential floor system	$LL_{floors} = 40 \ psf$	thickness of wall	t _{brick} ≔12 in
		neight of Wall	$h_{brick} \coloneqq 14 \ ft$
Design Calculations			
Determine axial con	npressive load for be	earing wall analysis	
calculate tributary area	a for bearing wall anay	lsis	
tributary width	$t_b \! := \! 25$	i ft	
combine loads into a c	ontinuous axial compre	essive force	
$P \coloneqq \left(DL_{floors} + L \right)$	$L_{floors} + DL_{brick} ightarrow t_b = ($	$4.298 \cdot 10^3 \left(\frac{lbf}{ft} \right)$	
determine material stre	ength of brick bearing	wall	
ultimate compressiv strength of common brick	$f_m' := 1$	$17 \ MPa = (2.466 \cdot 10^3) \ psi$	

*Note: this value is a conservative result from research conducted by Jiri Witzany, Tomas Cejka, Miroslav Sykora, and Milan Holicky. It was taken from their article, "Strength Assessment of Historic Brick Masonry" published in the Journal of Civil Engineering and Management 08 Dec. 2015.

use equation from table 7-1 in Reinforced Masonry Design to compute maximum allowable working stress in clay brick

max allowable stress
$$F_c' \coloneqq f_m' \cdot 0.2 \cdot \left(1 - \left(\frac{h_{brick}}{40 \cdot t_{brick}}\right)^3\right) = 471.985 \ psi$$

determine applied stress due to load combination

max applied stress due to floor
$$f_c := \frac{P}{t_{brick}} = 29.847 \ psi$$
 system

use design equation to determine whether max applied stress exceeds max allowable stress

design equation
$$F_c' \ge f_c = 1$$

demand-capacity $DCR := \frac{f_c}{F_c'} = 0.063$
ratio

determine h/t ratio satisfies building code requirements

 $\frac{h_{brick}}{t_{brick}} = 14$

Design Summary

The clay brick masonry bearing walls were analyzed to resist the compressive forces from the roof and residential floor loads. The design values and demand capacity ratio are as follows:

$$F_c' = 471.985 \ psi$$

 $DCR := \frac{f_c}{F_c'} = 0.063$

VI. Design of Stair System

Assumptions -all members are No. 2 SP-F -floor system is continuously supported by wall framing -must design handrail for uniform load of 50 lbf/ft and single concentrated load of 200 lbf -longest flight is 15 steps

Define Variables

VI-i Stringer Design

reference design	values	section propertie	es (use 3x14)
specific gravity of SPF	$SG \coloneqq 0.42$	depth	d_{string} :=13.25 in
modulus of elasticity	<i>E</i> := 1400000 <i>psi</i>	effective depth of stringers	d_{eff} :=7.25 in
	$E_{min} \coloneqq 510000 \ psi$		
bending strength	$F \sim 875$ mai	breadth	$b_{string} \coloneqq 2.5$ in
	$\Gamma_b = 873 \text{ pst}$	cross-sectional area o	f stringers
tension parallel to grain	$F_t \coloneqq 450 \ psi$		
		$A_{string} \coloneqq d_{eff} \cdot b_{string}$	$_{g} = 18.125 \ in^{2}$
snear parallel to grain	$F_v \coloneqq 135 \ psi$	section modulus	$S = 21.9 in^3$
compression	F _{c p} :=425 psi	Section modulus	521.5 010
perpendicular to grain		moment of inertia	$I := 79.39 \ in^4$
compression parallel to grain	$F_c \coloneqq 1150 \ psi$		

Page 32 of 74

determine max length of stringers		
number of steps in largest flight	$N_{steps} \coloneqq 15$	
height of risers	<i>h</i> :=7 <i>in</i>	
length of treads	<i>l</i> :=11 <i>in</i>	
width of treads/risers	<i>b</i> :=36 <i>in</i>	
max length of stringers	$L \coloneqq \sqrt[2]{\left(l \cdot N_{steps}\right)^2 + \left(h \cdot N_{steps}\right)^2} = 1$	6.298 f t
*assume max stringer length of	f 16' 4"	
tributary width of stringers	$t_b \coloneqq \frac{b}{3} = 1 ft$	
select 1x12 plywood for treads		
depth of tread	$d_{tread} \coloneqq 1$ in	
breadth of tread	$b_{tread} \coloneqq 12 \ in$	
cross sectional area of treads	$A_{tread} \coloneqq d_{tread} \cdot b_{tread} = 12 in^2$	
Design Calculations		
determine appropriate dead and	live loads	
dead load due to self- DL_{string} weight of stringers	$\coloneqq \gamma_w \bullet SG \bullet A_{string} = 3.299 \ plf$	
dead load due to DL_{treads} self-weight of treads	$:= \gamma_w \cdot SG \cdot A_{tread} = 2.184 \ plf$	
dead load of stair DL_{cover}	$\coloneqq \left(DL_{cover} - 11 \ \boldsymbol{psf} \right) \boldsymbol{\cdot} t_b \!=\! 0.8 \ \boldsymbol{plf}$	*subtract soundboard and HVAC weight from cover calculations
stair dead load DL_{stairs}	$= DL_{string} + DL_{treads} + DL_{cover} = 6.28$	33 <i>plf</i>

stair live load	$LL_{stairs} \coloneqq 40 \ psf$	
determine applicable loac	l combinations	
use load combo 2	$w_{stairs} \coloneqq \left(L L_{stairs} ight) ullet t_b$ +	+ <i>DL_{stairs}</i> =46.283 <i>plf</i>
determine applicable adj	ustment factors	
load duration factor	$C_D := 1.0$	
wet service factor	$C_M\!\coloneqq\!1.0$	
temperature factor	$C_t \! := \! 1.0$	
size factor		
for bending $C_{F_b} \coloneqq 1.0$	for tension $C_{F_t} :=$	1.0for compression $C_{F_c} = 1.0$ (parallel to grain)
flat use factor	$C_{fu}\!\coloneqq\!1.0$	
incising factor	$C_i \! := \! 1.0$	
repetitive member factor	$C_r := 1.0$	
column stability factor	$C_p := 1.0$	
buckling stiffness factor	$C_T \coloneqq 1.0$	
beam stability factor (CL)		
determine effective	length of joist $rac{L}{d_{eff}}$	$= 26.976 \qquad \frac{L}{d_{eff}} \ge 7 = 1$
$L_e \coloneqq 1.63 \bullet L + 3 \bullet$	$d_{e\!f\!f} \!=\! 28.378~{oldsymbol{ft}}$	
calculate slenderne	ss ratio	
$R_B \coloneqq \sqrt[2]{\frac{L_e \cdot d_{eff}}{b_{string}^2}}$	=19.875	$R_B \! < \! 50 \! = \! 1$
calculate reference be	nding design value	
$F_{b\#} \coloneqq F_b \cdot C_D \cdot C_M \cdot$	$C_t {f \cdot} C_{F_b} {f \cdot} C_i {f \cdot} C_r = E_{min}$	$a' \coloneqq E_{min} \cdot C_M \cdot C_t \cdot C_i \cdot C_T = \left(5.1 \cdot 10^5 \right) \ psi$

$$F_{bE} := \frac{1.2 \cdot E_{min}}{R_{h}^{2}} = (2.231 \cdot 10^{3}) \text{ psf}$$
calculate beam stability factor
$$C_{L} := \frac{1 + \left(\frac{F_{bE}}{F_{bg}}\right)}{1.9} - \sqrt[2]{\left(\frac{1 + \left(\frac{F_{bE}}{F_{bg}}\right)}{1.9}\right)^{2} - \left(\frac{F_{bE}}{F_{bg}}\right)}{0.95}} = 0.946$$
determine column stability factor
find column effective length
$$L_{c} := \frac{1}{15} \cdot L = 1.087 \text{ ft} \quad \text{(lateral bracing from risers)}$$
calculate reference compession design value (for column stability factor)
$$F_{cg} := F_{c} \cdot C_{D} \cdot C_{M} \cdot C_{t} \cdot C_{E,c} \cdot C_{t} \qquad E_{min}' = (5.1 \cdot 10^{5}) \text{ psi}$$

$$F_{cE} := \frac{0.822 \cdot E_{min}'}{\left(\frac{L_{c}}{b_{driving}}\right)^{2}} = (1.541 \cdot 10^{4}) \text{ psi} \qquad c := 0.8 \quad \text{(for sawn lumber)}$$
calculate column stability factor
$$C_{\mu} := \frac{1 + \left(\frac{F_{cE}}{F_{cg}}\right)}{2 \cdot c} - \sqrt[2]{\left(\frac{1 + \left(\frac{F_{cE}}{F_{cg}}\right)}{2 \cdot c}\right)^{2}} - \frac{\left(\frac{F_{cE}}{F_{cg}}\right)}{c} = 0.984$$

Page 36 of 74

check for combined bending plus axial compression (moment amplification)
calculate amplification factor
$$B_1 := \left(1 - \frac{f_c}{F_{c,E}}\right)^{-1} = 1.001$$

 $DCR_{b,c} := \left(\frac{f_c}{F_c'}\right)^2 + B_1 \cdot \left(\frac{f_b}{F_b'}\right) = 0.721$ bending plus axial compression is satisfied
Shear Design
estimate Fv' using applicable adjustment factors
 $F_{c,i}' := F_v \cdot C_D \cdot C_M \cdot C_t \cdot C_i = (1.944 \cdot 10^4) \text{ psf}$
determine applied shear stress fv
 $w_{stairs} = 46.283 \text{ plf}$
Figure 6.1.3 Shear force diagram for stringers
 $V := 313 \text{ lbf}$
determine applied shear stress parallel to grain
 $f_{v,i} := \frac{3 \cdot V}{2 \cdot b_{atring} \cdot d_{cff}} = (3.73 \cdot 10^3) \text{ psf}$
Design Equation: $f_v \leq F_v' = 1$
 $DCR_{v,i} := \frac{f_{v,i}}{F_{v,i}} = 0.192$ section is acceptable for design

Design Equation:	$\Delta_{tot} \!\geq\! \delta_{tot} \!=\! 1$		
DCR:	$DCR_{tot_i} := \frac{\delta_{tot}}{\Delta_{tot}} = 0.55$	design is adequate for deflection	

VI-ii Landing Joist Design

select 2x6 @16" O.C. for initial stud size

reference design	values	section properties of	f 2x4 joists
specific gravity of SPF	SG := 0.42	depth	$d_{joist} \coloneqq 3.5$ in
modulus of elasticity	<i>E</i> := 1400000 <i>psi</i>	breadth	$b_{joist} \coloneqq 1.5$ in
	E_{min} :=510000 psi	length of joists	$l \coloneqq 3 ft$
bending strength	$F_b := 875 \ psi$	cross-sectional area of	joists
tension parallel to grain	$F_t \coloneqq 450 \ psi$	$A_{joist} \coloneqq d_{joist} \cdot b_{joist} =$	5.25 in^2
shear parallel to grain	$F_v \coloneqq 135 \ psi$	section modulus	$S_j := 3.06 \ in^3$
compression perpendicular to grain	$F_{c_p} \coloneqq 425 \ psi$	moment of inertia	$I_j := 5.359 \ in^4$
compression parallel to grain	$F_c \coloneqq 1150 \ psi$	tributary width of studs	$t_b \coloneqq 16 \ in$

determine appropriate dead and live loads

dead load due to self- weight of joists	$DL_{joists} \coloneqq \gamma_w \cdot SG \cdot A_{joist} = 0.956 \ plf$
landing dead load	$DL_{landing} \coloneqq DL_{cover} + DL_{joists} = 1.756 \ plf$
determine applicable load	d combination
use load combo 2	$w_{landing} \coloneqq \left(LL_{stairs} \right) \cdot t_b + DL_{landing} = 55.089 \ plf$

determine applicable adjustme	ent factors
load duration factor	$C_D \coloneqq 1.0$
wet service factor	$C_M := 1.0$
temperature factor	$C_t := 1.0$
size factor	
for bending $C_{F_b} \coloneqq 1.5$ for	tension $C_{F_t} := 1.5$ for compression $C_{F_c} := 1.15$ (parallel to grain)
flat use factor	$C_{fu} := 1.0$
incising factor	$C_i \coloneqq 1.0$
repetitive member factor	$C_r \coloneqq 1.15$
column stability factor	$C_p\!\coloneqq\!1.0$
buckling stiffness factor	$C_T := 1.0$
bearing area factor	$C_b \coloneqq 1.0$
Ben	nding Moment Design
bending strength of No. 2 SPF	F _b =875 psi
calculate adjusted bending strength	$F_{b_ii}' \coloneqq F_b \cdot C_D \cdot C_M \cdot C_t \cdot C_L \cdot C_{F_b} \cdot C_{fu} \cdot C_i \cdot C_r$
determine applied loads using load	l analysis program (ftool)
$w_{landing} = 55.089 \ plf$	
Figure 6.2.1 Distributed loading over	er joist

Design Equation:
$$f_v \leq F_v' = 1$$

 $DCR_{v,i} = \frac{f_{v,ii}}{F_{v,ii}} = 0.006$ joists satisfy shear design
Deflection Design
determine appropriate short and long term loads
short term deflection load $w_{st} = 0.5 \cdot (LL_{floors}) \cdot t_b = 26.667 \ plf$
long term deflection load $w_{li} = DL_{tanding} + (0.5 \cdot LL_{floors}) t_b = 28.422 \ plf$
apply load combination for total deflection
 $w_{tat} = 1.5 \cdot w_{lt} + 0.5 \cdot w_{st} = 55.967 \ plf$
check short-term deflection...
...using equations
 $\delta_{st} = \frac{5 \cdot w_{st} \cdot l^4}{384 \cdot E \cdot I} = (4.373 \cdot 10^{-1}) \ in$
 $\Delta_{st,ii} = \frac{l}{360} = 0.1 \ in$
...using load analysis program (ftool)
 $Pr = 44460$
Figure 6.2.4 Distributed load for short-term deflection
 $\delta_{st,ii} = 0.006484 \ in$
from load analysis
 $DCR_{st,ii} = \frac{\delta_{st,ii}}{\Delta_{st,ii}} = 0.005$

determine reaction force at column P
length of longest span beam
$$l=3$$
 ft
 $P:=0.5 \cdot l \cdot w_{floors} = (1.087 \cdot 10^3)$ lbf
 $f_{c_pni}:=\frac{P}{A_b} = (2.173 \cdot 10^3)$ pef
apply appropriate adjustment factors to design values
 $F_{c_p}=425$ poi
 $F_{c_pni}:=F_{c_p} \cdot C_M \cdot C_t \cdot C_b = (7.268 \cdot 10^4)$ psf
ensure bearing is satisfied
Design Equation: $F_{c_pni} \ge f_{c_pni} = 1$
DCR: $DCR_{c_pni}:=\frac{f_{c_pni}}{F_{c_pni}} = 0.03$
VI-iii Landing Stud Design
section properties of 2x4 studs
depth $d_{stud}:=3.5$ in
breadth $b_{stud}:=1.5$ in
cross-sectional area of studs
 $A_{stud}:=d_{stud} \cdot b_{stud}=5.25$ in²
section modulus $S:=3.06$ in³
moment of inertia $I:=5.359$ in⁴
tributary width of $t_b:=16$ in
studs
length of studs $l_{stud}:=6$ ft

determine appropriate dead and live loads					
dead load due to self- weight of studs	$DL_{stud} \coloneqq \gamma_w \cdot SG \cdot A_{stud} = 0.956 \ \textbf{plf}$				
dead load due to self- weight of joists	$DL_{joists} := \gamma_w \cdot SG \cdot A_{joist} = 0.956 \ \textbf{plf}$				
landing dead load	$DL_{landing} \coloneqq DL_{cover} + DL_{joists} = 1.756 \ plf$				
point load from shear force of stringer	$P_{stairs} := 316 \ lbf$				
determine applicable load	combination				
use load combo 2	$w_{landing} \coloneqq \left(LL_{stairs} \right) \bullet t_b + DL_{landing} + DL_{stud} = 56.044 \ \textbf{plf}$				
determine applied axial co	ompressive stress				
$P_{landing} \coloneqq w_{landing} \cdot 3 \ ft + F$	$P_{stairs} = 484.133 \ lbf$				
$f_{c_iii} \coloneqq rac{P_{landing}}{A_{stud}} = 92.216 \ p$	si				
determine applicable adju	Istment factors				
load duration factor	$C_D := 1.0$				
wet service factor	$C_M := 1.0$				
temperature factor	$C_t \coloneqq 1.0$				
size factor					
for bending $C_{F_b} \coloneqq 1.3$	for tension $C_{F_t} = 1.3$ for compression $C_{F_c} = 1.1$ (parallel to grain)				
flat use factor	$C_{fu} \coloneqq 1.0$				
incising factor	$C_i \coloneqq 1.0$				

Page 47 of 74

repetitive member factor
$$C_r:=1.15$$

column stability factor $C_p:=1.0$
buckling stiffness factor $C_0:=1.0$
bearing area factor $C_0:=1.0$
determine column stability factor
find column effective length $l_e:=1.0 \cdot l_{stud}=6 \ ft$
calculate reference compession design value (for column stability factor)
 $F_{c,\#}:=F_c \cdot C_D \cdot C_M \cdot C_t \cdot C_{F,c} \cdot C_i \qquad E_{min}'=(5.1 \cdot 10^5) \ psi$
 $F_{c,E}:=\frac{0.822 \cdot E_{min}'}{\left(\frac{l_e}{b}\right)^2}=(1.048 \cdot 10^5) \ psi$
calculate column stability factor
 $C_{p}:=\frac{1+\left(\frac{F_{c,E}}{F_{c,\#}}\right)}{2 \cdot c} - \sqrt[2]{\left(\frac{1+\left(\frac{F_{c,E}}{F_{c,\#}}\right)}{2 \cdot c}\right)^2 - \frac{\left(\frac{F_{c,E}}{F_{c,\#}}\right)}{c}} = 0.998$
determine axial compressive strength of material
 $F_{e_{i}:ii}:=F_{c,\#} \cdot C_{P}=(1.262 \cdot 10^3) \ psi$
design equation: $F_c' \ge f_c = 1$
 $DCR_{e_{i}:ii}:=\frac{f_{c,:ii}}{F_{c,:ii}'}=0.073$

Design Summary								
i. Stringer Design Results								
moment	$DCR_{b_{-}i} = 0.848$	deflection	$DCR_{st_i} = 0.342$					
shear	$DCR_{v_{-}i} = 0.192$		$DCR_{tot_i} = 0.55$					
ii. Landing Joist Design								
moment	$DCR_{b_ii} = 0.418$	deflection	$DCR_{st_ii} = 0.065$					
shear	$DCR_{v_{ii}} = 0.006$		$DCR_{tot_ii} = 0.091$					
		bearing	$DCR_{c_pii} = 0.03$					
iii. Landing Stud D	esign							
compression	$DCR_{c_iii} = 0.073$							

Page 49 of 74

VII. Balcony System Design

Assumptions -all wood members are spruce-pine-fir (SPF) No. 2 -all floor joists are TJI 360 engineered wood products -lateral support is provided to prevent LTB -joists rest on brick bearing wall **Define Variables** $L_{balcony} \coloneqq 6 \ ft$ length of balconies width of balconies $b_{balcony} \coloneqq 25 \ ft$ VII-i. TJI Joist Design use Weyerhaeuser TJI Joist design manual to find appropriate engineered wood beam size *use TJI 360 with 16" depth @12" O.C. reference design values section properties modulus of elasticity $EI := 830000000 \ in^2 \cdot lbf$ length $l \coloneqq 25 ft$ *d* := 16 *in* max resistive moment *M_{all}*:=8405 *lbf*•*ft* depth $b_f := \left(2 + \frac{5}{16}\right) in$ flange breadth shear parallel to grain $V_{all} := 2190 \ lbf$ $d_f \coloneqq 1.375$ in compression $P_{all} := 1080 \ lbf$ flange depth perpendicular to grain $b_w \coloneqq \frac{3}{8} in$ web breadth $t_b \coloneqq 12 \ in$ tributary width $w_{joists} = 3.5 \ \frac{lbf}{ft}$ weight in plf

Page 50 of 74

Design Calculations						
determine applicable loads						
Snow Loads						
ground snow load	$p_g \coloneqq 25 \ \textit{psf}$	determine appropriate slope factor	$C_s\!\coloneqq\!1.0$			
exposure factor	$C_e\!\coloneqq\!1.2$	roof slope	$s \coloneqq 10$			
thermal condition	$C_t \! := \! 1.0$					
importance factor	$I_s := 1.0$					
calculate flat roof snow load		$p_f \coloneqq 0.7 \boldsymbol{\cdot} C_e \boldsymbol{\cdot} C_t \boldsymbol{\cdot} I_s \boldsymbol{\cdot} p_g \!=\! 21 \boldsymbol{psf}$				
calculate balanced snow load		$p_s \coloneqq C_s \cdot p_f = 21 \ psf$				
snow density		$\gamma_s \coloneqq 0.13 \cdot (25) + 14 = 17.25$				
		$\gamma_s \coloneqq 17.25 \ pcf$				
determine balanced height	snow	$h_b \coloneqq \frac{p_s}{\gamma_s} = 1.217 \ ft$				

calculate drift height

clear distance from top of balanced snow load to top of obstruction...

above ins	surance	above co	llector's shop
parapet height	$h_{ci_para} \coloneqq 14 \; ft - h_b$	height to roof	$h_{cc_roof} \coloneqq 13.5 \ \mathbf{ft} - h_b$
privacy wall height	$h_{ci_wall} \coloneqq 12.83 \; ft - h_b$	privacy wall height	$h_{cc_wall} \coloneqq 10.5 \; {\it ft} - h_b$
height to roof	$h_{ci_roof} \coloneqq 12 \; ft - h_b$		

snow load (plf)

length of roof upwind of drift (in ft)...
...above insurance
upper roof
$$l_{ui_uup}$$
:=68.5
upper roof l_{uc_uup} :=57
lower roof l_{ui_uup} :=59
lower roof l_{uc_uup} :=69
determine drift height for balconies...
...above collector's shop
 h_{di_uup} :=0.43 · $(\sqrt[3]{V_{ui_uup}}, \sqrt[4]{25+10}) - 1.5 = 2.779$
 h_{di_uup} :=0.43 · $(\sqrt[3]{V_{ui_uup}}, \sqrt[4]{25+10}) - 1.5 = 2.779$
 h_{di_uup} :=0.43 · $(\sqrt[3]{V_{ui_uup}}, \sqrt[4]{25+10}) - 1.5 = 2.572$
 h_{di_uup} :=0.43 · $(\sqrt[3]{V_{ui_uup}}, \sqrt[4]{25+10}) - 1.5 = 2.572$
 h_{di_uup} :=0.43 · $(\sqrt[3]{V_{ui_uup}}, \sqrt[4]{25+10}) - 1.5 = 2.572$
 h_{di_uup} :=0.43 · $(\sqrt[3]{V_{ui_uup}}, \sqrt[4]{25+10}) - 1.5 = 2.79$
drift height for balconies
 h_{d_ub} := 2.79 ft
calculate unbalanced load
 p_{uu_ub} := $h_{d_ub} \cdot \gamma_s = 48.128$ pef
calculate width of unbalanced load
 W_{uu_uv} := $\frac{8}{3} \cdot h_{d_ub} \cdot \sqrt[2]{s} = 23.527$ ft
convert loads into linearly distributed loads
 DL_{cover} := 2.8 $\frac{lbf}{ft}$
calculate dead load (plf)
 w_{DL} := $DL_{cover} + w_{joistos} = 6.3 \frac{lbf}{ft}$
calculate live load (plf)
 w_{LL} := $LL_{ficors} \cdot t_b = 40 \frac{lbf}{ft}$
calculate snow load (plf)
 w_{uu} := $p_s \cdot t_b = 21 \frac{lbf}{ft}$
calculate unbalanced
 w_{uu_ub} := $p_{uu,b} \cdot t_b = 48.128 \frac{lbf}{ft}$

<u>sign Summary</u>			
Joists were desig equations are sh	ned to resist moment, s own below:	hear, and defl	ection; the corresponding design
moment	$M_{all} = (8.405 \cdot 10^{-5})$	³) lbf • ft	$M = (6.874 \cdot 10^3)$ <i>lbf</i> · <i>ft</i>
		$DCR \coloneqq \frac{M}{M_{all}}$	=0.818
shear	$V_{all} = (2.19 \cdot 10^3)$	lbf	$V = (1.1 \cdot 10^3) \ lbf$
		$DCR \coloneqq \frac{V}{V_{all}} =$	= 0.502
deflection	$arDelta_{st}\!=\!0.833\;m{in}$		δ_{st} =0.634 <i>in</i>
		$DCR \coloneqq \frac{\delta_{st}}{\Delta_{st}} =$	• 0.761
	$\Delta_{tot} \!=\! 1.25$ in		$\delta_{tot} = 1.093 \ in$
		$DCR \coloneqq \frac{\delta_{tot}}{\Delta_{tot}}$	= 0.874
bearing	$P_{all} = (1.08 \cdot 10^3)$	$oldsymbol{f}oldsymbol{t}^2oldsymbol{\cdot}oldsymbol{psf}$	$P = (1.102 \cdot 10^3) \boldsymbol{ft}^2 \cdot \boldsymbol{psf}$
		$DCR \coloneqq \frac{P}{P_{all}} =$	= 1.02

Page 57 of 74

VII-ii. Built-up Beam D	Design		
reference design	values	section properties of (3) 3x14 timbers
specific gravity of SPF	SG := 0.42	length	$l \coloneqq 25 \ ft$
modulus of elasticity	<i>E</i> := 1400000 <i>psi</i>	depth	d≔13.25 <i>in</i>
	E_{min} :=510000 psi	breadth	b≔2.5 in
bending strength	$F_b \coloneqq 875 \ psi$	cross sectional area	$A := d \cdot b = 33.125 \ in^2$
tension parallel to grain	$F_t \coloneqq 450 \ psi$	tributor width	1 1 64
shear parallel to grain	<i>F_v</i> ≔135 <i>psi</i>		$t_b \coloneqq 1 Jt$
compression	F := 425 nsi	section modulus	$S \coloneqq 73.15 \ in^3$
perpendicular to grain		moment of inertia	$I := 484.6 \ in^4$
compression parallel to grain	F _c :=1150 psi	weight in plf	$w_{beams} \coloneqq 6 \; rac{lbf}{ft}$
determine applicable adj	ustment factors		
load duration factor	$C_D\!\coloneqq\!0.9$		
wet service factor	$C_M \coloneqq 1.0$		
temperature factor	$C_t \coloneqq 1.0$		
size factor			
for bending $C_{F_b} \coloneqq 0.9$	for tension $C_{F_t} := 0$	0.9for compression (parallel to grain)	$C_{F_c} \coloneqq 0.9$
flat use factor	$C_{fu} \coloneqq 1.0$		
incising factor	$C_i \coloneqq 1.0$		
repetitive member factor	$C_r \coloneqq 1.0$		
buckling stiffness factor	$C_T \coloneqq 1.0$		
bearing area factor	$C_b \coloneqq 1.0$		

beam stability factor (CL)
determine effective length of joist
$$\frac{l}{d} = 22.642$$
 $\frac{l}{d} \ge 7 = 1$
 $l_e := 1.63 \cdot l + 3 \cdot d = 44.063$ ft
calculate slenderness ratio
 $R_B := \sqrt[2]{\frac{l_e \cdot d}{b^2}} = 33.481$ $R_B < 50 = 1$

calculate reference bending design value

$$F_{b\#} \coloneqq F_b \cdot C_D \cdot C_M \cdot C_t \cdot C_{F_b} \cdot C_i \cdot C_r \qquad \qquad E_{min'} \coloneqq E_{min} \cdot C_M \cdot C_t \cdot C_i \cdot C_T = (5.1 \cdot 10^5) \text{ psi}$$

$$F_{bE} \coloneqq \frac{1.2 \cdot E_{min}'}{R_{B}^{2}} = (7.862 \cdot 10^{4}) \ psf$$

calculate beam stability factor

$$C_L \coloneqq \frac{1 + \left(\frac{F_{bE}}{F_{b\#}}\right)}{1.9} - \sqrt[2]{\left(\frac{1 + \left(\frac{F_{bE}}{F_{b\#}}\right)}{1.9}\right)^2} - \frac{\left(\frac{F_{bE}}{F_{b\#}}\right)}{0.95} = 0.692 \qquad C_L \coloneqq 1.0$$

Bending Moment Design

bending strength of No. 2 SPF $F_b = 875 \ psi$ calculate adjusted bending
strength $F_b' := F_b \cdot C_D \cdot C_M \cdot C_t \cdot C_L \cdot C_{F_b} \cdot C_{fu} \cdot C_i \cdot C_r$ convert loads into linearly distributed loadscalculate wall load (plf) $w_{wall} := DL_{brick} \cdot t_b = 115 \ \frac{lbf}{ft}$ calculate dead load (plf) $w_{DL} := w_{wall} + 3 \cdot w_{beams} = 133 \ \frac{lbf}{ft}$ *note: this beam only supports weight of brick wall; use load combination 1

ensure bearing is satisfied
Design Equation:
$$F_{c,p}' \ge f_{c,p} = 1$$

 $DCR := \frac{f_{c,p}}{F_{c,p'}} = 0.358$ bearing satisfies design
Design Summary
Joists were designed to resist moment, shear, and deflection; the corresponding design
equations are shown below:
moment $F_{b}' = (1.021 \cdot 10^5) \text{ psf}$ $f_b = (8.181 \cdot 10^4) \text{ psf}$
 $DCR := \frac{f_b}{F_b'} = 0.802$
shear $F_{v}' = (1.75 \cdot 10^4) \text{ psf}$ $f_v = (3.612 \cdot 10^3) \text{ psf}$
 $DCR := \frac{f_v}{F_v'} = 0.206$
deflection $\Delta_{st} = 0.833 \text{ in}$ $\delta_{st} = 0.634 \text{ in}$
 $DCR := \frac{\delta_{st}}{\Delta_{tet}} = 0.761$
 $\Delta_{tot} = 1.25 \text{ in}$ $\delta_{int} = 0.861 \text{ in}$
 $DCR := \frac{\delta_{int}}{\Delta_{tet}} = 0.689$
bearing $F_{c,p}' = (6.694 \cdot 10^4) \text{ psf}$ $f_{c,p} = (2.394 \cdot 10^4) \text{ psf}$
 $DCR := \frac{f_{c,p}}{F_{c,p}'} = 0.358$

Page 63 of 74

VIII. Garage Des	ign en e			
VIII-i. Header Design				
reference design for 2.0E grade LV	section p	.VL header		
specific gravity of SPF	SG := 0.5	length		$l \coloneqq 19 \ ft$
modulus of elasticity	E := 2000000	depth		$d \coloneqq 9.25$ in
	E_{min} :=1016535 psi	breadth	1	<i>b</i> := 3.5 <i>in</i>
bending strength	$F_b \coloneqq 2600 \ psi$	cross se area	ectional	$A := d \cdot b = 32.375 \ in^2$
tension parallel to grain	$F_t \coloneqq 1895 \ psi$	tributor	a ,idtb	4 1 64
shear parallel to grain	$F_v \coloneqq 285 \ psi$	section	modulus	$u_b \coloneqq 1 \ ft$ $S \coloneqq \frac{b \cdot d^2}{2} = 49 \ 911 \ in^3$
compression perpendicular to grain	$F_{c_p} \coloneqq 750 \ psi$	momen	it of inertia	$I \coloneqq 484.6 \text{ in}^4$
compression parallel to grain	$F_c \coloneqq 2510 \ psi$	weight in plf		$w_{head} \coloneqq 5.7 \; rac{lbf}{ft}$
	Allowable design p	roperties		
moment M_{all}	$= 8070 \frac{lbf}{ft}$	shear	V _{all} :=3740 l	of
determine applicable adj	ustment factors			
load duration factor	$C_D \coloneqq 0.9$			
wet service factor	$C_M \coloneqq 1.0$			
temperature factor	$C_t \coloneqq 1.0$			
size factor				
for bending $C_{F_{_b}} \coloneqq 1.0$	for tension $C_{F_t} :=$	1.0fo (par	r compression allel to grain)	$C_{F_c} \coloneqq 1.0$
flat use factor	$C_{fu}\!\coloneqq\!1.0$			
incising factor	$C_i \coloneqq 1.0$			

repetitive member factor
$$C_r := 1.0$$

buckling stiffness factor $C_T := 1.0$
bearing area factor $C_b := 1.0$
beam stability factor (CL)
determine effective length of joist $\frac{l}{d} = 24.649$ $\frac{l}{d} \ge 7 = 1$
 $l_c := 1.63 \cdot l + 3 \cdot d = 33.283$ ft
calculate slenderness ratio
 $R_B := \sqrt[2]{\frac{l_c \cdot d}{b^2}} = 17.366$ $R_B < 50 = 1$
calculate reference bending design value
 $F_{bg'} := F_b \cdot C_D \cdot C_M \cdot C_t \cdot C_{F_b} \cdot C_t \cdot C_r$ $E_{min} := E_{min} \cdot C_M \cdot C_t \cdot C_t \cdot C_T = (1.017 \cdot 10^6)$ **psi**
 $r_{bg} := \frac{1.2 \cdot E_{min'}}{R_B^2} = (5.825 \cdot 10^5)$ **psf**
calculate beam stability factor
 $C_L := \frac{1 + (\frac{F_{bg}}{F_{bg}})}{1.9} - \sqrt[2]{(\frac{1 + (\frac{F_{bg}}{F_{bg}})}{1.9})^2} - \frac{(\frac{F_{bg}}{F_{bg}})}{0.95} = 0.943$
Bending Moment Design
bending strength of No. 2 SPF $F_b = (2.6 \cdot 10^3)$ **psi**
calculate adjusted bending $F_h := F_b \cdot C_D \cdot C_M \cdot C_t \cdot C_t \cdot C_{F_a} \cdot C_f \cdot C_t$
convert loads into linearly distributed loads
calculate wall load (plf) $w_{wall} := DL_{brick} \cdot t_b = 115$ $\frac{lbf}{ft}$

apply appropriate adjustment factors to design values

$$F_{c,p} = 750 \text{ psi}$$

$$F_{c,p'} := F_{c,p'} \cdot C_h \cdot C_t \cdot C_i \cdot C_b = 843.75 \text{ psi}$$
ensure bearing is satisfied
Design Equation: $F_{c,p'} \ge f_{c,p} = 1$

$$DCR := \frac{f_{c,p}}{F_{c,p'}} = 0.129$$
bearing area satisfies design
Design Summary
Headers were designed to resist moment, shear, and deflection; the corresponding design
equations are shown below:
moment $F_{b'} = (3.179 \cdot 10^5) \text{ psf}$ $f_b = (1.777 \cdot 10^5) \text{ psf}$

$$DCR := \frac{f_b}{F_{b'}} = 0.559$$
shear $F_{v'} = (3.694 \cdot 10^4) \text{ psf}$ $f_v = (7.406 \cdot 10^3) \text{ psf}$

$$DCR := \frac{f_{u}}{F_{v'}} = 0.201$$
deflection $\Delta_{lod} = 0.95 \text{ in}$ $\delta_{lod} = 0.685 \text{ in}$

$$DCR := \frac{\delta_{lod}}{\Delta_{lod}} = 0.721$$
bearing $F_{c,p'} = (1.215 \cdot 10^5) \text{ psf}$ $f_{c,p} = (1.573 \cdot 10^4) \text{ psf}$

$$DCR := \frac{f_{c,p}}{F_{c,p'}} = 0.129$$

Page 69 of 74

VIII-ii. Foundation	Retaining Wa	ll Design		1 -
Assumptions -car load on concrete sla -in situ soil has unit wei -active earth pressure co -allowable bearing press	ab is a uniform 40 ght of 130 pcf oefficient for back sure $q_{all} = 150$) psf (fill Ka=0.33)0 psf · <u>1</u> 1 ft		$\begin{array}{c c} & \gamma_1 \\ H & c_1' = 0 \\ \phi_1' \end{array}$
Define Variables		7		
Define variables			$x_4 + x_2 + x_1 +$	x ₃ x ₅ x ₆
unit weight of concrete	$\gamma_c \coloneqq 150 \ pcf$		$\gamma_2 \\ \phi'_2 \\ c'_2$	
wall dimensions				
$H \coloneqq 5 \ ft + 10 \ in$	$x_1 \coloneqq 1 \; ft$	$x_2 \coloneqq 1 \; ft$	$x_3 \coloneqq 1 \; ft$	
	$x_4\!\coloneqq\!1\; \pmb{ft}$	$x_5 \! \coloneqq \! 1 \; \boldsymbol{ft}$	$x_6 \! \coloneqq \! 1 \; \boldsymbol{ft}$	
$D \coloneqq 0 ft$	$\beta \coloneqq 0 \ deg$	$B := x_4 + x_2 +$	$x_1 + x_3 + x_5 = 5$ f	^c t
slab dimensions	$w_{slab}\!\coloneqq\!24\;{\it ft}$	l_{slab} :=24 ft	$t_{slab}\!\coloneqq\!4$ in	
surcharge loads	$q_{car} \coloneqq 40 \ psf$	$q_{slab}\!\coloneqq\!t_{slab}$	$_{b} \cdot \gamma_{c} = 50 psf$	
	$w_{surcharge} \coloneqq ig(q_{si}$	$_{lab} + q_{car} angle \cdot 1 ft =$	=90 psf · ft	
soil properties				
<i>in situ</i> soil γ_s :=	= 130 <i>pcf</i> γ_{sa}	t∷=135 pcf	$\mu_s \! \coloneqq \! 0.35$	c _a ≔130 psf
lateral earth pressure	$\sigma_p' \coloneqq 100 \ ps$	sf		
backfill material γ_b :: (granular)	=120 pcf K _a	$= 0.33 \qquad \delta_b :=$	=25 deg	
distance to ground wate	er table z_w	≔ 3.5 ft		

Page 70 of 74

metallic strip propertie	25		
vertical spacing	$S_v \coloneqq 1.5 \; \textit{ft}$	horizontal spacing	$S_h \coloneqq 3 \ ft$
strip width	$w \coloneqq 6 in$	strength of steel	F _y :=36 ksi
Design Calculations			
$H_w := x_6 + H = 6.833 \ ft$	t $\alpha :=$	0=0 deg	
determine active earth pr	essure using Cou	lomb's theory	
$K_a \!=\! 0.33$			
$P_a \coloneqq \left(\frac{1}{2} \boldsymbol{\cdot} \gamma_b \boldsymbol{\cdot} {H_w}^2 + w_{sv}\right)$	$_{urcharge} ight) \cdot K_a = 0.95$	$54 \frac{kip}{ft} \qquad z_a := -$	$\frac{H_w}{3} = 2.278 \ ft$
find x and y components	of active earth pr	essure Pa	
$-\!$			
determine passive earth p	pressure using Co	ulomb's theory	
$K_p := 0.6$			
$P_p \coloneqq \frac{1}{2} \cdot \sigma_p' \cdot x_6 = 0.05$	kip ft		
determine weights and m	oment arms		
footing	$w_1 \coloneqq B \cdot x_6 \cdot \gamma_c =$	$0.75 \ rac{kip}{ft}$	$x_{1} := \frac{B}{2} = 2.5 \ ft$
backfill load resting on footing	$w_2 \coloneqq x_5 \cdot H \cdot \gamma_b =$	$0.7 \ \frac{kip}{ft}$	$x_{2} := B - \frac{x_{5}}{2} = 4.5 \; ft$
backfill load resting on cambered wall	$w_3 \coloneqq \frac{1}{2} \cdot x_3 \cdot H \cdot \gamma$	$\gamma_b = 0.35 \; rac{kip}{ft}$	$x_{3} \coloneqq B - x_{5} - \left(\frac{1}{3} \cdot x_{3}\right) = 3.667 \ ft$
weight of cambered section of wall	$w_4 \coloneqq 0.5 \cdot x_3 \cdot H \cdot$	$\gamma_c = 0.438 rac{kip}{ft}$	$x_{4} \coloneqq B - x_{5} - \left(\frac{2}{3} \cdot x_{3}\right) = 3.333 \ ft$

Page 71 of 74

weight of rectangular
section of wall
$$w_5 \coloneqq x_1 \cdot H \cdot \gamma_c = 0.875 \frac{kip}{ft}$$
 $x_{_5} \coloneqq x_4 + x_2 + 0.5 \cdot x_1 = 2.5 ft$ weight of cambered
section facing away
from backfill $w_6 \coloneqq 0.5 \cdot x_2 \cdot H \cdot \gamma_c = 0.438 \frac{kip}{ft}$ $x_{_6} \coloneqq x_4 + \frac{2}{3} \cdot x_2 = 1.667 ft$

determine FSo (overturning)

$$M_{r} := w_{1} \cdot x_{_{1}} + w_{2} \cdot x_{_{2}} + w_{3} \cdot x_{_{3}} + w_{4} \cdot x_{_{4}} + w_{5} \cdot x_{_{5}} + w_{6} \cdot x_{_{6}} = 10.683 \ \textit{kip}$$

$$M_{o} := P_{h} \cdot z_{a} = 2.174 \ \textit{kip}$$

$$FS_{o} := \frac{M_{r}}{M_{o}} = 4.915 \qquad \text{okay (FS>=2)}$$

check for uplift

$$\begin{split} \Sigma P &:= w_1 + w_2 + w_3 + w_4 + w_5 + w_6 = 3.55 \ \frac{kip}{ft} \\ M_{net} &:= M_r - M_o = 8.51 \ \frac{kip \cdot ft}{ft} \\ e_{cc} &:= \left| \frac{B}{2} - x_{_R} \right| = 0.103 \ ft \\ \hline \frac{B}{6} > e_{cc} = 1 \\ no \text{ uplift} \end{split}$$

check for bearing capacity

determine applied stress due to gravity wall

$$q_P \coloneqq \frac{\Sigma P}{B \cdot 1 ft} = 710 psf \cdot \frac{1}{ft}$$

determine stress due to eccentrically loaded footing

determine distance from neutral
axis to farthest point $c \coloneqq \frac{B}{2} = 2.5 \ ft$ determine moment of inertia
of section $I \coloneqq \frac{1 \ ft \cdot B^3}{12} = 10.417 \ ft^4$

calculate shear stress in wall

$$F_{max} \coloneqq (B+L) \cdot c_a + P_p = 3.213 \frac{kip}{ft} \qquad P_h = 0.954 \frac{kip}{ft}$$

$$FS_v \coloneqq \frac{F_{max}}{P_h} = 3.367$$

Design Summary

Factors of Safety against overturning, sliding, and bearing capacity are, respectively:

$$FS_o \coloneqq \frac{M_r}{M_o} = 4.915$$
 $FS_o \ge 3 = 1$ okay $FS_v \coloneqq \frac{F_{max}}{P_h} = 3.367$ $FS_v \ge 2 = 1$ okay $FS_q \coloneqq \frac{q_{all}}{q_{max}} = 1.218$ $FS_q \ge 1 = 1$ okay

IX. APPENDIX B: DETAILED COST ESTIMATE

239 5th Ave. S., Clinton, IA 52732	Building Reha	abilitati	on (Cost Estima	ite					
Earthwork										
Description of Work	Amount	Units	ľ	Material		Labor	Equ	ipment		Total
Trench Excavation	16	LF	\$	-	\$	1.61	\$	0.54	\$	34.40
Backfill Trenches	246.6	CY	\$	-	\$	10.20	\$	-	\$	2,515.32
Earthwork Total Estimate									5	\$2,500.00
Existing Conditions										
Description of Work	Amount	Units	ľ	Material		Labor	Equ	ipment		Total
Removal of Existing Doors in Masonry	3	EA	\$	-	\$	93.30	\$	-	\$	279.90
Removal of Existing Doors in a Wood Frame	11	SF	\$	-	\$	20.40	\$	-	\$	224.40
Window Removal	431.85	SF	\$	-	\$	3.54	\$	-	\$	1,528.75
Partition Wall Demolition	1692.61	SF	\$	-	\$	1.14	\$	-	\$	1,929.58
Masonry Wall Demolition	557.43	SF	\$	-	\$	1.63	\$	1.15	\$	1,549.66
Floor Joist Removal (2 x 12)	1512	SF	\$	-	\$	0.93	\$	-	\$	1,406.16
Floor Joist Removal (3 x 12)	288	SF	\$	-	\$	0.93	\$	-	\$	361.58
Column and Footing Demolition	13.5	CF	\$	-	\$	8.28	\$	4.49	\$	172.40
Wood Column Removal	54	SF	\$	-	\$	5.00	\$	-	\$	378.00
Asbestos removal, subcontract		LS	\$	-	\$	-	\$	-	\$	2,016.00
Debris Removal - Trash chutes 36" diameter		LS	\$	-	\$	-	\$	-	\$	1,735.00
Removal of Boilers	2	EA	\$	-	\$	3,125.00	\$	-	\$	6,250.00
Mold/Mildew Cleanup		LS							\$	2,226.00
General Trash/Debris Clean-up	8409.3	SF	\$	-	\$	0.70	\$	-	\$	5,886.51
Existing Conditions Total Estimate									\$	26,000.00
Concrete										
Description of Work	Amount	Units	r	Material		Labor	Equ	ipment		Total
Slab on Grade Concrete	33.64	CY	\$	122.00	\$	17.50	\$	-	\$	4,692.37
Slab on Grade Assembly	33.64	CY	\$	236.00	\$	433.00	\$	-	\$	22,503.17
Foundation Wall Cast-in-Place	0	LS	\$	-	\$	-	\$	-	\$	1,749.80
Concrete Fill (4000 psi)	2.3	CY	\$	129.00	\$	-	\$	-	\$	296.70
Steel Wire Mesh 6" x 6" W2.9 x W2.9	936	SF	\$	0.50	\$	0.16	\$	-	\$	617.76
Precast Wall	928.04	SF	\$	22.32	\$	-	\$	-	\$	20,713.85
Concrete Total Estimate									\$	60,000.00
Masonry										
Masonry Description of Work	Amount	Units	ſ	Vaterial		Labor	Equ	ipment		Total
Masonry Description of Work Heavy brushing of Bricks	Amount 8823.63	Units SF	۱ \$	Material 0.07	\$	Labor 0.94	Equ \$	ipment	\$	Total 8,911.87
Masonry Description of Work Heavy brushing of Bricks Sandblasting	Amount 8823.63 8823.63	Units SF SF	۱ \$ \$	Vaterial 0.07 0.42	\$ \$	Labor 0.94 1.18	Equ \$ \$	ipment - 0.51	\$ \$	Total 8,911.87 18,617.86
Masonry Description of Work Heavy brushing of Bricks Sandblasting Waterblasting	Amount 8823.63 8823.63 8823.63	Units SF SF SF	\ \$ \$ \$	Material 0.07 0.42	\$ \$ \$	Labor 0.94 1.18 0.24	Equ \$ \$ \$	ipment - 0.51 0.03	\$ \$ \$	Total 8,911.87 18,617.86 2,382.38
Masonry Description of Work Heavy brushing of Bricks Sandblasting Waterblasting Repointing Bricks	Amount 8823.63 8823.63 8823.63 2205.9075	Units SF SF SF SF	\$ \$ \$ \$	Material 0.07 0.42 - 0.10	\$ \$ \$ \$	Labor 0.94 1.18 0.24 1.56	Equ \$ \$ \$ \$	ipment - 0.51 0.03 -	\$ \$ \$ \$	Total 8,911.87 18,617.86 2,382.38 3,661.81
Masonry Description of Work Heavy brushing of Bricks Sandblasting Waterblasting Repointing Bricks Repointing Limestone	Amount 8823.63 8823.63 8823.63 2205.9075 938.85	Units SF SF SF SF SF	\$ \$ \$ \$ \$	Material 0.07 0.42 - 0.10 0.11	\$ \$ \$ \$ \$ \$ \$	Labor 0.94 1.18 0.24 1.56 1.56	Equ \$ \$ \$ \$ \$	ipment - 0.51 0.03 - -	\$ \$ \$ \$	Total 8,911.87 18,617.86 2,382.38 3,661.81 1,569.76
Masonry Description of Work Heavy brushing of Bricks Sandblasting Waterblasting Repointing Bricks Repointing Limestone Cleaning of Heavily Carbonated Limestone	Amount 8823.63 8823.63 8823.63 2205.9075 938.85 938.85	Units SF SF SF SF SF SF SF	\$ \$ \$ \$ \$ \$ \$	Material 0.07 0.42 - 0.10 0.11 0.59	\$ \$ \$ \$ \$ \$ \$ \$	Labor 0.94 1.18 0.24 1.56 1.56 1.84	Equ \$ \$ \$ \$ \$ \$ \$	ipment - 0.51 0.03 - - -	\$ \$ \$ \$ \$	Total 8,911.87 18,617.86 2,382.38 3,661.81 1,569.76 2,285.63
Masonry Description of Work Heavy brushing of Bricks Sandblasting Waterblasting Repointing Bricks Repointing Limestone Cleaning of Heavily Carbonated Limestone Exterior Material Removal from Collector's Shop	Amount 8823.63 8823.63 8823.63 2205.9075 938.85 938.85 32.58	Units SF SF SF SF SF SF SF	\$ \$ \$ \$ \$ \$ \$ \$ \$	Material 0.07 0.42 - 0.10 0.11 0.59 -	\$ \$ \$ \$ \$ \$ \$ \$ \$	Labor 0.94 1.18 0.24 1.56 1.56 1.84 5.00	Equ \$ \$ \$ \$ \$ \$ \$	ipment - 0.51 0.03 - - - -	\$ \$ \$ \$ \$ \$ \$	Total 8,911.87 18,617.86 2,382.38 3,661.81 1,569.76 2,285.63 244.35
Masonry Description of Work Heavy brushing of Bricks Sandblasting Waterblasting Repointing Bricks Repointing Limestone Cleaning of Heavily Carbonated Limestone Exterior Material Removal from Collector's Shop Masonry Privacy Walls	Amount 8823.63 8823.63 8823.63 2205.9075 938.85 938.85 938.85 32.58 131.079	Units SF SF SF SF SF SF SF SF	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Material 0.07 0.42 - 0.10 0.11 0.59 - 6.05	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Labor 0.94 1.18 0.24 1.56 1.56 1.84 5.00 6.90	Equ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	ipment - 0.51 0.03 - - - - -	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Total 8,911.87 18,617.86 2,382.38 3,661.81 1,569.76 2,285.63 244.35 2,546.21
Masonry Description of Work Heavy brushing of Bricks Sandblasting Waterblasting Repointing Bricks Repointing Limestone Cleaning of Heavily Carbonated Limestone Exterior Material Removal from Collector's Shop Masonry Privacy Walls Masonry Total Estimate	Amount 8823.63 8823.63 2205.9075 938.85 938.85 32.58 131.079	Units SF SF SF SF SF SF SF SF SF	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Material 0.07 0.42 - 0.10 0.11 0.59 - 6.05	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Labor 0.94 1.18 0.24 1.56 1.56 1.84 5.00 6.90	Equ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	ipment 	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Total 8,911.87 18,617.86 2,382.38 3,661.81 1,569.76 2,285.63 244.35 2,546.21 40,200.00
Masonry Description of Work Heavy brushing of Bricks Sandblasting Waterblasting Repointing Bricks Repointing Limestone Cleaning of Heavily Carbonated Limestone Exterior Material Removal from Collector's Shop Masonry Privacy Walls Masonry Total Estimate Wood and Composites	Amount 8823.63 8823.63 2205.9075 938.85 938.85 32.58 131.079	Units SF SF SF SF SF SF SF SF SF	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Material 0.07 0.42 - 0.10 0.11 0.59 - 6.05	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Labor 0.94 1.18 0.24 1.56 1.56 1.84 5.00 6.90	Equ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	ipment - 0.51 0.03 - - - - -	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Total 8,911.87 18,617.86 2,382.38 3,661.81 1,569.76 2,285.63 2,44.35 2,546.21 40,200.00
Masonry Description of Work Heavy brushing of Bricks Sandblasting Waterblasting Repointing Bricks Repointing Limestone Cleaning of Heavily Carbonated Limestone Exterior Material Removal from Collector's Shop Masonry Privacy Walls Masonry Total Estimate Wood and Composites Description of Work	Amount 8823.63 8823.63 8823.63 2205.9075 938.85 938.85 938.85 32.58 131.079 Amount	Units SF SF SF SF SF SF SF Units	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Material 0.07 0.42 - 0.10 0.11 0.59 - 6.05 Material	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Labor 0.94 1.18 0.24 1.56 1.56 1.84 5.00 6.90 Labor	Equ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	ipment - 0.51 0.03 - - - -	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Total 8,911.87 18,617.86 2,382.38 3,661.81 1,569.76 2,285.63 244.35 2,546.21 40,200.00
Masonry Description of Work Heavy brushing of Bricks Sandblasting Waterblasting Repointing Bricks Repointing Limestone Cleaning of Heavily Carbonated Limestone Exterior Material Removal from Collector's Shop Masonry Privacy Walls Masonry Total Estimate Wood and Composites Description of Work Douglas Fir 1" x 3" Flooring w/ Finish	Amount 8823.63 8823.63 2205.9075 938.85 938.85 32.58 131.079 Amount 4875	Units SF SF SF SF SF SF SF SF SF	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Material 0.07 0.42 - 0.10 0.11 0.59 - 6.05 Waterial 4.21	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Labor 0.94 1.18 0.24 1.56 1.56 1.84 5.00 6.90 Labor 3.60	Equ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	ipment - 0.51 - - - - - -	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Total 8,911.87 18,617.86 2,382.38 3,661.81 1,569.76 2,285.63 244.35 2,546.21 40,200.00 Total 38,073.75
Masonry Description of Work Heavy brushing of Bricks Sandblasting Waterblasting Repointing Bricks Repointing Limestone Cleaning of Heavily Carbonated Limestone Exterior Material Removal from Collector's Shop Masonry Privacy Walls Masonry Total Estimate Wood and Composites Description of Work Douglas Fir 1" x 3" Flooring w/ Finish 16" TJI/35 Floor Joists	Amount 8823.63 8823.63 8823.63 2205.9075 938.85 938.85 32.58 131.079 Amount 4875 312	Units SF SF SF SF SF SF SF SF SF SF	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Material 0.07 0.42 - 0.10 0.11 0.59 - 6.05 Material 4.21 4.67	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Labor 0.94 1.18 0.24 1.56 1.56 1.84 5.00 6.90 Labor 3.60 0.60	Equ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	ipment - 0.51 0.03 - - - - - - - - -	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Total 8,911.87 18,617.86 2,382.38 3,661.81 1,569.76 2,285.63 244.35 2,546.21 40,200.00 Total 38,073.75 1,644.24
Masonry Description of Work Heavy brushing of Bricks Sandblasting Waterblasting Repointing Bricks Repointing Limestone Cleaning of Heavily Carbonated Limestone Exterior Material Removal from Collector's Shop Masonry Privacy Walls Masonry Privacy Walls Masonry Total Estimate Wood and Composites Description of Work Douglas Fir 1" x 3" Flooring w/ Finish 16" TJI/35 Floor Joists (3) 3" x 14" Timbers	Amount 8823.63 8823.63 8823.63 2205.9075 938.85 938.85 32.58 131.079 Amount 4875 312 50	Units SF SF SF SF SF SF SF SF SF LF	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Material 0.07 0.42 - 0.10 0.11 0.59 - 6.05 - 6.05 Material 4.21 4.67 17.28	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Labor 0.94 1.18 0.24 1.56 1.56 1.84 5.00 6.90 Labor 3.60 0.60	Equ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	ipment - 0.51 0.03 - - - - - - - - - - - - - - - - - - -	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Total 8,911.87 18,617.86 2,382.38 3,661.81 1,569.76 2,285.63 244.35 2,546.21 40,200.00 Total 38,073.75 1,644.24 864.00
Masonry Description of Work Heavy brushing of Bricks Sandblasting Waterblasting Repointing Bricks Repointing Limestone Cleaning of Heavily Carbonated Limestone Exterior Material Removal from Collector's Shop Masonry Privacy Walls Masonry Privacy Walls Masonry Total Estimate Wood and Composites Description of Work Douglas Fir 1" x 3" Flooring w/ Finish 16" TJI/35 Floor Joists (3) 3" x 14" Timbers 1/2" OSB Structural Sheathing	Amount 8823.63 8823.63 2205.9075 938.85 938.85 32.58 131.079 Amount 4875 312 50 0.312	Units SF SF SF SF SF SF SF SF SF LF MSF	\$ \$	Material 0.07 0.42 - 0.10 0.11 0.59 - 6.05 - 6.05 Material 4.21 4.67 17.28 816.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Labor 0.94 1.18 0.24 1.56 1.56 1.84 5.00 6.90 	Equ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	ipment - 0.51 0.03 - - - - - - - - - - - - - - - - - - -	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Total 8,911.87 18,617.86 2,382.38 3,661.81 1,569.76 2,285.63 244.35 2,546.21 40,200.00 Total 38,073.75 1,644.24 864.00 254.59
Masonry Description of Work Heavy brushing of Bricks Sandblasting Waterblasting Repointing Bricks Repointing Limestone Cleaning of Heavily Carbonated Limestone Exterior Material Removal from Collector's Shop Masonry Privacy Walls Masonry Privacy Walls Masonry Total Estimate Wood and Composites Description of Work Douglas Fir 1" x 3" Flooring w/ Finish 16" TJI/35 Floor Joists (3) 3" x 14" Timbers 1/2" OSB Structural Sheathing Neoprene w/ Adhesive	Amount 8823.63 8823.63 2205.9075 938.85 938.85 32.58 131.079 Amount 4875 312 50 0.312 3.12	Units SF SF SF SF SF SF SF SF SF LF MSF SQ	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Material 0.07 0.42 - 0.10 0.11 0.59 - 6.05 Material 4.21 4.67 17.28 816.00 732.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Labor 0.94 1.18 0.24 1.56 1.56 1.84 5.00 6.90 4.00 0.60 0.60 - - - 103.00	Equ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	ipment - 0.51 0.03 - - - - - - - - - - - - - - - - - - -	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Total 8,911.87 18,617.86 2,382.38 3,661.81 1,569.76 2,285.63 244.35 2,546.21 40,200.00 Total 38,073.75 1,644.24 864.00 254.59 2,605.20
Masonry Description of Work Heavy brushing of Bricks Sandblasting Waterblasting Repointing Bricks Repointing Limestone Cleaning of Heavily Carbonated Limestone Exterior Material Removal from Collector's Shop Masonry Privacy Walls Masonry Privacy Walls Masonry Total Estimate Wood and Composites Description of Work Douglas Fir 1" x 3" Flooring w/ Finish 16" TJI/35 Floor Joists (3) 3" x 14" Timbers 1/2" OSB Structural Sheathing Neoprene w/ Adhesive Finished Wood Flooring	Amount 8823.63 8823.63 2205.9075 938.85 938.85 32.58 131.079 Amount 4875 312 50 0.312 3.12 312	Units SF SF SF SF SF SF SF SF Units SF LF MSF SQ SF	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Material 0.07 0.42 - 0.10 0.11 0.59 - 6.05 Material 4.21 4.67 17.28 816.00 732.00 0.29	\$ \$	Labor 0.94 1.18 0.24 1.56 1.56 1.84 5.00 6.90 Labor Labor 0.60 0.60 0.60 0.60	Equ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	ipment - 0.51 - - - - - - - - - - - - - - - - - - -	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Total 8,911.87 18,617.86 2,382.38 3,661.81 1,569.76 2,285.63 244.35 2,546.21 40,200.00 Total 38,073.75 1,644.24 864.00 254.59 2,605.20 920.40
Masonry Description of Work Heavy brushing of Bricks Sandblasting Waterblasting Repointing Bricks Repointing Limestone Cleaning of Heavily Carbonated Limestone Exterior Material Removal from Collector's Shop Masonry Privacy Walls Masonry Privacy Walls Masonry Total Estimate Wood and Composites Description of Work Douglas Fir 1" x 3" Flooring w/ Finish 16" TJI/35 Floor Joists (3) 3" x 14" Timbers 1/2" OSB Structural Sheathing Neoprene w/ Adhesive Finished Wood Flooring Stairs 10 risers w/ handrail	Amount 8823.63 8823.63 2205.9075 938.85 938.85 32.58 131.079 Amount 4875 312 50 0.312 3.12 312 1	Units SF SF SF SF SF SF SF Units SF SF LF MSF SQ SF EA	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Material 0.07 0.42 - 0.10 0.11 0.59 - 6.05 - 4.67 17.28 816.00 732.00 0.29 1,890.00	\$ \$	Labor 0.94 1.18 0.24 1.56 1.56 1.84 5.00 6.90 Labor Labor 1.03.00 2.66 402.00	Equ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	ipment - 0.51 - - - - - - - - - - - - - - - - - - -	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Total 8,911.87 18,617.86 2,382.38 3,661.81 1,569.76 2,285.63 2,44.35 2,546.21 40,200.00 Total 38,073.75 1,644.24 864.00 254.59 2,605.20 920.40 2,292.00
Masonry Description of Work Heavy brushing of Bricks Sandblasting Waterblasting Repointing Bricks Repointing Limestone Cleaning of Heavily Carbonated Limestone Exterior Material Removal from Collector's Shop Masonry Privacy Walls Masonry Privacy Walls Masonry Total Estimate Wood and Composites Description of Work Douglas Fir 1" x 3" Flooring w/ Finish 16" TJI/35 Floor Joists (3) 3" x 14" Timbers 1/2" OSB Structural Sheathing Neoprene w/ Adhesive Finished Wood Flooring Stairs 10 risers w/ handrail	Amount 8823.63 8823.63 2205.9075 938.85 938.85 32.58 131.079 Amount 4875 312 50 0.312 3.12 312 1 1	Units SF SF SF SF SF SF SF Units SF SF LF MSF SQ SF EA EA	\$ \$	Material 0.07 0.42 - 0.10 0.11 0.59 - 6.05 Material 4.21 4.67 17.28 816.00 732.00 0.29 1,890.00 2,880.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Labor 0.94 1.18 0.24 1.56 1.56 1.84 5.00 6.90 Labor Labor 1.03.00 2.66 402.00 469.00	Equ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	ipment - 0.51 - - - - - - - - - - - - - - - - - - -	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Total 8,911.87 18,617.86 2,382.38 3,661.81 1,569.76 2,285.63 2,44.35 2,546.21 40,200.00 Total 38,073.75 1,644.24 864.00 254.59 2,605.20 920.40 2,292.00 3,349.00
Masonry Description of Work Heavy brushing of Bricks Sandblasting Waterblasting Repointing Bricks Repointing Limestone Cleaning of Heavily Carbonated Limestone Exterior Material Removal from Collector's Shop Masonry Privacy Walls Masonry Total Estimate Wood and Composites Description of Work Douglas Fir 1" x 3" Flooring w/ Finish 16" TJI/35 Floor Joists (3) 3" x 14" Timbers 1/2" OSB Structural Sheathing Neoprene w/ Adhesive Finished Wood Flooring Stairs 10 risers w/ handrail Landing Douglas Fir	Amount 8823.63 8823.63 2205.9075 938.85 938.85 32.58 131.079 Amount 4875 312 50 0.312 3.12 3.12 3.12 1 1 1 13.75	Units SF SF SF SF SF SF SF SF Units SF SF UNITS SF SF SF SF SF SF SF SF SF SF SF SF SF	۲ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Material 0.07 0.42 - 0.10 0.11 0.59 - 6.05 Material 4.21 4.67 17.28 816.00 732.00 0.29 1,890.00 2,880.00 4.02	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Labor 0.94 1.18 0.24 1.56 1.56 1.84 5.00 6.90 Labor Labor 1.03.00 2.66 402.00 469.00	Equ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	ipment - 0.51 0.03 - - - - - - - - - - - - -	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Total 8,911.87 18,617.86 2,382.38 3,661.81 1,569.76 2,285.63 2,44.35 2,546.21 40,200.00 Total 38,073.75 1,644.24 864.00 254.59 2,605.20 920.40 2,292.00 3,349.00 179.71
Masonry Description of Work Heavy brushing of Bricks Sandblasting Waterblasting Repointing Bricks Repointing Limestone Cleaning of Heavily Carbonated Limestone Exterior Material Removal from Collector's Shop Masonry Privacy Walls Masonry Privacy Walls Masonry Total Estimate Wood and Composites Description of Work Douglas Fir 1" x 3" Flooring w/ Finish 16" TJI/35 Floor Joists (3) 3" x 14" Timbers 1/2" OSB Structural Sheathing Neoprene w/ Adhesive Finished Wood Flooring Stairs 10 risers w/ handrail Stairs 15 risers w/handrail Landing Douglas Fir Boxed Stair 3'0" wide	Amount 8823.63 8823.63 2205.9075 938.85 938.85 32.58 131.079 Amount 4875 312 50 0.312 3.12 3.12 3.12 1 1 1 1.3.75 8	Units SF SF SF SF SF SF SF Units SF SF LF MSF SQ SQ SQ SQ SF EA EA	\$ \$	Material 0.07 0.42 - 0.10 0.11 0.59 - 6.05 Material 4.21 4.67 17.28 816.00 732.00 0.29 1,890.00 2,880.00 4.02 136.00	\$ \$	Labor 0.94 1.18 0.24 1.56 1.56 1.84 5.00 6.90 4.690 1.030 2.66 402.00 4.69.00 9.05 1.030	Equ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	ipment - 0.51 - - - - - - - - - - - - - - - - - - -	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Total 8,911.87 18,617.86 2,382.38 3,661.81 1,569.76 2,285.63 244.35 2,546.21 40,200.00 Total 38,073.75 1,644.24 864.00 254.59 2,605.20 920.40 2,292.00 3,349.00 179.71 1,175.20
Masonry Description of Work Heavy brushing of Bricks Sandblasting Waterblasting Repointing Bricks Repointing Limestone Cleaning of Heavily Carbonated Limestone Exterior Material Removal from Collector's Shop Masonry Privacy Walls Masonry Total Estimate Wood and Composites Description of Work Douglas Fir 1" x 3" Flooring w/ Finish 16" TJI/35 Floor Joists (3) 3" x 14" Timbers 1/2" OSB Structural Sheathing Neoprene w/ Adhesive Finished Wood Flooring Stairs 10 risers w/ handrail Landing Douglas Fir Boxed Stair 3'0" wide Hand rail	Amount 8823.63 8823.63 2205.9075 938.85 938.85 32.58 131.079 Amount 4875 312 50 0.312 3.12 3.12 3.12 1 1 1 13.75 8 8 2	Units SF SF SF SF SF SF SF Units SF SF LF MSF SQ SQ SQ SF EA EA EA	\$ \$	Material 0.07 0.42 - 0.10 0.11 0.59 - 6.05 Material 4.21 4.67 17.28 816.00 732.00 0.29 1,890.00 2,880.00 4.02 136.00 69.80	\$ \$	Labor 1.18 0.24 1.56	Equ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	ipment - 0.51 0.03 - - - - - - - - - - - - -	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Total 8,911.87 18,617.86 2,382.38 3,661.81 1,569.76 2,285.63 2,44.35 2,546.21 40,200.00 Total 38,073.75 1,644.24 864.00 254.59 2,605.20 920.40 2,292.00 3,349.00 179.71 1,175.20 156.82
Masonry Description of Work Heavy brushing of Bricks Sandblasting Waterblasting Repointing Bricks Repointing Limestone Cleaning of Heavily Carbonated Limestone Exterior Material Removal from Collector's Shop Masonry Privacy Walls Masonry Total Estimate Wood and Composites Description of Work Douglas Fir 1" x 3" Flooring w/ Finish 16" TJI/35 Floor Joists (3) 3" x 14" Timbers 1/2" OSB Structural Sheathing Neoprene w/ Adhesive Finished Wood Flooring Stairs 10 risers w/ handrail Stairs 15 risers w/handrail Landing Douglas Fir Boxed Stair 3'0" wide Hand rail Deck Railing (Pressure-treated Add 50% forsizing and different lumber)	Amount 8823.63 8823.63 2205.9075 938.85 938.85 32.58 131.079 Amount 4875 312 50 0.312 3.12 3.12 3.12 1 1 1 13.75 8 2 2	Units SF SF SF SF SF SF SF Units SF SF LF MSF SQ SF SQ SF EA EA EA EA	\$ \$	Material 0.07 0.42 - 0.10 0.11 0.59 - 6.05 Material 4.21 4.67 17.28 816.00 732.00 0.29 1,890.00 2,880.00 4.02 136.00 69.80 6.99	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Labor 0.94 1.18 0.24 1.56 1.56 1.84 5.00 6.90 Labor Labor - 103.00 2.66 402.00 469.00 469.00 9.05 10.90 8.61 11.20	Equ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	ipment - 0.51 0.03 - - - - - - - - - - - - -	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Total 8,911.87 18,617.86 2,382.38 3,661.81 1,569.76 2,285.63 2,44.35 2,546.21 40,200.00 Total 38,073.75 1,644.24 864.00 254.59 2,605.20 920.40 2,292.00 3,349.00 179.71 1,175.20 156.82 454.75
Masonry Description of Work Heavy brushing of Bricks Sandblasting Waterblasting Repointing Bricks Repointing Limestone Cleaning of Heavily Carbonated Limestone Exterior Material Removal from Collector's Shop Masonry Privacy Walls Masonry Total Estimate Wood and Composites Description of Work Douglas Fir 1" x 3" Flooring w/ Finish 16" TJI/35 Floor Joists (3) 3" x 14" Timbers 1/2" OSB Structural Sheathing Neoprene w/ Adhesive Finished Wood Flooring Stairs 10 risers w/ handrail Landing Douglas Fir Boxed Stair 3'0" wide Hand rail Deck Railing (Pressure-treated Add 50% forsizing and different lumber) Laminate Flooring	Amount 8823.63 8823.63 2205.9075 938.85 938.85 32.58 131.079 Amount 4875 312 50 0.312 3.12 3.12 3.12 1 1 1 13.75 8 8 2 2 55 410	Units SF SF SF SF SF SF SF SF Units SF SF Units SF SF SF EA EA EA SF EA EA EA EA	\$ \$	Material 0.07 0.42 - 0.10 0.11 0.59 - 6.05 Material 4.21 4.67 17.28 816.00 732.00 0.29 1,890.00 2,880.00 4.02 136.00 69.80 6.99 0.25	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Labor 1.18 0.24 1.56 1.56 1.56 1.84 5.00 6.90 Labor 1.84 0.60 0.60 - 103.00 2.66 402.00 469.00 469.00 9.05 10.90 8.61 11.20	Equ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	ipment - 0.51 0.03 - - - - - - - - - - - - -	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Total 8,911.87 18,617.86 2,382.38 3,661.81 1,569.76 2,285.63 2,44.35 2,546.21 40,200.00 Total 38,073.75 1,644.24 864.00 254.59 2,605.20 920.40 2,292.00 3,349.00 3,349.00 179.71 1,175.20 156.82 454.75 922.50
Masonry Description of Work Heavy brushing of Bricks Sandblasting Waterblasting Repointing Bricks Repointing Limestone Cleaning of Heavily Carbonated Limestone Exterior Material Removal from Collector's Shop Masonry Privacy Walls Masonry Total Estimate Wood and Composites Description of Work Douglas Fir 1" x 3" Flooring w/ Finish 16" TJI/35 Floor Joists (3) 3" x 14" Timbers 1/2" OSB Structural Sheathing Neoprene w/ Adhesive Finished Wood Flooring Stairs 10 risers w/ handrail Landing Douglas Fir Boxed Stair 3'0" wide Hand rail Deck Railing (Pressure-treated Add 50% forsizing and different lumber) Laminate Flooring Wood and Composites Total Estimate	Amount 8823.63 8823.63 2205.9075 938.85 938.85 32.58 131.079 Amount 4875 312 50 0.312 3.12 3.12 3.12 1 1 1 13.75 8 2 2 25 410	Units SF SF SF SF SF SF SF SF Units SF SF UNits SF SF EA EA SF EA EA EA SF EA	\$ \$	Material 0.07 0.42 - 0.10 0.11 0.59 - 6.05 Material 4.21 4.67 17.28 816.00 732.00 0.29 1,890.00 2,880.00 4.02 136.00 69.80 6.99 0.25	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Labor 1.18 0.24 1.56 1.56 1.56 1.84 5.00 6.90	Equ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	ipment - 0.51 0.03 - - - - - - - - - - - - -	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Total 8,911.87 18,617.86 2,382.38 3,661.81 1,569.76 2,285.63 2,44.35 2,546.21 40,200.00 Total 38,073.75 1,644.24 864.00 254.59 2,605.20 920.40 2,292.00 3,349.00 3,349.00 179.71 1,175.20 156.82 454.75 922.50
MasonryDescription of WorkHeavy brushing of BricksSandblastingWaterblastingRepointing BricksRepointing LimestoneCleaning of Heavily Carbonated LimestoneExterior Material Removal from Collector's ShopMasonry Privacy WallsMasonry Total EstimateWood and CompositesDescription of WorkDouglas Fir 1" x 3" Flooring w/ Finish16" TJI/35 Floor Joists(3) 3" x 14" Timbers1/2" OSB Structural SheathingNeoprene w/ AdhesiveFinished Wood FlooringStairs 10 risers w/ handrailLanding Douglas FirBoxed Stair 3'0" wideHand railDeck Railing (Pressure-treated Add 50% forsizing and different lumber)Laminate FlooringWood and Composites Total Estimate	Amount 8823.63 8823.63 2205.9075 938.85 938.85 32.58 131.079 Amount 4875 312 50 0.312 3.12 3.12 3.12 1 1 1 3.75 8 2 2 55 410	Units SF SF SF SF SF SF SF SF Units SF SF Units SF SF EA EA EA EA EA EA EA EA EA	\$ \$	Material 0.07 0.42 - 0.10 0.11 0.59 - 6.05 Material 4.21 4.67 17.28 816.00 732.00 0.29 1,890.00 2,880.00 4.02 136.00 69.80 6.99 0.25	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Labor 0.94 1.18 0.24 1.56 1.56 1.84 5.00 6.90 Labor 1.03.00 2.66 402.00 469.00 469.00 9.05 10.90 8.61 11.20 2.00	Equ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	ipment - 0.51 0.03 - - - - - - - - - - - - -	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Total 8,911.87 18,617.86 2,382.38 3,661.81 1,569.76 2,285.63 244.35 2,546.21 40,200.00 Total 38,073.75 1,644.24 864.00 254.59 2,605.20 920.40 2,292.00 3,349.00 179.71 1,175.20 156.82 454.75 922.50 53,000.00
MasonryDescription of WorkHeavy brushing of BricksSandblastingWaterblastingRepointing BricksRepointing LimestoneCleaning of Heavily Carbonated LimestoneExterior Material Removal from Collector's ShopMasonry Privacy WallsMasonry Total EstimateWood and CompositesDescription of WorkDouglas Fir 1" x 3" Flooring w/ Finish16" TJI/35 Floor Joists(3) 3" x 14" Timbers1/2" OSB Structural SheathingNeoprene w/ AdhesiveFinished Wood FlooringStairs 10 risers w/ handrailLanding Douglas FirBoxed Stair 3'0" wideHand railDeck Railing (Pressure-treated Add 50% forsizing and different lumber)Laminate FlooringWood and Composites Total EstimateThermal and Moisture ProtectionDescription of Work	Amount 8823.63 8823.63 2205.9075 938.85 938.85 32.58 131.079 Amount 4875 312 50 0.312 3.12 3.12 3.12 1 1 13.75 8 2 2 55 410	Units SF SF SF SF SF SF SF SF Units SF SF EA EA EA EA EA EA EA EA EA EA	\$ \$ \$ \$	Material 0.07 0.42 - 0.10 0.11 0.59 - 6.05 Material 4.21 4.67 17.28 816.00 732.00 0.29 1,890.00 2,880.00 4.02 136.00 69.80 6.99 0.25 Material	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Labor 1.18 0.24 1.56 1.56 1.56 1.84 5.00 6.90 4.00 0.60 - 1.03.00 2.66 402.00 402.00 409.00 9.05 10.90 8.61 11.20 8.61 11.20	Equ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	ipment 0.51 0.03 - - - - - - - - - - - - -	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Total 8,911.87 18,617.86 2,382.38 3,661.81 1,569.76 2,285.63 244.35 2,546.21 40,200.00 Total 38,073.75 1,644.24 864.00 254.59 2,605.20 920.40 2,292.00 3,349.00 179.71 1,175.20 156.82 454.75 922.50 53,000.00
MasonryDescription of WorkHeavy brushing of BricksSandblastingWaterblastingRepointing BricksRepointing LimestoneCleaning of Heavily Carbonated LimestoneExterior Material Removal from Collector's ShopMasonry Privacy WallsMasonry Total EstimateWood and CompositesDescription of WorkDouglas Fir 1" x 3" Flooring w/ Finish16" TJI/35 Floor Joists(3) 3" x 14" Timbers1/2" OSB Structural SheathingNeoprene w/ AdhesiveFinished Wood FlooringStairs 10 risers w/ handrailLanding Douglas FirBoxed Stair 3'0" wideHand railDeck Railing (Pressure-treated Add 50% forsizing and different lumber)Larminate FlooringWood and Composites Total EstimateThermal and Moisture ProtectionDescription of WorkInsulation Board, 1" thick, R-5.0	Amount 8823.63 8823.63 2205.9075 938.85 938.85 32.58 131.079 Amount 4875 312 50 0.312 3.12 3.12 3.12 1 1 13.75 8 2 2 5 410	Units SF SF SF SF SF SF SF SF Units SF EA EA EA EA EA EA EA EA EA SF SF SF	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Material 0.07 0.42 - 0.10 0.11 0.59 - 6.05 Material 4.21 4.67 17.28 816.00 732.00 0.29 1,890.00 2,880.00 2,880.00 4.02 136.00 69.80 6.99 0.25 Material 0.25	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Labor 0.94 1.18 0.24 1.56 1.56 1.56 1.84 5.00 6.90 4.00 0.60 - 1.03.00 2.66 402.00 469.00 469.00 402.00 469.00 9.05 10.90 8.61 11.20 8.61 11.20	Equ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	ipment - 0.51 0.03 - - - - - - - - - - - - -	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Total 8,911.87 18,617.86 2,382.38 3,661.81 1,569.76 2,285.63 244.35 2,546.21 40,200.00 Total 38,073.75 1,644.24 864.00 254.59 2,605.20 920.40 2,292.00 3,349.00 179.71 1,175.20 156.82 454.75 922.50 53,000.00

Openings										
Description of Work	Amount	Units		Material		Labor	Equip	oment		Total
15-Lite 3'0" x 7'0" Balcony Door	2	EA	\$	632.00	\$	37.00	\$	-	\$	46,768.00
3'0" x 7'0" Exterior Metal Door	6	EA	\$	494.00	\$	35.30	\$	-	\$	3,175.80
8'0" x 7'0" Raised Steel Panel Garage Door	2	EA	\$	1,723.40	\$	360.00	\$	-	\$	4,166.80
3'0" x 7'0" Hardboard Face Flush Interior Door	3	EA	\$	90.84	\$	45.80	\$	-	\$	409.92
2'9" x 7'0" Hardboard Face Flush Interior Door	2	EA	\$	94.63	\$	45.80	\$	-	\$	280.85
3'0" x 7'0" 4-Panel Wood Interior Door	19	EA	\$	370.80	\$	42.60	\$	-	\$	7,854.60
3'0" x 7'0" Double Sliding Closet Door	6	EA	\$	197.17	\$	38.86	\$	-	\$	1,416.19
3'6" x 7'0" Doorway Opening	1	EA	\$	43.68	\$	37.20	\$	-	\$	80.88
2'8" x 9'0" Single Hung Insulated Low-E Windows	3	EA	\$	206.70	\$	50.30	\$	-	\$	771.00
3'6" x 9'0" Single Hung Insulated Low-E Windows	3	EA	\$	238.50	\$	50.30	\$	-	\$	866.40
3'-3" x 9'0" Single Hung Insulated Low-E Windows	1	EA	\$	230.55	\$	50.30	\$	-	\$	280.85
2'-9" x 4'0" Single Hung Insulated Low-E Windows	5	EA	\$	198.75	\$	50.30	\$	-	\$	1,245.25
2'9" x 5'0" Single Hung Insulated Low-E Windows	3	EA	\$	182.85	\$	50.30	\$	-	\$	699.45
3'0" x 3'0" Fixed Low-E Insulating glass windows	3	EA	\$	157.50	\$	18.50	\$	-	\$	528.00
7'3" x 9'0" Window Casement Triple Transom	1	EA	\$	1,708.00	\$	134.00	\$	-	\$	1,842.00
7'6" x 9'0" Window Casement Triple Transom.	1	EA	\$	1,769.00	\$	134.00	\$	-	\$	1,903.00
Openings Total Estimate									\$	72,500.00
Plumbing Total Estimate									\$	50,000.00
HVAC Total Estimate									\$	43,000.00
Electrical Total Estimate									\$	73,000.00
Indirect Overhead Estimate									\$	32,000.00
Direct Overhead Estimate									\$	28,000.00
Building Inspection Total Estimate									Ş	\$3,000.00
Total Construction Cost				\$4	126,	500.00				
Overhead (53% Indirect; 47% Direct)				\$	60,0	00.00				
Profit (Rate is 7.5%)	\$32,000.00									
Contingencies (10%)	\$42,650.00									
Total Estimate				\$5	561,	000.00				

X. CITATIONS

Linville, J. D. (n.d.). *Timber Construction* (6th ed.). American Institute of Timber Construction.

NDS for Wood Construction. (n.d.) (2018th ed.).

NDS Supplement Design Values for Wood Construction. (n.d.) (2018th ed.).

Pray, R. (2018). National construction estimator. Carlsbad, CA: Craftsman Book Company.

RSMeans. (2018). RSMeans Commercial Renovation Cost Data, 2018. Norwell, MA.

TenCate Geosynthetics Americas. (n.d.). Geosynthetic Reinforcement and Separation.

Witzany, J., Cejka, T., SyKora, M., & Holicky, M. (2015). Strength Assessment of Historic Brick Masonry. *Journal of Civil Engineering and Management*.