

FINAL DELIVERABLE

Title	Clinton - Downtown Commercial Building Rehabilitation (241-247 5th Ave South)	
Completed By	Alecxander LaBelle, Mason White, Yunlong Li	
Date Completed	December 2019	
UI Department	Department of Civil & Environmental Engineering	
Course Name	CEE:4850:0001 Project Design & Management	
Instructor	Christopher Stoakes	
Community Partners	Downtown Clinton Alliance	

This project was supported by the Iowa Initiative for Sustainable Communities (IISC), a community engagement program at the University of Iowa. IISC partners with rural and urban communities across the state to develop projects that university students and IISC pursues a dual mission of enhancing quality of life in Iowa while transforming teaching and learning at the University of Iowa.

Research conducted by faculty, staff, and students of The University of Iowa exists in the public domain. When referencing, implementing, or otherwise making use of the contents in this report, the following citation style is recommended:

[Student names], led by [Professor's name]. [Year]. [Title of report]. Research report produced through the Iowa Initiative for Sustainable Communities at the University of Iowa.

This publication may be available in alternative formats upon request.

Iowa Initiative for Sustainable Communities The University of Iowa 347 Jessup Hall Iowa City, IA, 52241 Phone: 319.335.0032 Email: iisc@uiowa.edu Website: http://iisc.uiowa.edu/

The University of Iowa prohibits discrimination in employment, educational programs, and activities on the basis of race, creed, color, religion, national origin, age, sex, pregnancy, disability, genetic information, status as a U.S. veteran, service in the U.S. military, sexual orientation, gender identity, associational preferences, or any other classification that deprives the person of consideration as an individual. The University also affirms its commitment to providing equal opportunities and equal access to University facilities. For additional information contact the Office of Equal Opportunity and Diversity, (319) 335-0705.

Project Location: 241-247 5 Ave. South, Clinton, IA 52732

Submitted to:

Christopher Stoakes, Ph.D., P.E.

Submitted on behalf of the YAM Engineering Design Team:

For any further questions or concerns, please contact:

Alecxander LaBelle Mason White Yunlong Li

Alecxander LaBelle, Project Manager E-mail: <u>alecxander-labelle@uiowa.edu</u> Tel: (815) 670-2996

UNIVERSITY OF IOWA

DEPARTMENT OF CIVIL & ENVIRONMENTAL ENGINEERING Project Design & Management | CEE:4850:0001

Table of Contents

Section I: Executive Summary	
Design Services:	4
Constraints, Challenges and Societal Impacts:	4
Section II: Organizational Qualifications and Experience	7
Section II-1: Name of Organization	7
Section II-2: Organization Location and Contact Information	7
Section II-3: Organization and Design Team Description	7
Section II-4: Description of Experience with Similar Projects.	7
Section III: Design Services	9
Section III-1: Project Scope	9
Section III-1.1: Project Goals	9
Section III-1.2: Design Objectives	10
Section III-1.3: Deliverables	11
Section III-2: Work Plan	11
Section IV: Constraints, Challenges and Societal Impacts	13
Section IV-1: Constraints	13
Section IV-2: Challenges	14
Section IV-3: Societal Impacts within the Community	15
Section V: Alternative Designs	15
Section V-1: Alternative Concepts Considered	15
Section VI: Final Design Details	19
Section VI-1: Architectural	19
Section VI-2: Structural	21
Section VI-3: Mechanical	27
Section VI-4: Electrical	31
Section VI-5: Plumbing	35
Section VI-6: Fire Protection	
Section VI-7: Traction Elevator System	40
Section VI-8: Contract Drawing Set Alternatives	42

THE UNIVERSITY OF IOWA®

Section VII: Engineer's Cost Estimate	
Section VIII: Appendices	46
Appendix A: Methods and Design Guides	A1
Appendix B: Permits and Government Approvals	B1
Appendix C: Schedule of Values and Suggested Manufacturers	C1
Appendix D: Gantt Chart and Work Plan	D1
Appendix E: Electrical Calculations	E1
Appendix F: Fire Protection Calculations	F1
Appendix G: Architectural Designs	G1
Appendix H: Elevator System	E1
Appendix M: Mechanical Calculations	M1
Appendix P: Plumbing Calculations	P1
Appendix S: Structural Calculations	S1

SECTION I: EXECUTIVE SUMMARY

This design report is submitted on behalf of YAM Engineering as part of our contracted services for the Commercial Building Rehabilitation I project at 241-247 5 Ave S, Clinton, IA. Design services started on September 13, 2019 and finished on December 13, 2019.

Design Services:

The design services provided by our team included delivery of fully functionable designs with Architectural, Structural and MEP-FP elements that will bring the building and its existing elevator system in accordance with today's legal standards to achieve commercial occupancy. The designs included third-floor renovations, passenger elevator replacement, building façade restoration and foundation repair. Alternate approaches were considered during the conceptual design phase and reviewed with the Clients on Friday, October 4, 2019 and Tuesday, October 15, 2019. Across all disciplines, alternative materials, building systems, and equipment were considered throughout design development to provide the most cost economical designs.

A contract drawing set has been prepared to a Level of Development (LOD) 200 per the U.S. GSA. Also included as part of our deliverables are the following: a construction cost estimate, a project poster (ANSI D size), a project presentation to the Client, a listing of entities/agencies permits that control design and/or construction of the project, and 3D renderings produced in Revit of the exterior and third floor designs.

Project Schedule: After award of RFP-#04a, the original work plan and Gantt Chart submitted with our proposal was expanded upon to include team project milestones set in place for performance review, and to track design work activities at a more detailed scale. The activity dates of the original Gantt Chart were still valid. Attached in Appendix D is our modified Gantt Chart to account for critical components of MEP-FP systems, structural systems and a conceptual design project phase so that during, alternatives could be adequately explored with the Client.

Constraints, Challenges and Societal Impacts:

Design Constraints: Constraints set on the project's design included: 1. Reciprocation of the building's historical 1900's design for the exterior; 2. Limited structural designs due to in adequate existing conditions found; 3. No modifications to the existing roof truss system; and 4. Reuse of the existing elevator shaft.

Design Challenges: Challenges encountered by our team during the project included: reducing blind spots in the retail area due to all existing interior walls being load-bearing; coordination; 2. Coordination of exposed ductwork with 27" mains and fire protection piping, designing MEP systems to be compatible for expansion; inclusion; 3. Inclusion of energy efficient design elements due to the building's exterior walls and lack daylight exposure from the North and West; a; and 4. cost economical balcony floor framing design that accounts for moisture protection.

Societal Impacts on the Community from the Project: For the City of Clinton and downtown business commerce, the project will pose economic benefits by supporting the recent growth of newly established businesses in the downtown area. The façade repair requires removing the billboard and reconstruction of 19-century fashion, the outside of the building will restore a consistent fashion with surrounding buildings. This will help promote the historic aspect of 5th Avenue South overall, which was the intention of our Clients. For the community body, the

renovation will offer social improvements by offering an enjoyable place of gathering for multiple purposes with the combination of a mercantile store and coffee shop.

Final Design Details:

Café Area & Workroom | Sheets A1.1-A1.3, A2.0, A3.1

The care area is located at the Northeastern portion of the third floor with a total square footage of 1694 SF with a design occupancy of 50 people per day.

The café workroom is located at the Southeast side of the third floor, with immediate access to the café counter area through double flush doors. The kitchen includes all access and equipment.

Bathrooms | Sheets A1.1-A1.3, A2.1

Two single-person bathrooms are located at the Southeast corner of the third floor. The design includes all fixtures and bathroom accessories to follow local plumbing codes and specified at ADA compliant mounting elevations.

Structural | Sheets S-1, S-2, S-2.1, S-2.2, S-3, S-4, S-5, S-6

The proposed interior third floor framing was designed for live loads of 150 PSF at the kitchen, 100 PSF in the café, and 75 PSF in all retail areas, per ASCE 7-16. The areas that this affects included the area of floor framing that is expressing severe deflection, as well as the kitchen and café. These member types were chosen to be 16" spaced Laminated Veneer Lumber.

The balcony framing was designed for the same live load as the café (100 PSF), based on a typical restaurant/cafe from ASCE 7-16. This balcony was designed as a typical cantilever balcony with the interior balcony framing spanning twice the length of the exterior span (6'). The spacing for balcony floor framing is also designed at 16" O.C. The engineered lumber types chosen were Laminated Veneer Lumber and Parallel-Strand Lumber. Dimensional lumber members are also included for short spans. Exterior spans of the balcony floor framing are Laminated Veneer Lumber and are to be encased in aluminum for thermal/moisture protection.

Based on the increased loads from balcony framing on the north exterior wall, the existing lintel above the storefront windows will need to be field verified to be HSS9x9x5/8 or stronger. This will need to be resting on a 12"x6"x1/2" bearing plate to resist reaction forces at the columns.

The existing roof trusses were analyzed in order to find their structural capacity based on existing loads and new loads being applied from mechanical units and lowered ceilings. The existing roof trusses pass all bending, tension, and compression requirements.

Mechanical | Sheets M0.1, M0.3, M1.0-M1.2, M2.0, M3.1

There are two HVAC systems for the third floor: an air-cooled air conditioning unit with a combination evaporator coil and gas heat furnace located in the utility room, and a makeup air unit serving the workroom independently. Exhaust systems are designed in the workroom and restrooms. All exposed ductwork is to be double-lined and galvanized with 1" mineral wool lining. All concealed ductwork above false ceilings are permitted to be standard duct with 1" duct wrap insulation.

Electrical | Sheets E0.1, E1.0-E1.3, E2.0, E3.0-E3.1, E4.0

In the retail area, the existing light fixture housings are designed to be reused with LED retrofit kits. All lighting is controlled by occupancy sensors with timers and can be overridden by keylight switches. In the bathrooms, the occupancy sensors also control the exhaust fans serving the bathroom through means of a 120V one-line relay. There are three panelboards serving the third floor: lighting panelboard, equipment panelboard and power panelboard. All panels are 3-phase 208V power fed. The total added electrical demand from the third-floor is (75) kVA.

The fire alarm notification system design includes a conventional fire alarm panel with 4 zones (1 spare zone). Duct detectors are designed in the supply and return mains of the ACCU-1/FU-1 system per 2018 IMC.

A 24 VDC self-amplifying speaker communication system is designed. The speakers supply as much current as they draw, and have a calculated power demand of (19) W. A (24) W power supply head-end unit shall be supplied.

Plumbing | Sheets P0.1, P1.0-P1.1, P2.0, P3.0

Two individual use bathrooms (one male, one female) were designed with each having a single lavatory and wall-mounted water closet with (1.6) gpf flushometer valves. The workroom includes a dishwasher and stainless-steel double bay sink that is connected to a grease trap downstream of the sink. A single-bay sink designed at the café counter work space. Floor drains are located near all sink locations. All domestic plumbing pipe is to be Copper Type L. The hot water system is served by a tankless hot water heater, and has a hot water return loop which is regulated by a recirculation pump. The return loop and pump were sized for a temperature differential of (20) degrees Fahrenheit. The water will leave the tankless water heater at (140) degrees Fahrenheit. The recirculation pump performance parameters were found to be (6) GPM of flow and (20) feet of pressure head. All sanitary waste and vent piping is to be Schedule-40 PVC. Total waste loading from third floor to existing system is (37) WFU's, which will require a 4" Schedule 40 PVC waste pipe for the third floor main and connection to existing waste main on the first floor. Fire Protection | Sheets F0.1, F1.0, F2.0

A wet-pipe sprinkler system was designed to serve the third-floor by expanding from the first floor. The approximate flow required for the entire third-floor is (1410) gpm. All sprinkler heads are designed to be industry standard type $\frac{1}{2}$ " orifice NPT (nominal K-Factor of 5.6 GPM/psi^{1/2}), and all piping shall be black steel pipe. This is to be most cost economical. The critical sprinkler head shall have a pressure of (20) psi, giving (40) psi available for pressure losses.

Traction Elevator System | Sheets M0.2, M3.0, E3.1

The traction elevator system design calls for an AC gearless machine room-less elevator system. The system will continue to serve the basement, 1st and 3rd floors through the existing elevator shaft. The elevator control panel will be located inside the hoistway at the third-floor level along with all other components being contained inside the hoistway. The replacement elevator design matches the existing system's 208V 3-Phase power supply requirement and 2000 lbs rated capacity. The elevator shall have a rated speed of (150) fpm, which is industry standard.

Engineer's Cost Estimate:

The estimated construction cost is \$1,129,900. This includes hard construction costs of \$943,900, soft costs of \$74,500 and contingencies of \$111,500. An overall (5%) contingency for all hard costs was included as a safety net. During our team's site visits, black mastic tile flooring underlayment was noticed that could potentially contain asbestos. A contingency was included for abatement of the entire third-floor flooring. A contingency was included for the exterior masonry work being performed during the winter season, in case the work causes significant impacts to neighboring businesses during prime shopping seasons by blocking access to sidewalks and street parking. All project costs have been categorized into hard or soft construction costs in accordance with the American Institute of Architects (AIA).

SECTION II: ORGANIZATIONAL QUALIFICATIONS AND EXPERIENCE

Section II-1: Name of Organization

YAM Engineering, Engineering Design Firm

Section II-2: Organization Location and Contact Information

Location:

4105 Seamans Center for the Engineering Arts and Sciences Iowa City, Iowa, 52242

Contact Information:

Project Manager:	Alecxander LaBelle
Tel:	(815) 670-2996
E-mail:	alecxander-labelle@uiowa.edu

Section II-3: Organization and Design Team Description

YAM Engineering is a construction organization dedicated to improving the resiliency and sustainability of communities in the Midwest, while holding the safety and health of the public as priority. Our team skill set includes the use engineering design services, engineering software and project management processes in the field to ensure a quality design is delivered. The project team was led by project manager Alecxander LaBelle. The project team also included Mason White, technology support, and Yunlong Li, graphic designer and report editor.

The project's design was overseen by the Project Manager. A complete list of how design activities were split between team members can be found in Appendix D. In summary, the project's architectural design was led by Yunlong Li, structural design was led by Mason White, and the MEP-FP was led by Alecxander LaBelle.

The team members have mastered sufficient skills in dealing with engineering design software including: FormIt, Revit, Robot, Insight 360 (Building Energy Analysis), SketchUp, Microsoft Excel, MatchCAD.

Section II-4: Description of Experience with Similar Projects

Our team at YAM Engineering leaned on our past construction experiences to complete this project with maximum levels of competence. Renovation experience of the team includes renovating a residential home to a commercial building, addition of an elevator to an existing building, as well as renovation of HVAC, plumbing, electrical, and fire protection systems. New construction experience of the team includes that of commercial buildings, retail buildings, K-12 schools, healthcare buildings, and criminal justice buildings. Members of YAM Engineering have also obtained on-site construction management positions with various companies.

Alecxander LaBelle Project Experience:

- 1. University of Iowa Children's Hospital, Iowa City, IA
- 2. Dekalb County Jail Expansion, DeKalb, IL

- 3. A.E. Stevenson H.S. 2018 Summer Renovations, Transition House and Port Clinton Rd. Lincolnshire, IL
- 4. Highland Park SD#112 Renovations, Highland Park, IL
- 5. CCSD #21 HVAC & Secure-Entry Renovations, Wheeling, IL

Mason White Project Experience:

- 1. Denver Water OC Redevelopment, Denver, CO
- 2. Xtream Arena, Coralville, IA

Yunlong Li Project Experience

1. Kum & Go, Iowa City, IA (in class project)

SECTION III: DESIGN SERVICES

Section III-1: Project Scope

This section summarizes the design services performed for this project. The design services start with a list of general requirements that were met, followed by specific design services categorized in the same way as the work plan and Gantt Chart also discussed in this section of the report.

Section III-1.1: Project Goals

Third Floor Renovations Design Scope

- 1. A complete design of the third-floor space has been provided to achieve commercial occupancy in accordance with City of Clinton Building Code, which adopts the 2018-International Building Code. This includes heating and air ventilation, life safety, fire protection notification system and fire sprinkler system, and public restrooms.
- 2. The design of the third-floor space embodies the Client's intent to rehabilitate the building back to its historic condition. All existing window openings on the North and West walls are incorporated into the new design. The drywall blocking the window bay openings are designed to remove and new French windows and panoramic windows are designed to be installed at the openings. The Demolition Plan on Sheet A1.0 accounts for these existing openings by calling out rehabilitation of the window rough openings (brick/CMU), demolition of drywall that covers existing openings, and patching the drywall that returns to the new windows to be installed.
- 3. The design also includes a medium-sized coffee shop with an open seating area and a commercial kitchen for the café. Electrical accommodations have also been made for future tenants of building's retail space (antique booths).

Passenger Elevator Replacement Design Scope

- 1. A replacement elevator design is included in the design documents for replacement of existing Traction Elevator System in the building that serves the Basement, 1st and 3rd floors. This design includes demolition of existing elevator system, and installation of a new elevator system that meets current ASME 17.1 and 2018-IBC standards. The design also includes fire alarm controls required for the elevator system. This design is in accordance with NEC 70 and NFPA 72.
- 2. The priority of the elevator replacement design was to reuse as many existing building features as possible. This included starting design work with investigating the plausibility of retrofitting the existing system. This was confirmed to not be a plausible solution, and so a new elevator design was produced. The new elevator system designed has the same power (208V/230) and motor requirements for successful retrofit in the existing building (gearless machine-less).

Building Façade Restoration Design Scope

Exterior design work consisted of two main components: restoration of the building's façade on the North and West elevations and added building features to restore the historical look of the building.

1. As part of the façade's restoration, the design incorporates demolition of the existing metal wood-framed false façade on the building's North and West elevations. A dormer was designed for the North elevation, to restore the historical dormer in the 1900's.

2. A walk-out balcony that cantilevers 6'-0" beyond the building's North wall was designed to be used as outdoor seating and event space for the café area. An aluminum canopy concept was explored during the conceptual design phase, which later was approved to become part of this scope.

Section III-1.2: Design Objectives

General Scope Requirements:

- 1. The design services provided by our team included delivery of fully functioning designs of the third-floor level with Architectural, Structural and MEP-FP elements that will bring the building and its existing elevator system in accordance with today's legal standards to achieve commercial occupancy.
- 2. Alternate approaches to design and construction of the project's ongoing design were considered during the conceptual design phase in September and October. Meetings were held to review conceptual designs on Friday, October 4, 2019 and Tuesday, October 15, 2019. The conceptual designs reviewed during these meetings included the following:

<u>Café Workroom:</u> Commercial kitchen space to be used by Café employees for light to medium duty cooking and food prep activities.

<u>Skydeck:</u> Extension of elevator shaft and addition of Skydeck at roof level for commercial occupancy.

<u>Lowered Ceiling</u>: A lowered decorative ceiling was added to the café design after the second conceptual design meeting. The intent of the lowered ceiling set by the Owner was to provide a design that carried the same theme as the Skydeck pergola canopy design. The lowered ceiling design is included in the contract drawings on Sheets A1.2. MEP specification requirements have been included on the associated MEP drawing sheets for elements installed in the lowered ceiling (e.g. UL ratings of light housings and ductwork spacing requirements).

<u>Walk-Out Balcony</u>: Extension of floor framing a total of 6' outside of the three existing bay windows, providing an outside gathering area that would be used by the café space. The idea of placing a canopy over the balcony in order to improve the scope of balcony design. This was turned down with the reasoning that this would limit the option of space heaters during the colder Fall and Spring seasons.

- 3. In addition to considering alternative approaches to the initial design intent of the Owner, alternative materials, building systems, and equipment were considered. All selections considered the Client's program and schedule. No budget was given for the project, though consideration was taken throughout design development to provide the most cost economical designs across all disciplines.
- 4. Applicable laws, codes, and regulations were reviewed to ensure the design documents incorporated in the requirements of governmental authorities having jurisdiction (AHJ).
- 5. A contract drawing set has been prepared as part of this scope. The contract drawings have been prepared to a Level of Development (LOD) 200 Approximate Geometry detail level per the U.S. General Services Administration (GSA). This level of design detail includes: approximate quantities, size, location and systematic relationships of all components that will eventually be installed.

Additional Work (Scope Changes)

Changes to the design services scope of work are listed here for record. Added scope items may be also referenced in the design scope sections above.

1. Scope Change #001: Foundation Wall Repair

It is visually apparent that the basement foundation walls need rehabilitation. It is our professional recommendation that the foundation walls be repaired in accordance with the design details in the drawing set.

2. *Scope Change #002:* Café Workroom (Commercial Kitchen)

A workroom was added off of the café area during the conceptual design phase. The objective was to design a commercial kitchen for light to medium-duty cooking and food prep activities.

3. Scope Change #003: Lowered Architectural Ceiling

Since a parogala skydeck design was forgone after conceptual design, the Client requested this was attempted to be included in the café design. A 1'x1' wood grid ceiling was designed for this.

4. Scope Change #004: Exterior Canopy Storefront

Section III-1.3: Deliverables

The following deliverables have been prepared and submitted as part of this contract:

- 4.1. Contract Drawings
- 4.2. Construction Cost Estimate based on Contract Drawings
- 4.3. A Project Poster (ANSI D size)
- 4.4. A project presentation has been prepared. The presentation will be held in Clinton, IA on Tuesday, December 17, 2019.
- 4.5. A list of entities/agencies permits that control design and/or construction of the project.
- 4.6. This design report is included in design deliverables.
- 4.7. 3D Renderings produced in Revit

Section III-2: Work Plan

The Work Plan and Gantt Chart submitted as part of our team's proposal for the project was the primary structure taken by our team for each of our team members roles, design elements and disciplines designed. After award of RFP-#04a, this work plan was expanded upon to include team project milestones set in place for performance review, and to track design work activities at a more detailed scale. Below is our summarized work plan that details work plan activities down to sub-sections of divisions. Attached in Appendix D is our modified work plan to account for critical components of MEP-FP systems, structural systems and a conceptual design project phase so that during, alternatives could be adequately explored with the Client. Ultimately, the detailed work plan narrowed our team's focus to critical components that ensured the team delivered a quality design by the schedule date committed to.

THE UNIVERSITY

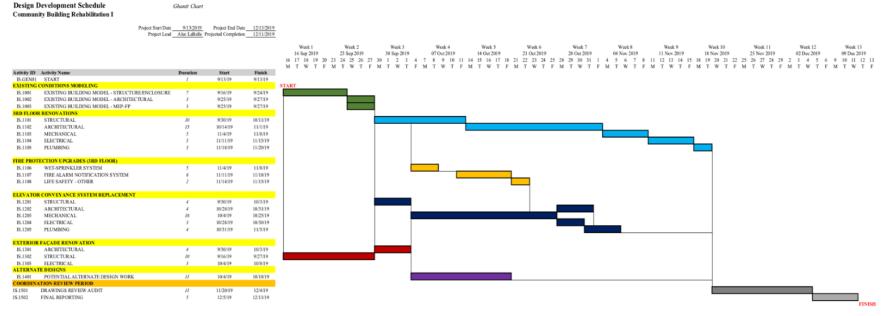


Figure 1: Design Development Gantt Chart submitted with proposal. Schedule dates were still valid throughout design development. Activates are categorized by construction discipline.

SECTION IV: CONSTRAINTS, CHALLENGES AND SOCIETAL IMPACTS

Section IV-1: Constraints

Constraint #1: Exterior Design had to restore the Historical 1900's Design

The exterior designs had to restore the historical look of the building in the original 1900's design of the building. This includes a crown-dormer at North elevation, and reuse of window openings on the front and side elevations of the building. The work detailed in the contract documents for these openings is limited to rehabilitation to preserve the openings, there are no modifications to be made to the existing openings. Likewise, the crown dormer has identical features to the historical dormer shown in historical pictures on record by the Clinton Historic Committee.

Constraint #2: Existing Structural Conditions Discovered

Findings of existing structural conditions (inadequate sized members/wood framing) confirmed limited modifications to structural components such as bearing walls could occur. Additionally, structural designs were constrained to methods functional with building's existing structural system type. We had to work with the type of system that was existing, since it would not be cost economical to change.

At the time of submitting our proposal, our understanding was that most of the structural scope would be for new construction work. After a second site visit and calculations, we gained a much greater understanding of the various structural components we would be dealing with. The majority of structural construction costs will be for replacement of existing building members. The only new construction/addition onto the building is the proposed cantilever balcony, which is made up of assemblies mostly contained within the interior of the building.

Constraint #3: No Modifications to Existing Roof Truss System

No modifications to the existing roof truss system was a constraint identified by the Owner during the first conceptual design meeting on October 4, 2019. The reasoning for this constraint was that the roof truss system is currently in good condition and was recently constructed a few years ago.

This resulted in no changes being able to be made regarding the 11'-0" ceiling elevation, or the drywall mounted on truss ceiling style. This limited the designs that could be considered for the Skydeck alternative, discussed further in Section V. Conceptual design discussions regarding the Skydeck were constrained to methods for the Skydeck's structural connections that avoided any modification to the existing truss system.

Constraint #4: Elevator System Constraints

The elevator system upgrade in conformance with today's standards was a necessity per code, since the third floor is accessible. The replacement traction elevator design was constrained to reincorporate existing conditions to ensure a cost economical design. The existing elevator shaft is re-used in the new design. A systemic result that could occur would be unenjoyable experience for people with disabilities that are only visiting the building for the café area. The elevator location is code compliant, however. This microscopic societal impact is discussed further in Section IV-3.

Section IV-2: Challenges

Challenge #1: Reducing Blind Spots in the Retail Area

The Owner's intent was to demolish all existing interior walls that were non-bearing to reduce blind spots on the third floor, mitigating shoplifting occurrences. During our initial site visit, it was believed that two interior walls were non-bearing and could be demolished. After being awarded the RFP and another site visit, it was determined that all interior walls that were existing on the third floor are bearing.

This posed a challenge, since the existing 2x6 wood stud interior wall running North to South greatly blocked visibility of the Northwest corner of the retail area.

Challenge #2: Exposed Ductwork and Fire Protection Piping

With over 6,000 CFM's of design airflow serving the third floor, ductwork mains are required to be 26" to 27" in diameter. Even with the retail spacing having a ceiling elevation of 11'-0", this results in the ductwork mains being hung at an elevation of approximately 8'-6" at bottom of duct. Fire protection piping is also designed to be exposed, as was identified as the Owner's original intent during the first conceptual design meeting. Many considerations were taken into the MEP coordination due to tight-space issues such as this one with exposed MEP components.

Challenge #3: MEP System Design Compatibility for Future Expansions

The 3rd floor presented the opportunity to renovate completely without being constrained to expanding from existing MEP systems. This presented a different challenge though, since the 1st floor MEP system is existing and functional. The team believed it was likely that the same MEP system types would like to be expanded to the first floor in a future renovation. This factor was considered throughout design development. The challenge was selecting systems that will best meet the needs of the third-floor space, but could be expanded upon in the future, without increasing costs of the systems now (e.g. buying over-sized systems, which is not cost economical or energy efficient).

Challenge #4: Inclusion of Energy Efficiency in the Design Process

The exterior walls of the building are not efficient in holding the temperature gradient due to the CMU and brick veneer construction of the walls. This will impact the extent of energy efficiency that can be achieved with the new HVAC system design.

Challenge #5: Balcony Floor Framing Moisture Protection

To design a safe and economical balcony, laminated veneer lumber was chosen for the floor framing. Laminated veneer lumber is known to be very resistive to high flexural stresses and is generally less expensive than glulam beams. However, one issue with using laminated veneer lumber for a balcony, is that laminated veneer lumber cannot be pressure treated. This would mean the lumber would have no protection to moisture, rotting, and insects, resulting in a non-resilient design. For these reasons, the decision was ultimately made to wrap the underside of the balcony in powder coated aluminum. This will provide protection from moisture, insects, and thermal damages.

Section IV-3: Societal Impacts within the Community

Project's Overall Impact on the Community:

The team's assessment on the project's societal impacts within the Community found overall that the project has a positive impact on the Community. For the City of Clinton and downtown business commerce, the renovation project will pose economic benefits by supporting the recent growth of newly established businesses in the downtown area. For the community body, the renovation will offer social improvements by offering an enjoyable place of gathering for multiple purposes. The project offers a coffee shop, sized to hold an adequate assembly gathering of people.

Although there are several cafés in the City of Clinton greater area, most of them concentrate at 2^{nd} street. The owners take aim at the scenery along the Mississippi River. With there currently being a lack of access to a café at the center of the city, this provides an opportunity for the project. A café at the center of the city will provide people a good place for recreation and relaxation at a new location that will likely be closer to many customers that currently frequent the cafe shops near 2^{nd} street.

Project's Design Impact on the Community:

Looking closer at the project's design itself having an impact at the community level, the team identified two positive impacts and one negative impact.

<u>Positive Impact</u>: Currently, the building outside is covered by a billboard, while neighboring buildings on 5 Avenue and 3rd Street have maintained the century fashion. Restoring the building's façade to its 19-century fashion will allow the building to maintain a consistent theme with surrounding buildings. This will help promote the historic aspect to 5 Ave South overall which was the intention of our Clients.

SECTION V: ALTERNATIVE DESIGNS

Section V-1: Alternative Concepts Considered

1. <u>West Elevation Plaster Area</u>:

Previously, plaster was chosen in order to cover up the face-brick on the west face of the building. Currently, there is a small, faded mural covering up part of this plaster area. The owner was interested in exposing as much face-brick as possible. However, this plaster has likely ruined the aesthetic purpose of any face-brick underneath it. For this reason, it was proposed that the plaster wall be cleaned and prepared to receive a new, larger mural.

With this option, it is possible that the mural could be vandalized. However, public art is often more respected by vandals than a typical, plain wall. This alternative will contract a local artist and give them a chance to showcase their talents, providing a sentimental, positive societal impact to the areas surrounding. This mural will also promote the values of both the owner, and the Downtown Clinton Alliance due to their partnership in restoring the exterior façade of the building.

2. Dormer Location:

The Owner's goal of the exterior façade redevelopment was to bring back the look of the building from a century ago. One feature of the building prior to its current renovation was a dormer,

THE UNIVERSITY

highlighting the top of the building. This was one of the Owner's main desires in the aesthetic of the façade design. The old crown was located towards the west end of the north face of the building, near the single hung windows.

During the first step of conceptual design, the idea was to turn this idea into a dormer with a window and a vaulted ceiling. This would require some existing roof framing to be removed and restructured. However, it would provide natural light and a great interior aesthetic. With further thought and conceptual design, it was determined that an uneconomical amount of restructuring would need to be done in order to make this design work. This restructuring would include masonry rework above the existing 16'x9' bay window openings. A vaulted ceiling would also cause there to be more work in restructuring the roofing system; restructuring the rather capable existing roof trusses would be a waste. After denying the previous dormer option, the Owner informed us that he would opt for a more historical aesthetic for the proposed crown.

The final design features a crown that replicates the crown from the building before it was renovated to its existing state. It will be located over the middle 16'-0" x 9'-0" window. The crown will offer a great aesthetic with minimal restructuring to the existing building design. It will simply need to be braced against the existing roof framing for wind resistance. With no real disadvantages to the project, this design alternative was granted approval and will be incorporated.

3. Canopy Over Sidewalk:

The current set up of the building already includes a canopy on the west building face. It was requested that new canopies replace the old and be expanded to cover larger areas. The conceptual design phase offered a few different options.

The first option was a 5'-0" cantilever canopy that would attach to the existing CMU beneath the exterior face-brick with anchor bolts. This design would showcase an exterior resilient hardwood such as cedar or tigerwood. It was proposed to wrap the entirety of the building. This would offer a unique design but, would increase construction costs. The same design was proposed to be over the balcony, giving shade and coverage to those who wish to sit outside amidst the elements. The owner identified that a canopy should not be designed over the balcony, since no heating units could be located on the balcony during the Fall or Spring seasons.

The second option was the same type; a 5'-0" cantilever canopy. However, this would use less expensive materials, and span only around the west end and the north end up to the balcony. Still, this was deemed too expensive, and not quite what the owner imagined in the ideal design.

The final option, a 5'-0" canopy attached to the CMU at two points with masonry anchor bolts. It is proposed to be simple, only black, powder coated aluminum casing; which only cover the northwest corner of the building and the south-most entrance on the west elevation. This design will require less material cost than the previous option, and offer a larger, uninterrupted area for the mural on the west face of the building.

4. Café Seating Area Orientation:

Three different seating area options were considered. These options were to use: all of the northmost section of the building (Option 1), only the east two-thirds of the north section (Option 2), or only the west two-thirds of the north section (Option 3). See the figures below for a visual:

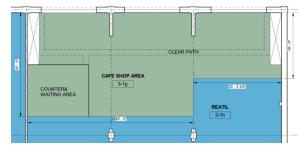


Figure G-1. Café area option 1

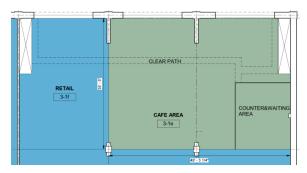


Figure G-2. Café area option 2

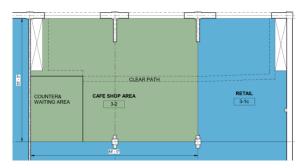


Figure G-3. Café area option 3

No matter which option was chosen, the entire north section of the building was structurally designed to withstand the live loads of a typical restaurant or café, so that in the future, seating sections could be rearranged to the owner's liking.

Option two became the final design option. Option three would require a kitchen to be place near the center of the building because of its location. The Owner liked the location of the counter waiting area in options one and two. However, he did not believe that the café needed to be as large as option one. Therefore, the design of option two was chosen. It will grant the café a total area of approximately 1,700 square feet. Along with the café seating area, a kitchen was added adjacent to the counter and waiting area.

5. Low-Voltage Lighting with Daylight Photocells and Motion Sensors:

An energy analysis study in Autodesk Insight360 revealed greatest daylight exposure was from the southeast. The analysis also showed that daylighting controls had no effect on energy usage, therefore daylight controls would be a cost increase to the project's design. Occupancy sensors resulted in a decrease of -0.02 USD/SF/yr on average. This does not include the fact that most spaces will not be occupied for durations at a time during the day. This will increase energy savings more with occupancy sensors/timer.

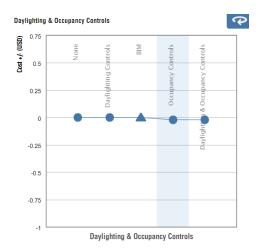


Figure E-14. Daylight

6. <u>Exposed Brick Veneer Interior Wall Finish</u>:

As stated before, the Owner expressed interest in exposing as much existing face-brick as possible. Using the exposed brick as a finish increases the aesthetic appeal of the building, which could become a potential attraction factor to customers. Exposed face-brick also absorbs large amounts of humidity and provides a lesser need for repetitive maintenance.

Interior face-brick was covered over with drywall in past renovations. Exposing the face-brick could have unexpected costs depending on the shape and integrity of the existing system. It is unclear what type of furring detail was used in past renovations to connect the existing drywall to the interior face-brick. There may also be extensive damages to the interior side from anchor bolts that were used to connect the existing false façade system to the exterior wall. If the brick is deteriorated, tuckpointing and re-grouting would be required in order restore the structural integrity of the wall.

Even if this alternative was not chosen, much of the existing drywall would need to be torn down due to its condition. Gypsum board sheathing, furring, and painting are only a few of the items that would be included in labor and material costs if it were decided to cover up the face-brick. All in all, exposing the face-brick behind the drywall will be the cheaper option and will offer a much more aesthetically pleasing looks. Not to mention the old age appeal it would give.

SECTION VI: FINAL DESIGN DETAILS

Section VI-1: Architectural

1. <u>Café Area</u>

The proposed café area is located at the Northeastern portion of the 3rd floor. The total square footage of café area is 1694 square-feet. The café area is designed to serve 50 people per day estimated by the traffic flow method.

In order to serve the estimated number of customers, the café area needs to be big enough to support the function. An easy rule of thumb is used to determine the total square footage of the café area: the café area is divided into dining area and work area including café counter and waiting area, which count 70% and 30% of total, respectively. The dining area is designed to allow for 23.7 square-feet per customer. This adds up to a total café square footage of approximately 1,694 square-feet.

Within the café area, the space is divided into three parts; the bar table located at the south side of the café area, the 3 and 4-seater tables located at the North side of the café area close to the two 16'-0'' X 9'-0'' windows, and the middle filled with 2-seater tables. The intent is to different sizes of groups. Within the café area, the wood plank tile is used as the flooring material to provide a consistent aesthetic with the façade design. Meanwhile, a 2'-0'' X 2'-0'' wood grid lowered ceiling system was designed to install into the café seating area to provide an aesthetic decoration to the café area. Within the café area, 4-foot knee walls were designed to divide the spaces. The knee walls under the bar table was designed as a base for the bar table to rest on. Not only were the knee walls designed to divide the space but, they were also designed to incorporate outlets for convenient electronic charging access. All designs were provided with the intent of allowing for a friendly environment to all types of customers. The café interior design rendering is shown in Appendix G Figure G-6.

Figure G-5: 3rd floor layout rendering

Y|A|M

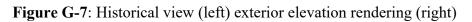
In order to serve people with disabilities, all designs within the café area were designed to comply with the 2010 ADA Standards for Accessible Design. Based on the International Building Code, a clear path is preserved between the tables to allow for acceptable means of egress of 3'-0''. At two stairways located at the West and East sides of the café area, railings were designed to be installed to provide a safe environment for all customers.

Café Workroom: congestion in space between café counter and kitchen. The opening of kitchen is directly facing the café counter, the space between café counter and kitchen is limited due to the existing condition. Meanwhile, in order to bring food materials into kitchen, workers have to use the same opening which is prepared for staff.

Retail Area: To eliminate the blind spot behind the South bearing wall, two arched openings are called to be cut into the interior 2'-0''X6'-0'' wall. The openings will have a height of 9'-0" at the top of the arch to match the elevation of the 16'-0'' X9'-0'' window bays on the North wall. The openings will be 8'-0" in width and spanned 10'-0" apart from each other.

With the proposed design layout of the 3rd floor, the advantages and disadvantages includes:

<u>Negative Impact</u>: The distance between the elevator and the café area is quite long due to the location of the existing elevator shaft that will be reused. This can be an unfriendly experience for people with disabilities. This is a result of reusing the existing elevator shaft to provide a cost economical design, as previously discussed in Section IV-1. Considering that the area that has to be crossed to access the café from the elevator is retail, this may pose an additional negative impact for disabled occupants that only wish to access the café area.


For a disabled occupant that only wishes to access the café area, the location of the bathrooms in Southeast corner could be an unenjoyable experience as well. To access the bathrooms from the café, retail space must be crossed again.

<u>Positive Impact</u>: Distinctive design features provided by the team can minimize the influence of location. The balcony design enables customers to enjoy the sunshine and natural wind, which could become a distinguishing feature to customers. At the same time, the effect is not limited to inside the commercial building

2. Exterior Elevation

The dormer is located at the middle of the North side of the building to bring back the 1900's historical view of the building. The picture of the historical view of the building coming from the Clients is shown in Figure G-7. The crown is designed to be braced against the existing roof framing for wind resistance. The existing false façade will be demolished, and the brick veneer will be exposed to bring back the historical view. At the North elevation of the building, a walk-out balcony is designed to boost the appeal to the building. A railing is designed to be installed on the balcony to protect the safety of the public. A panoramic sliding window will be installed at the middle of the 3 16'-0''X9'-0'' window bay openings to provide an access to the balcony. French windows will be used for the other two window bay openings. At the Northeast corner of the building, an aluminum canopy is installed just above the display window at the 1st floor.

3. <u>Bathroom & Kitchen</u>

The single person bathroom is located at the Southeast of the 3rd floor, including single men and women bathroom. The bathroom accessories include water closet, sink, mirror, grab bars, paper towel dispenser, and strip lighting above mirror. All dimensions of the bathroom accessories and interior dimension of the bathroom were designed to comply with ADA regulations to make sure the accessibility for people with disabilities. The flooring material in the bathroom is porcelain tile to provide a water and slipping resistance surface. The porcelain tile extends 4 feet above the finish floor to provide a water resistance surface on the wall. The ceiling material in the bathroom is gypsum board.

The kitchen is located at the Southeastern side of the café area, with the two-flush door facing the café counter. The kitchen accessories include double oven, range top, commercial size 72 cubic-feet refrigerator, cabinet, sink, dishwasher, and work countertop. All dimensions of the kitchen accessories and interior dimensions of the kitchen were designed to comply with the ADA regulations to make sure the accessibility for people with disabilities. The porcelain tile was designed as the flooring material. The porcelain tile can provide a water resistance surface with easy clearing. The 2'-0'' X 2'-0'' acoustical ceiling tile was designed to be the ceiling material in the kitchen.

Section VI-2: Structural

1. <u>Balcony Floor Framing</u>

The proposed balcony framing was designed for a live load of 100 psf, based on a typical restaurant/cafe from ASCE 7-16. This is a conservative load based on the expected occupancy. This balcony was designed as a typical cantilever balcony with the interior balcony framing spanning twice the length of the exterior span. The beams span on the exterior side of the exterior wall for 6' and on the interior side for 16.5'. Edge members of the framing system were designed to line up with that of the stairwells, offering an efficient solution for this relationship. The cantilevered framing runs North to South and rests on larger beams in which run East to West. The spacing for balcony floor framing is designed at 16" O.C. This will make for easier construction while applying floor sheathing.

Due to the larger than typical spans for wood framing, the decision was made to use engineered lumber in order to resist the large moment and deflection values that come with larger loads and larger spans. The specific types of engineered lumber chosen were Laminated Veneer Lumber and Parallel-Strand Lumber manufactured by Weyerhaeuser. These types of are made for high moment resistance and allowed for very good DCR values for a very economical design.

Laminated Veneer Lumber is not made to be pressure treated. For this reason, exterior spans of the balcony floor framing will be encased in aluminum for thermal/moisture protection, as well as aesthetic purposes. This aluminum is to be powder coated in order to match the color of the canopy system.

See Appendix S for calculations. All design loadings and tolerances of different balcony members are explained below:

<u>Balc-1</u>: There are a total of 33 of these members, all chosen to be 1.75"x9.25" laminated veneer lumber. This comes out to a total of about 734 lineal feet of board. After applying adjustment factors, this specific size and grade of laminated veneer lumber (manufactured by Weyerheauser) has an allowable moment of 5600 lbf-ft and an allowable shear of 3075 lbf. At the design length of 22.5', it reaches a maximum moment of 3345.6 lbf-ft and a maximum shear force of 979.6 lbf due to dead, live, and snow loads. At 16" spacing this design yields demand-to-capacity ratios of 0.319 and 0.597 for shear and bending, respectively. It is important to note: 2x12 dimensional lumber would have provided a better design economically. However, 2x12's did not pass bending and deflection checks. These members types will use WP1.81 H=9.5 hangers (by Simpson Strong-Tie) in order to connect to adjacent framing members. This hanger type allows for an end-reaction of 3,635 lbf.

<u>Balc-2</u>: There are a total of 43 of these members, all chosen to be 2x6 dimensional southern pine. This comes out to a total of about 169 lineal feet of board. After applying adjustment factors, this specific type of dimensional lumber has a bending design value of 1012 psi and a shear design value of 140 psi. At the design length of 5.146', it reaches a maximum shear stress of 46.354 psi and a maximum bending stress of 780.901 psi due to dead, live, and snow loads. At 16" spacing this design yields demand-to-capacity ratios of 0.331 and 0.772 for shear and bending, respectively. These members types will use LUS26 hangers (by Simpson Strong-Tie) in order to connect to adjacent framing members. This hanger type allows for an end-reaction of 935 lbf.

<u>Balc-3</u>: There are a total of 11 of these members, all chosen to be 2x10 dimensional southern pine. This comes out to a total of about 120 lineal feet of board. After applying adjustment factors, this specific type of dimensional lumber has a bending design value of 1012 psi and a shear design value of 140 psi. At the design length of 9.063', it reaches a maximum shear stress of 48.961 psi and a maximum bending stress of 863.763 psi due to dead, live, and snow loads. At 16" spacing this design yields demand-to-capacity ratios of 0.35 and 0.854 for shear and bending, respectively. These members types will use SS LUS28 hangers (by Simpson Strong-Tie) in order to connect to adjacent framing members. Since Balc-3 members will be used on the exterior of the building, the appropriate hangers

have been chosen to be stainless steel. This hanger type allows for an end-reaction of 1,195 lbf.

<u>Balc-4</u>: There are a total of 6 of these members, all chosen to be 1.75"x14" laminated veneer lumber. This comes out to a total of about 134 lineal feet of board. After applying adjustment factors, this specific type of laminated veneer lumber (manufactured by Weyerheauser) has allowable moment of 13949.5 lbf-ft and an allowable shear of 5353 lbf. At the design length of 22.5', it reaches a maximum moment of 12987.35 lbf-ft and a maximum shear force of 1923.11 lbf due to dead, live, and snow loads. This design yields demand-to-capacity ratios of 0.359 and 0.931 for shear and bending, respectively. These members types will use WP1.81 H=14 hangers (by Simpson Strong-Tie) in order to connect to adjacent framing members. This hanger type allows for an end-reaction of 3,635 lbf.

<u>Balc-5</u>: There are a total of 4 these members, all chosen to be 5.25"x18" parallel-strand lumber. This comes out to a total of about 95 lineal feet of board. After applying adjustment factors, this specific type of laminated veneer lumber (manufactured by Weyerheauser) has an allowable moment of 75319.25 lbf-ft and an allowable shear of 21010.5 lbf. At the design length of 25.5', it reaches a maximum moment of 67283.05 lbf-ft and a maximum shear force of 9218 lbf due to dead, live, and snow loads. This design yields demand-to-capacity ratios of 0.434 and 0.893 for shear and bending, respectively. These members types will use EGQ5.37-SDS H=18 hangers (by Simpson Strong-Tie) in order to connect to adjacent framing members. This hanger type allows for an end-reaction of 19,800 lbf.

2. <u>Balcony Railing</u>:

The proposed balcony railing was designed to be an aluminum, cable (or perforated metal) railing system. It will consist of 3"x3" aluminum posts and 3"x1.5" horizontal rails at the top and bottom. The infill between the top and bottom horizontal rails has been chosen to be either cable or perforated aluminum panels (both viable options).

The spacing of the railing posts was designed based on a concentrated loading of 200 lbf at any point and a uniform load of 50 plf at any point in any direction (per IBC and ASCE 7-16). After further calculations, it was found that the maximum allowable spacing was to be 5.4 ft. The design spacing will be shortened to 4' O.C. in order to offer a conservative design as well as make for easier constructability. The connection design is to be provided by the manufacturer. Blocking guidance for the railing post-floor connection can be found in the structural drawing sheets.

3. General Floor Framing:

The proposed interior floor framing was designed for live loads of 150 PSF at the kitchen and 75 PSF in all retail areas, per ASCE 7-16. The areas that this affects included the area of floor framing that is expressing severe deflection, as well as the kitchen area in which will experience high live loads. In order to keep the overall structure consistent, these areas of floor framing were also designed for spacings at 16" O.C. Member types were also chosen to be Laminated Veneer Lumber like that of the balcony floor framing.

See Appendix S for calculations. All design loadings and tolerances of different balcony members are explained below:

<u>J1</u>: There are a total of 14 these members, all chosen to be 1.75"x18" laminated veneer lumber. This comes out to a total of about 345 lineal feet of board. After applying adjustment factors, this specific type of laminated veneer lumber (manufactured by Weyerheauser) has an allowable moment of 19375 lbf-ft and an allowable shear of 5985 lbf. At the design length of 25.5', it reaches a maximum moment of 18058.244 lbf-ft and a maximum shear force of 2834.982 lbf due to dead, live, and snow loads. At 16" spacing this design yields demand-to-capacity ratios of 0.474 and 0.932 for shear and bending, respectively. This member type will not require hangers as it will be bearing onto adjacent CMU walls. See the structural drawing sheets for this bearing detail.

<u>J2</u>: There are a total of 30 these members, all chosen to be 1.75"x14" laminated veneer lumber. This comes out to a total of about 719 lineal feet of board. After applying adjustment factors, this specific type of laminated veneer lumber (manufactured by Weyerheauser) has an allowable moment of 12130 lbf-ft and an allowable shear force of 4655 lbf. At the design length of 25.5', it reaches a maximum moment of 12477.933 lbf-ft and a maximum shear force of 1958.923 lbf due to dead, live, and snow loads. At 16" spacing this design yields demand-to-capacity ratios of 0.421 and 1.029 for shear and bending, respectively. These members types will use WP1.81 H=14 hangers (by Simpson Strong-Tie) in order to connect to adjacent framing members. This hanger type allows for an end-reaction of 3,635 lbf.

<u>J3</u>: There are a total of 29 these members, all chosen to be 1.75"x11.25" laminated veneer lumber. This comes out to a total of about 700 lineal feet of board. After applying adjustment factors, this specific type of laminated veneer lumber (manufactured by Weyerheauser) has an allowable moment of 8070 lbf-ft and an allowable shear force of 3740 lbf. At the design length of 25.5', it reaches a maximum moment of 7360.168 lbf-ft and a maximum shear force of 1155.48 lbf due to dead, live, and snow loads. At 16" spacing this design yields demand-to-capacity ratios of 0.309 and 0.912 for shear and bending, respectively. These members types will use WP1.81 H=11.25 hangers (by Simpson Strong-Tie) in order to connect to adjacent framing members. This hanger type allows for an end-reaction of 3,635 lbf.

<u>B1</u>: There are a total of 2 these members, all chosen to be double up 5.25"x18" parallelstrand lumber. This comes out to a total of about 85.68 lineal feet of board. After applying adjustment factors, this specific type of member doubled up (manufactured by Weyerheauser) has an allowable moment of 150638.5 lbf-ft and an allowable shear force of 36540 lbf. At the design length of 20.5', it reaches a maximum moment of 154014.09 lbf-ft and a maximum shear force of 24577.83 lbf due to dead, live, and snow loads. This design yields demand-to-capacity ratios of 0.673 and 1.022 for shear and bending, respectively.

4. Roof Structure Capacity Analysis:

The existing roof trusses were analyzed in order to find their structural capacity based on existing loads and new loads being applied. Per ASCE 7-16, existing design loads included the self-weight of the structure and roofing system, a roof live load of 20 psf, and a converted sloped-roof snow load of 25.2 psf. New loading conditions included the self-weight of new mechanical units on the roof, as well as the dead weight of a newly incorporated lowered ceiling in the café area (40 lbs. per hanger). The largest existing truss, a flat Howe-K truss with a height of 5' and a length 50',

was analyzed assuming 4' spacing between trusses. See the following for loading, axial force, moment, and deflection diagrams (respectively) at a load combination of D+0.75L+0.75S :

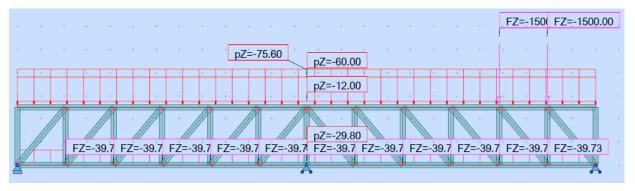


Figure H-1. Loading on roofing system

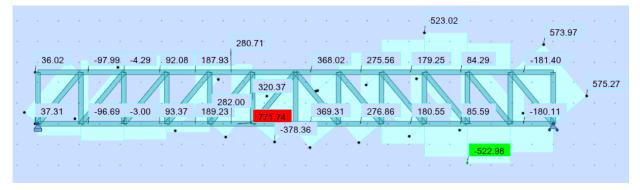


Figure H-2. Axial force on roofing system

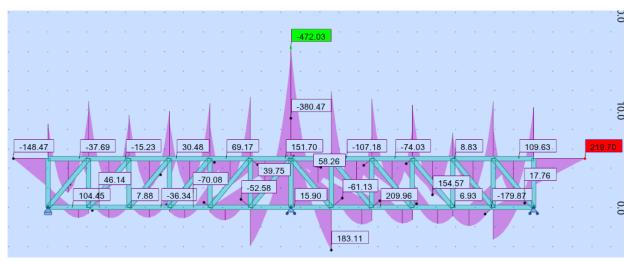


Figure H-3. Moment on roofing system

. (0.0411	0.0638	0.0923	0.1023	0:0916	0.0648	0.0361	0.0949	0.1464	0.1738	0.1683	0.1055	0.0286
							, i						
	. 4	0.0528	0.0859	0.0963	0.0845	0.0550	0.0096	0.0786	0.1354	.0.1672	0.1657	0.1149	0.0499

Figure H-4. Deflection of roofing system

The ASD approach was used to check the following design values: a maximum bending stress of 749.206 psi, a maximum tension stress of 522.98 psi, a maximum compression stress of 771.74 psi, and a maximum deflection of 0.1738. It was determined that the structural capacities of the current trusses are far adequate in withstanding the new loading. There are no improvement that need to be made to the structural roofing system.

5. <u>Storefront Lintel Verification:</u>

With the increased loads to the north exterior wall due to the balcony framing, the lintels above the storefront windows needed to be verified for sizing. The total load on these lintels was made up of the dead, live and snow loads on the balcony framing, as well as the existing façade. The newly applied, design uniform load on the lintels was found to be approximately 2000 plf. This uniform load yielded a maximum moment of 145 kip-ft with a design length of 26.25 ft. AISC 15 member tables were used against the maximum moment to find the design member size to be A500 Grade C HSS9x9x5/8. Hollow structural steel was chosen for the preliminary design because of its known resistance to lateral torsional buckling (LTB). The chosen member was checked for LTB; flange local buckling and web local buckling were ignored due to the compactness of the components. Based on calculations HSS9x9x5/8 sections are adequate for the applied loading. The contractor is to field verify that the existing lintels are of same, if not greater structural capacity than HSS9x9x5/8 sections or the lintels will need to be redesigned.

Bearing calculations were also completed using AISC 15 for guidance. Acceptable bearing plates are to have dimensions greater than or equal to the following: Length=12 in, Width=6 in, Thickness=0.5 in.

6. <u>Crown/Dormer Addition</u>:

The Owner has expressed wishes in bringing back a "look-alike" crown from before the structure was renovated in the mid-1900's. This crown went through a conceptual design process and endured a few different designs. It was finally decided to use a very similar design to that of the old crown. The only difference is that the "hill" of the crown will now be located at above the middle 16'x9' bay window.

Structurally, the design of the actual crown itself will be by others. The Owner expressed that he employs a carpenter in which obtains the skills to replicate the old design. No matter the end-product, 2x4 diagonal bracing is to be provided and attached to a 12" 2x4 plate located directly above each vertical or the northern-most Howe-K truss.

Y|A|M

7. <u>Overhead Canopy</u>:

The overhead canopy was chosen to wrap around the northwest corner of the building and span over the south entrance at the west elevation. It will extend off of the building 5' and have two connection points. The first connection will be between the interior edge of the canopy and the exterior wall using masonry anchor bolts. The second connection will be a tension rod that spans between the exterior edge of the canopy (4.5" from the edge) and the exterior wall (4' above the top of the canopy).

The design span between supports was chosen to be 8'. Per ASCE 7-16, the design loading for the canopy will be 243.499 plf, which includes a flat snow load along with a maximum snow drift load. After further calculations, the tension rods are to hold a minimum of 2,435 lbs each. The contractor must submit a product under CSI division 10 73 16, to be approved by both the architect and structural engineer.

Section VI-3: Mechanical

1. <u>Supply Air</u>:

There are two HVAC systems for the third floor: an air-cooled air conditioning unit with gas heat furnace and a makeup air unit serving the workroom independently. An air-cooled condensing unit with a combination evaporator coil and gas-fired furnace was selected, since this system is the most energy efficient for the Midwest Climate Zone 2. The makeup air unit serves the workroom independently, so that an additional (450) CFM can be provided by the rooftop unit when the commercial kitchen hood is in use. (450) CFM was found to be the required discharge rate for the kitchen hood per 2018-IMC Section 403.2.

The design contains the largest ductwork at the South end of the third-floor. This is important to prevent any fire protection piping from having to cross underneath the ductwork mains. Piping crossing underneath the ductwork mains would result in too low of a clear overhead from the floor per 2018 IBC. Ductwork sizes reduce to 11" through 17" at the branches, which allow fire protection piping to divert underneath the ductwork. For the most cost economical design overall, fire protection piping should always divert around ductwork, and not vice versa. Ductwork diverting around fire protection piping would also most likely result in too low of a clear overhead. Greater coordination will be required in the field between the mechanical contractor and fire protection contractor. The mechanical contractor should be scheduled to install all ductwork, prior to the install of sprinkler piping. It should also be specified (or purchased in the contracts) for a coordination layout meeting with the mechanical and fire protection contractors, prior to the start of all work.

1.1. Diffusers, Registers and Grilles

All supply diffusers are designed to be 4-way throw (four directions) to ensure optimal coverage. For the retail area, diffusers are placed 12'-0" on center. Diffuser velocities were based on ASHRAE 2005, Chapter 33 Ventilation Rates Table, and in correlation with demand cooling load in a room (Btu/h*ft²), Max ADPI, and the temperature at the given cooling load density. Heating and cooling loads were calculated using analytical spaces in Revit with Outdoor Air per Person, Area per Person and other constant parameters in accordance with ASHRAE Standard 62.1-2004.

The greater of the heating and cooling loads was selected for the design load. The design cooling load was found to be (246,500) btu/h, (6,818) CFM. A detailed heating and cooling loads report with all calculations has been attached in Appendix M.

SUPPLY AIR	Total Cooling Airflow	Qty. Diffusers	Airflow per Diffuser
Supply - Retail:	4967	24	207 CFM
Supply - Café Seating:	1350	9	150 CFM
Supply - Workroom:	232	1	232 CFM
Supply - North Bathroom:	84	1	84 CFM
Supply - South Bathroom:	82	1	82 CFM

Figure M-2. Supply air

1.2. Supply ductwork

All supply ductwork that is exposed is designed to be galvanized, double-lined sheet metal. For cost purposes, all ductwork that becomes concealed above a false-ceiling (e.g. workroom, bathrooms) is not called to be galvanized. This ductwork can be insulated with duct wrap around the exterior.

Ductwork was sized using the Equal-Friction Method in accordance with ASHRAE ductwork sizing standards for standard commercial buildings. An equal friction value of 0.08 in. wg-100 ft was held constant for all calculations.

Each duct segment was sized based on the required airflow in the duct (dictated by the supply/return/exhaust diffusers the ductwork serves). Design ductwork sizes chosen were based off the calculated equivalent diameter, and the quantity of other ducts that were also calculated to be roughly the same size. Some ductwork segments were designed to be smaller than their equivalent diameter due to this being the most cost economical solution. The optimal solution per the calculations would require more ductwork sizes and fittings, which will increase costs. The minimal added static pressure loading added to the furnace fan will still be better than a variety of ductwork sizes.

Ductwork hydraulic diameters were calculated using the McQuary Ductaculator Tool (McQuay International - McQuay Air Conditioning, 2003). The velocity was verified for each design ductwork size to ensure maximum recommended duct velocities were not exceeded per ASHRAE 2003, Chapter 42. The selected noise criteria (NC) for the third-floor was (35) NC. The third floor has both a café (restaurant, NC=40-45) and retail area (public area, NC=30-35); the smallest NC was chosen to govern the system, since the restaurant criteria could cause an unenjoyable experience for occupants in the retail area. The maximum NC that will be reached was found to be (20).

2. <u>Return Air:</u>

The return air diffusers and ductwork are designed based on the supply airflow. That way, a balance of positive (supply) air and negative (return) air is achieved. The location placement of the return grilles was selected to divide the building into thirds, and to mitigate airflow leakage to the exterior North and West walls. This is done by pulling airflow away from windows, back towards South and East ends of the building (where the building retains energy greatest). The return ductwork branch runs parallel to the East wall of the space, opposite from the exterior walls.

Ductwork was sized using the same method as described above in Supply Air.

RETURN AIR			Airflow per
	Total Cooling Airflow	Qty. Diffusers	Diffuser
Return - Retail (North)	2106 CFM	1	2106 CFM
Return - Retail (East)	2106 CFM	1	2106 CFM
Return - Retail (South)	2106 CFM	1	2106 CFM
Return - Workroom	232 CFM	1	232 CFM
Return - North Bathroom	84	1	84 CFM
Return - South Bathroom	82	1	82 CFM

Figure M-3: Design airflow per return grille type – return airflow equals supply airflow.

3. <u>Exhaust Air:</u>

The ventilation rate requirements for the retail and café area were taken into account with the heating and cooling loads calculation, since these areas do not have a separate exhaust system. These values were taken from ASHRAE Standard 62.1-2004 Table 6-2 for a retail store.

Exhaust ventilation rates for the bathrooms, workroom, utility room and elevator shaft were determined from 2018-IMC Table 403.3.1.1. Exhaust ventilation requirements have been summarized in the table below.

EXHAUST AIR	Total Exhaust Airflow	Qty. Diffusers	Airflow per Diffuser**
Exhaust - North Bathroom	70 CFM	1	70 CFM
Exhaust - South Bathroom	70 CFM	1	70 CFM
Exhaust - Utility Room	5 CFM	1	5 CFM
Exhaust - Workroom (kitchen hood)	450 CFM	1	450 CFM
Exhaust - Elev. Shaft (Pressure Relief Damper)	786	1	786 CFM

Figure M-4: Exhaust air grilles and louvers design airflow. All exhaust airflow values are in accordance with 2018 International Mechanical Code.

The utility room and elevator shaft are designed with natural ventilation. The utility room is served by a wind-turbine on the roof with a gravity backdraft pressure damper inside the ductwork near roof level to seal the room from outside air. A typical detail of the gravity ventilator is shown on sheet 2/M3.1 (detail 2). Likewise, the elevator shaft hoist way ventilation is regulated by a backdraft pressure relief damper, but the air is discharged through an aluminum storm-resistant louver in the elevator shaft East CMU wall.

The workroom exhaust hood is designed in combination with a centrifugal rooftop upblast exhaust fan. This fan also has a gravity backdraft damper in the ductwork near roof level to seal the room from outside air. The kitchen hood discharges 450 CFM from the Workroom, the rooftop fan discharges this 450 CFM to the atmosphere, per 2018-IMC. The total demand cooling load in the workroom is 232 CFM. An independent Makeup Air Unit is designed to serve the room, per 2018-IMC. The supply airflow on the unit is 682 CFM. The return airflow on the unit is 232 CFM to match the positive airflow from the workroom's supply diffuser, which is based on the demand cooling load.

4. Mechanical Fans:

The design static pressure for all mechanical fans was determined by summing the pressure drops in the duct systems that have to be overcome by the mechanical fan. The sum of these pressure drops is calculated to be the external static pressure (ESP) required to be overcome by the exhaust fan. The duct pressure losses in duct fittings and dampers were defined using ASHRAE coefficients. A fan's design airflow is based on the required exhaust rate (in CFM's). These values are listed in the table below.

 Table M-3: Calculated static pressure for exhaust fan systems on third floor serving the bathrooms (EF-1 and EF-2) and Workroom (H-x/EF-3).

TAG	ROOM SERVED	CFM	SP "(WG)
EF-1	NORTH BATHROOM	70	0.72
EF-2	SOUTH BATHROOM	70	0.32
H-x	CAFÉ WORKROOM	450	0.28

			FAN CHARACTERISTICS						
TAG	TYPE	SYSTEM							
			NOM. CFM	MOTOR HP (hp)	ESP (W.C.)	FLA	V/PH/HZ		
	SPLIT-SYSTEM, DIRECT- FIRED GAS, VARIABLE								
MAU-1	SPEED	ACCU-1	682	0.11	0.95	0.32	208 / 3 / 60		
				FAN CHARACTERISTICS					

			FAN CHARACTERISTICS							
TAG	TYPE	SYSTEM								
			NOM. CFM	MOTOR HP (hp)	ESP (W.C.)	FLA	V/PH/HZ			
	SPLIT SYSTEM, GAS,									
FU1	VARIABLE SPEED	ACCU-1	6715	5.39	4.59	15.5	208 / 3 / 60			

5. <u>Refrigerant Piping:</u>

The air-cooled condensing unit on the roof is connected to the evaporator coil inside the Utility Room by refrigerant line piping specified to be Copper Type K pipe. The suction line and liquid line total lengths were calculated to be (80) feet and (71) feet, respectively. This required the long line set method to be used for sizing the refrigerant lines. R-410A was selected as the design refrigerant type, since this is the industry standard and therefore most cost economical. A Carrier Design Guide and associated tables were used to determine the pipe sizes based on the cooling capacity (20 tons) and maximum total equivalent length (rounded up to 100 feet).

Table M-2: Long Line Set sizing chart used from Carrier design guide for sizing of refrigerant lines.

TABLE 5: R-410A LIQUID LINE, MAXIMUM RISE CHART										
T	Line		Maxir	num	Total	Equiv	alent	Leng	th	Velocity
Tons	Size	75	100	125	150	175	200	225	250	FPM
1.5	5/16	75	90	85	85	80	75	75	70	223
1.5	3/8	75	100	95	95	95	95	90	90	138
2.0	5/16	75	80	75	70	65	60	55	50	297
2.0	3/8	75	95	90	90	85	85	85	80	184
2.5	3/8	75	90	85	85	80	80	75	70	230
2.5	1/2	75	100	100	100	100	95	95	95	123
3.0	3/8	75	85	85	80	75	70	65	60	276
5.0	1/2	75	100	100	95	95	95	90	90	148
3.5	3/8	75	80	75	70	65	60	55	50	322
3.5	1/2	75	95	95	95	95	90	90	90	173
4.0	3/8	75	75	70	60	55	45	40	35	368
4.0	1/2	75	95	95	95	90	90	90	85	198
5.0	3/8	70	60	50	40	30	20	10	0	*460
5.0	1/2	75	95	90	90	85	85	80	80	247
7.5	1/2	75	80	80	75	70	65	60	55	370
1.5	5/8	75	95	95	95	90	90	90	85	231
10	5/8	75	90	90	85	85	80	80	75	307
10	3/4	75	100	95	95	95	95	90	90	210
12.5	5/8	75	85	85	80	75	70	65	65	384
12.5	3/4	75	95	95	90	90	90	90	85	262
15	3/4	75	95	90	90	85	85	85	80	315
15	7/8	75	100	95	95	95	95	95	90	222
20	3/4	75	85	85	80	75	70	70	65	419
20	7/8	75	95	95	90	90	90	85	85	296
25	7/8	75	95	90	90	85	85	80	75	371
23	1-1/8	75	100	100	100	95	95	95	95	217
	-									100.0
									ty of	400 fpm,
consider noise when selecting this pipe size.										

The suction line shall be $\frac{3}{4}$ " diameter, and the liquid line shall be $\frac{1}{2}$ " in diameter. All refrigerant piping is to be Copper Type K piping.

6. Natural Gas Piping:

All Natural Gas piping was selected based on the Longest Length Method per 2018 UPC Section 1215.1 and 2018-UPC Table 1215.2(1) [NFPA 54: Table 6.2(B)]. A conversion factor of (1,062) Btu/CF was used per U.S. Energy Information Administration data on heat content of natural consumed for the state of Iowa. Average delivery pressures of Natural Gas from MidAmerican Energy (Natural Gas provider) is standard above 7" w.c. per MidAmerican Energy's specifications. This confirms no pump is required for the natural gas line.

All gas piping shall be 2" in diameter. However, it should be noted all takeoffs to single units off of the main branch lines should be sized based on manufacturer's recommendations and requirements for the furnished equipment.

Section VI-4: Electrical

1. Electrical Lighting

Lighting calculations were based on the required illuminance per 2018 International Building Code Section 1204.3 Artificial Light, which requires an average illumination of 10 footcandles (107 lux) over the area of the room at a height of 30" above floor level. The total estimated lighting load demand is (4,000) VA or (4,000) Watts.

1.1. Lighting Controls:

Lighting controls details are included on Sheet E3.0, details 1 and 2. Detail 1 shows power connections for combination occupancy sensors connected to one lighting load. This situation occurs in the café area and near the bathrooms. This is due to one occupancy sensor not being able to capture all areas where motion should be detected due to the orientation of new interior walls. Detail 2 shows the wiring details for power wiring of the occupancy sensor and a 120V relay connected to an exhaust fan. This detail applies to the switch systems in the bathrooms at the Southeast end of the third floor. The design calls for the occupancy sensors to tie into the exhaust fan serving the bathroom through means of a 120V one-line relay. This is so that the exhaust fan only runs while the lights are on, which means the exhaust fan will exhaust the space until the bathroom has been occupied long enough for the timer to shut off. The timer shall shut off after 5 minutes.

Lighting controls are included in the design for the exterior lighting at the balcony. Wall sconce lights are specified with up and down light ray directions. The light fixtures are to be wall-mounted on the brick veneer between the 16'x9' window bays. These wall lights should be controlled by a daylight photo sensor with a programmable and adjustable timer. Photocell switch system shall turn the lights on when no natural light is detected (at dusk). The timer connected to the photocell shall be programmed to shut off the lights after 7:00PM.

1.2. Retail Lighting:

All areas of the third-floor retail space meet the required 10 footcandle illuminance with existing light fixtures. This will allow the existing 8'-0" light fixture housings (and locations) to be re-used. Only (1) light fixture will need to be added in the retail area at the Southeast corner. This is due to the new orientation of the space from the addition of the workroom and bathrooms, cutting off light from the area to a larger degree.

1.3. Café Lighting:

Café lighting was designed with a far greater illuminance than the retail area due to the vibrance of the café space. The average illuminance across the café area is approximately 40 fc. The increased illuminance will promote an optimal environment for focused work, and subtly set the café space apart from the rest of the retail area, highlighting the café's features.

1.4. Workroom Lighting:

Workroom lighting was designed with increased illuminance than required per code for optimal lighting during cooking operations. The average illuminance in the Workroom is 49 fc. This will be most suitable for employees that will utilize the space. Lighting has also been specified to be equipped in the commercial exhaust hood. This lighting will be provided by the manufacturer of the hood, and power will need to be brought to the hood the by the Electrical Contractor.

2. <u>Electrical Power:</u>

Electrical power design includes reuse of existing boxes and conduit raceways where possible on the exterior walls, as well as additional receptacles being added on new locations at columns and new interior walls. All electrical calculations were performed in accordance with 2020 National Electric Code and can be referenced in the attached Appendix E.

2.1. Electrical Distribution Panels

There are three electrical distribution panels called to be installed in the third-floor utility room:

LPB-1	Lighting Panelboard		
PPB-1	Power Panelboard		
EPB-1	Equipment Panelboard		

All panels are 3-phase power fed from 208V MDB. PPB-1 has the most loading connected, which is why 225 A mains are specified. LPB-1 and EPB-1 are specified with 100 Amp mains. All electrical circuit wire sizing and voltage drop calculations were performed in Revit in accordance with 2020 NEC 70E.

The total added electrical loading from the third-floor design was calculated to be 64 kVA. The existing building's power usage and transformer were unable to verified unfortunately, but in the case the transformer is found to be inadequate for the added loading in the field, 75 kVA minimum transformer capacity should be included for the third floor.

TRANSFORMER SIZING		
Volts (3-phase)	208	
Current Draw (A)	177	
kVA	64 kVA	kVA = <u>(V * I * 1.732)</u> 1000
Added Transformer Power Required:	75 kVA	

Figure E-1: Added transformer loading from third floor design.

3. <u>Fire Alarm Notification System:</u>

3.1. Identification Device Circuits:

Zone 1 is the third-floor IDC loop. This includes a manual pull station located near the café, combination smoke and carbon monoxide detectors near gas appliances, and all smoke and heat detectors in the third-floor space.

Zone 2 is a Style B (Class B) Waterflow/Supervisory circuit for the third-floor wet sprinkler system. This identification device circuit includes a UL Listed Supervision Relay connected to a 4-Wire Smoke Detector. The supervision relay shall be of type "Tamper". The 4-wire smoke detector ties the alarm flow switch on the fire protection riser to the fire alarm control panel. If flow or a pressure drop in the main directly off the riser is detected, the alarm flow switch will signal the supervision relay switch in the 4-wire smoke detector. This supervision relay will signal an alarm to the fire alarm control panel for Zone 2.

Zone 3 is the elevator hoistway fire alarm identification devices and elevator fire alarm controls. An elevator Fire Alarm Controls Wiring Diagram has been included in the contract drawings on Sheet E3.1. This zone includes a smoke and heat detector at both the top and bottom of the elevator shaft, a smoke detector in each elevator lobby, addressable relay modules for fire fighter indication controls in elevator car, a shunt trip breaker, 30 A Fusible disconnect switch and 15 A fusible

disconnect switch. Since the FA system is conventional, a dummy panel will be required to act as the addressable panel for the relay modules to signal the elevator shunt trip breaker.

Zone 4 is a spare zone, reserved for future use. All unused circuits should be dummy loaded with a 4.7k, $\frac{1}{2}$ W resistor. It should be noted a fire alarm panel with more than 4 zones would be compatible for this design if a contractor proposes such a panel. Increasing zones on a fire alarm panel increases the cost of the panel however, which is why only one spare zone was included in the design.

3.2. Notification Appliance Circuit:

Ceiling horn strobes were designed with (75) candela strobes, which will require a spacing of 45' on-center, with rows 45'-0" apart.

Voltage drop was computed with a derated voltage of 20.4 VDC (85%). The design wire size selected for the NAC circuit is 14 AWG Solid (VD % = 7.2887). See attached calculations for details.

3.3. Duct Detectors:

Duct Detectors are required in supply and return mains with airflow greater than or equal to (3000) CFM per 2018 International Mechanical Code. Duct detectors are required in the ACCU-1/FU-1 HVAC system, but not the makeup air unit system (MAU-1). These duct detectors are shown on the mechanical drawing. The scope is referenced in the electrical drawings as well, and should be included in the electrical contractor's scope.

3.4. Fire Alarm Control Panel (FACP):

The fire alarm control panel design calls for a fire alarm panel with 4 zones. The fire alarm panel to be furnished should include the following components:

- i. Power Supervision Relay with: resettable power output 24 VDC filtered, power-limited to smoke/heat detectors (Initiating Device Circuits), and a non-resettable power 24 VDC filtered, power-limited to NAC circuits.
- ii. The Notification Appliance Circuit serving the third floor shall be Style Y (Class B) 2.5 amps max. per circuit. The total current draw calculated for the NAC circuit is 2.1 Amps.
- iii. The Identification Device Circuits shall be Style B (Class B). Alarm and Supervision Circuits shall be Form-C Contacts: CLOSED-NORMALLY CLOSED-NORMALLY OPEN; Resistive Contact Rating: 2.0 Amps @ 30 VAC
- iv. The Trouble circuit shall be Form-C Contacts: CLOSED-TROUBLE-NORMAL; Resistive Contact Rating: 2.0 Amps @ 30 VAC

The design calls for 120 VAC single phase power input to the panel. The panel requires a battery backup. The battery size required was calculated in accordance with NEC 70 (NFPA 70E) and found to be (6.6) Amp-Hours. The supplied battery size/capacity should be 10 Amp-Hours (next battery size up), which adds an actual factor of safety of (45)%.

4. <u>Speaker Communication System:</u>

The speaker communication system design calls for 24 VDC self-amplifying speakers. The reasoning for selecting this system, include: (1.) it's ease of future expansion during future

renovations, and (2.) it's ability to work in smaller zones making it the cheaper solution for a speaker system on the third floor. Each speaker has an individual, built-in miniature amplifier that drives the speaker directly. Each speaker requires 4 wires. Two wires to supply the raw 24 VDC voltage to power the speaker's internal amplifier, and another two wires to supply the low-level audio paging signal to the amplifier's input. All amplified speakers contain volume controls to adjust output level.

A power supply head-end unit is included in the design to provide the raw 24 VDC voltage that will power the built-in amplifiers in each self-amplified speaker. The power supply required was calculated to be (19) W, therefore a 24W power supply should be supplied. The total resistance experienced is (0.48) kOhms. This power supply could be located in several different areas of the building at the Owner's discretion. Two suggestions proposed for its location are the Utility Room and Workroom. The workroom is proposed as a contract drawing Alternative, since this will greatly reduce the homerun wire length required for the speaker system.

Section VI-5: Plumbing

- 1. Plumbing Fixtures:
 - 1.1. Bathrooms:

Two individual use bathrooms (one male, one female) were designed in accordance with 2018 IBC Chapter 10 Table 1004.5. These bathrooms are located in the South East corner of the building. Per 2018 IBC Section 2902.2, separate male and female facilities are required since the maximum occupant load is greater than (100) people. Each bathroom includes a lavatory and wall-mounted water closet with a 1.6 gallons-per-foot (gpf) flushometer valve. A wall-mounted urinal was not included in the male bathroom since it is not required per 2018 IBC. The male and female bathrooms are designed with identical plumbing fixture types and specifications specified in the contract drawings for the most cost economical design.

1.2. Café Workroom:

The workroom includes a stainless-steel double bay sink connected to a grease trap downstream of the sink. A dishwasher and floor drain are also served in the workroom. See the grease trap final details subsection for more information.

1.3. Utility Room:

A mop sink is designed in the Utility Room. The sink is called to be floor-mounted for easy use during housekeeping tasks, such as mopping. The mop sink has both hot and cold-water fixtures, since it was assumed hot water would be necessary for some cleaning solutions.

1.4. Miscellaneous Details:

Since no manufacturer's or models are specified at the design development phase, the plumbing fixture schedule on Sheet P0.1 shows the design waste fixture units (WFU), hot water fixture units (HWFU), and cold water fixture units (CWFU). This is so that the awarded contractor for the project can verify the furnished plumbing fixtures do not greatly vary from standard fixture unit values, which could impact fixture unit demand downstream of the plumbing fixture and effect pipe sizing. All piping near connection points to plumbing fixtures (+/- 3') should be sized per the manufacturer's requirements of the furnished fixture.

	PLUMBING FIXTURE SCHEDULE								
Tag	Type and Description	Elevation	WFU	HWFU	CWFU				
L1	Lavatory - Wall Mounted: 19"x14" - Private	2' - 9"	1	0.5	0.5				
FD	Floor Drain - Round: 5" Strainer - 2" Drain	0' - 0"	2	0	0				
FD	Floor Drain - Round: 5" Strainer - 2" Drain	0' - 0"	2	0	0				
FD	Floor Drain - Round: 5" Strainer - 2" Drain	0' - 0"	2	0	0				
WC	Water Closet - Flush Valve - Wall Mounted: Public - Flushing 1.6 gpf Flushometer	0' - 0"	6	0	5				
L1	Lavatory - Wall Mounted: 19"x14" - Private	2' - 9"	1	0.5	0.5				
WC	Water Closet - Flush Valve - Wall Mounted: Public - Flushing 1.6 gpf Flushometer	0' - 0"	6	0	5				
S2	Sink - Kitchen - Double: 42"x21" - Private	0' - 0"	2	1	1				
FD	Floor Drain - Round: 5" Strainer - 4" Drain	0' - 0"	4	0	0				
FD	Floor Drain - Round: 5" Strainer - 4" Drain	0' - 0"	4	0	0				
S1	Sink - Island - Single: 18"x18" - Public ***	0' - 0"	2	3	3				
S3	Sink - Work: 20"x18"	0' - 0"	2	2.25	2.25				
DW	Dishwasher - Commercial 36" wide**	0'-0"	2	1.5	1.5				
RF-1	Refrigerator ^			0	0.5				

** Dishwasher waste and domestic demand final determination is based on dishwasher manufacturer's requirements. WFU's, HWFU's and CWFU's were selected based on 2018 UPC Table A 103.1 (Appendix A) Dishwasher, domestic FU's. A safety factor was added in case a commercial grade dishwasher should be selected that would result in higher water demand. (2018 UPC FU's 1.5, Safety Factor 1.0) ^ No identified FU's per 2018 UPC.

*** Café counter sink is slightly oversized for anticipation of more connections to water line in future, and to account for peak demand times of café traffic.

General Note: Floor and wall Cleanouts have been specified in design, but are not included in schedule due to no impact of FU values.

2. <u>Domestic Water:</u>

The 2018 Uniform Plumbing Code Appendix A Design Standards were used for sizing of water supply plumbing system. Detailed tabulations for domestic pipe sizing can be referenced in Appendix P. All outlets to fixtures connected to the plumbing system were selected based on applicable code regulations listed under the 'Applicable Codes' section of this Technical Report.

The supply demand for the third floor main, principle branches and risers of the system were sized using 2018 UPC Chapter 6 Table 610.3.

The highest group of fixtures contains flushometer valves. This group of fixtures determined the minimum residual pressure required for the group, which should be not less than (15) psi. The pressure available for friction loss in supply pipes for the entire building was found to be (36) psi. The third-floor piping's average permissible friction loss per 100-ft. of pipe was found to be (13.10) psi/100-ft of pipe.

2.1. Hot Water Return Loop:

The hot water return loop connects to the tankless hot water with a recirculation pump, backflow preventer and pressure relief valve at the end of the loop (near the water heater). Check valves (one-way flow valves) are specified at the beginning and end of the HWR line to ensure a hydraulic separation between the return and supply hot water lines.

The Hot Water Return Loop (HWR) is sized as half the size of the building supply main for the third floor in order to allow a more efficient recirculation pump curve on the Hot Water Return Loop. The return loop and pump were sized for a temperature differential of (20) degrees Fahrenheit for the full loop. The water will leave the tankless water heater at (140) degrees Fahrenheit. Therefore, at the farthest point of the DHW/beginning of the HWR loop, the temperature will be approximately (130) degrees Fahrenheit due to heat loss.

Slightly oversizing the supply piping will allow a more efficient water heater process (less temperature difference to increase), and a smaller (more efficient) pump can be chosen. It is important to note, the third-floor principle branches were sized based on the same method as the building supply (2018 UPC Chapter 6 Table 610.3), instead of the method used for sub-branch lines (2018 UPC Appendix A Chart A 103.1(2).) This resulted in a more cost economical hot water return pump by sizing the supply lines larger due to a better flow and pressure head pump performance curve resulting.

2.2. HWR Recirculation Pump

The recirculation pump is sized per ASPE Plumbing Engineering Design Handbook based on a 20-degree temperature differential from the water heater out to the farthest fixture and back to the circulator near the water heater. If the system has 140-degree water in the water heater, then the sizing method maintains 130-deghree hot water at the end of the system and then back at the cold-water inlet to the water heater, the temperature would be approximately 120 degrees. The calculation is based on heat loss in the hot water piping circuit. It lists the British thermal unit loss per hour (BTU/h) losses for insulated and bare piping based on a 70-degree ambient temperature.

The recirculation pump performance parameters were found to be (6) GPM of flow and (20) feet of pressure head.

2.3. Tankless Hot Water Heater System:

The design GPM demanded for the tankless HW Heater is equal to the hot water demand by plumbing fixtures plus the flow required for the HWR loop. The tankless HW Heater design minimum output is (13) gpm. Detailed calculations have been attached in Appendix P.

TWH-1 FLOW DEMAN	D
HW FIXTURES FU DEMAND:	8.75 FU
HW FIXTURES GPM DEMAND:	7.00 gpm
HWR LOOP GPM DEMAND:	5.43 gpm
DESIGN GPM DEMANDED	12.43 gpm
Tankless HW Heater Minimum Output:	<u>13 gpm</u>

Figure P-1: Tankless hot water heat design flow in gallons per minute (GPM).

The supply exhaust piping is permitted to be Schedule 40 PVC per 2018 UPC. Supply exhaust pipe sizing shall be based on manufacturer's requirements. This is because the supply pipe is only ran up vertically 3' feet with a 90 elbow at top end.

THE UNIVERSITY

The exhaust piping for the water heater is permitted to be Schedule 40 PVC. Exhaust piping was designed to ensure maximum horizontal segments were not exceeded in accordance with 2018 UPC Chapter 5 Table 510.2.1.

The tankless hot water system can be upgraded for increased capacity by adding a storage tank, air separator, and an additional recirculation pump. This is optimal for the store, since peak demand fluctuations can be fast changing and at irregular intervals. Therefore, a storage tank system will balance the demand on the tankless hot water heater so that it can operate below capacity. The energy efficiency of a tankless hot water system with a storage tank is still more efficient than a standard hot water heater since the storage tank required is only 20-30 gallons.

3. Sanitary Waste and Vent:

Sanitary waste and vent piping were based on connected waste fixture unit (WFU) loading from plumbing fixtures. Waste fixture unit values used were in accordance with the specified drainage fixture unit values per 2018 UPC Chapter 7 Table 702.1. The drainage branch lines and main were then sized using UPC Chapter 7 Table 703.2. Detailed calculations have been attached in Appendix P, including a coordination drawing that call out the branch and main lines. Total waste loading from third floor to existing system is (37) WFU's. This will require a 4" Schedule 40 PVC waste pipe for the third floor main and connection to existing waste main on the first floor.

3.1. Plumbing Fixture Connections:

At the design development level of detail, plumbing fixtures are approximately located, the types of systems to be installed are specified in detail, and performance requirements are specified. However, manufacturers and models are not specified at this stage, and so, plumbing pipe within connection points to plumbing fixtures (+/3') should be sized based on the manufacturer's requirements of the furnished fixtures. Contractors should verify plumbing fixtures are in accordance with 2018 UPC plumbing fixture specifications. Design details that largely impact water/drainage fixture unit values have been specified in the contract drawings (e.g. wall-mounted commercial water closets with 1.6 gpf flushometer valves).

To ensure installed waste connections to plumbing fixtures meet the 2018 UPC drainage trap and trap arm requirements, 2018 UPC Table 702.2(1) has been included on Sheet P0.1 Plumbing General Notes. All connection piping to domestic water fixtures shall be based on manufacturer's requirements per 2018 UPC.

4. Grease Interceptor (Workroom):

All sinks in commercial kitchens require a grease interceptor to divert grease in waste flow from the building sewer. The grease interceptor was sized based on incoming flow rate of waste water. The waste fixture units (WFU) of the workroom commercial sink is (2) WFU. This equates to approximately (14) GPM of waste flow. The rated capacity of the grease interceptor (in pounds) is listed as twice the rated flow rate of the sink trap. Therefore, a 20 lb. grease interceptor is required for the workroom sink.

It also important to note, the design includes a secondary vent pipe directly upstream of the grease interceptor. This additional vent pipe is required as an air intake for the grease interceptor. The design shows this air intake sized the same as the kitchen sink vent pipe, which is in accordance with 2018 UPC. However, if the manufacturer of the furnished unit requires a differently sized air intake, the manufacturer's requirements should be followed.

M|A|M

5. Miscellaneous Details:

5.1. Fire-Resistant Construction:

All new interior walls are 1-hour fire-rated partitions. Included in the design are requirements for the piping penetrations through rated walls, shaft enclosures, and roofs/ceilings assemblies to be protected in accordance with the requirements of the local building code (2018-IBC) and 2018 UPC Chapter 14 "Firestop Protection", per 2018 UPC Section 312.7 Fire-Resistant Construction.

Section VI-6: Fire Protection

1. Sprinkler System Coverage Area:

The design coverage areas specified in Table F-1 below are within the maximum allowable coverage areas per NFPA 13 Table 8.6.2.2.1(b).

 Table F-1: Selected design parameters for third floor sprinkler system. These parameters are specified on Sheet F0.1.

Maximum Spacing per NFPA:			
Light Hazard, Non-Combust	ible, Unobstructed		220 SF
Ordinary I Hazard			130 SF
Design Sprinkler Spacing:	15' x 12'	180 SF	
15' x 12' Optimal spacing in r	elation to new ductw	vork	

The total flow required for light coverage and Ordinary I hazard areas equaled (851 gpm) and (41) gpm, respectively. The approximate flow (total demand) for third floor was calculated using an Overflow Rate of (1.3), a Hose Allowance of (250.0) gpm, and the required flow based on coverage area. This resulted in approximate flow required of (1410) gpm for the entire third-floor sprinkler system.

2. <u>Sprinkler Heads</u>:

All sprinkler heads are designed to be industry standard type $\frac{1}{2}$ " orifice NPT with a nominal K-Factor of 5.6 GPM/psi^{1/2}. This a laboratory tested value that sprinkler head vendors and NFPA use to standardize different sprinkler head types. The design K-Factor is in accordance with NFPA 13 Table 6.2.3.1 Sprinkler Discharge Characteristics Identification. These are the most common sprinkler head type, and therefore, the lowest cost. The design flow rate at the critical sprinkler – farthest sprinkler head from street service – was calculated to be (20) gpm.

Table F-2: S	prinkler discharge	characteristics pe	er NFPA 13 Table 6.2.3.1.

Nominal K-Factor [gpm/(psi) ^{1/2}]	Nominal K-Factor [L/min/(bar) ^{1/2}]	K-Factor Range [gpm/(psi) ^{1/2}]	K-Factor Range [L/min/(b ar) ^{1/2}]	Percent of Nominal K-5.6 Discharge	Thread Type
1.4	20	1.3–1.5	19–22	25	1/2 in. NPT
1.9	28	1.8-2.0	26–29	33.3	1/2 in. NPT
2.8	40	2.6-2.9	38–42	50	1/2 in. NPT
4.2	61	4.0-4.4	57-63	75	1/2 in. NPT
5.6	81	5.3-5.8	76-84	100	1/2 in. NPT

 Table F-3: Minimum required sprinkler heads per NFPA 72 and design quantity of sprinkler heads per room.

	SPRINKLER ROOM SCHEDULE										
Room	Design Sprinkler Heads										
Cafe Seating	Light	8	9								
Retail	Light	30	37								
Bathrooms	Light	1	1								
Workroom	Ordinary I	2	2								
Utility Room	Ordinary I	1	1								

3. Fire Protection Piping:

The design pipe material for the wet-pipe sprinkler system shall be Black Steel Pipe. A Hazen-Williams coefficient of 120 was used per NFPA 13 Section 23 Table 23.4.4.7.1 Hazen-Williams C Values. Pressure losses in piping fittings was determined by the equivalent length method and using NFPA 13 Table 23.4.3.1.1.

The total pressure losses relative to the critical sprinkler head was found to be (20) psi. The pressure at the water main service is (60) psi, which gives the available pressure loss in pipes and fittings to be (40) psi. This confirmed a fire pump is not needed for added pressure. Total demand flow rate at fire protection service main is approximately (2819) gpm. Detailed calculations of all hydraulic calculations have been attached in Appendix F.

Section VI-7: Traction Elevator System

1. Traction Gearless Machine-room less Elevator System:

Two possible elevator manufacturers have been identified to work for this project:

- 1. Kone, Inc.
- 2. Schindler Group

The traction elevator system design calls for an AC gearless machine room-less elevator system. The elevator machine shall be located at the top of elevator hoistway, and shall be AC gearless, with permanent magnet synchronous motor, direct current electro-mechanical disc brakes and integral traction drive sheave, mounted to the car guide rail at the top of the hoistway. The variable voltage variable frequency AC drive system will develop high starting torque with low starting current, resulting in less power consumption. The controller location shall be located on the front wall integrated with the top landing entrance frame, machine side of the elevator. A separate

control space should not be required. The machine location shall be located inside the hoistway mounted on the car guide rail.

The replacement elevator design, includes:

- i. 208V 3-Phase Main Power Supply
- ii. 2000 lbs rated capacity
- iii. Rated speed of 150 fpm
- iv. Regenerative drive (optional) for redistribution of energy back into building electrical distribution system.

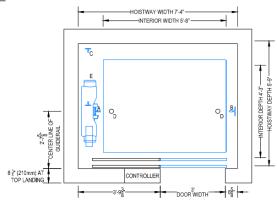
The elevator will serve the basement, first floor and third floor, with all three elevator door openings being front openings. The entrance height shall be 7'-0" so that no modification will need to be made to the existing opening. The door shall open from the right side (to accommodate orientation of basement lobby better), and shall be a width of 3'0".

Car Lantern and Chime: A lantern visible from the corridor shall be provided in the car entrance. When the car stops and the doors are opening, the lantern shall indicate the direction in which the car is to travel and a chime will sound. The chime will sound once for up and twice for down.

The design calls for a simplex collective operation by means of a microprocessor- based controller, in which the operation shall be automatic by means of the car and hall buttons. If all calls in the system have been answered, the car shall park at the last landing served.

The design calls for an emergency battery power supply. When the main line power is lost for longer than 5 seconds the emergency battery power supply provides power automatically to the elevator controller. The elevator will rise or lower to the first available landing, open the doors, and shut down. The elevator will return to service upon the return of normal main line power. An auxiliary contact on the main line disconnect and shunt trip breaker will be provided by electrical contractor.

An elevator fire alarm controls wiring diagram is included in the contractor drawings on Sheet E3.1 and should be included in the electrical contractor's scope.


There is no special elevator for transporting goods or food materials from the ground level to 3rd floor. Elevator design does not include "Overriding Service" feature, since it is not a necessary item considering building use. As a result, employees and antique mall tenants will have to share the passenger elevator with customers. If the elevator system experiences daily usage from loading dock traffic for an extended duration of time, this could become somewhat of a challenge for employees and an enjoyable experience for customers. The overriding service is estimated to add \$6,000 (selective car operation) if this was included in the design. While this is relatively not a high cost in comparison to the cost of the elevator system, this is one example of upgraded controls that would be ideal, but not necessary to add. These upgraded controls were excluded overall from the elevator specifications.

2. <u>Structural Components:</u>

The hoist beam for the elevator system and all connection details are to be designed by the elevator manufacturer. Design loads for the new elevator system's connection points were provided by the manufacturer. Please refer to the following figures for indication:

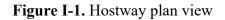
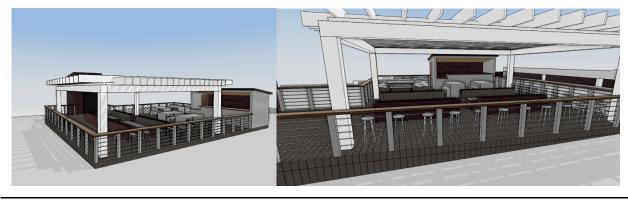


Table I-1. Hoist beam and life line vertical forces

HOISTBEAM & LIFE LINE VERTICAL FORCES (Ibf)											
REACTION LOCATION	A	В	С	D							
Z DIRECTION	4800	4700	5000	5000							


The existing CMU was analyzed at a compressive strength of 1000 psi which is the lowest possible strength of un-grouted CMU according to the Portland Cement Association. An allowable compression reduction factor of 0.45 was used in order to be conservative as possible with a potentially weak structure. All theoretical loadings are acceptable based on calculations.

Due to the age of the building, pre-construction calculations will not be enough to guarantee the strength of the elevator shaft. Once the current elevator is removed, a material-testing consultant will be hired to complete structural testing on the existing elevator shaft. The shaft walls would then be re-analyzed and reinforced as necessary.

Section VI-8: Contract Drawing Set Alternatives

1. <u>Skydeck</u>:

To give the new commercial building design a "wow" appeal, a new skydeck was proposed. This design would include a raised deck off the roof with two fireplaces, a walk-up bar, a vast amount of seating options, an overhead canopy, and a glass vestibule entrance. See below for visual references:

Figure G-4. Skydeck design

This alternate design was not chosen due the potential restructuring of a new and existing roof. The dead and live loads that would have been acting on the roof if this idea was chosen would have been too much for the existing members to handle. Other disadvantages include the high costs of exterior-resilient finishes and the increased elevator cost of making the roof ADA accessible.

Information regarding this design was still provided to the Owner in the drawing set with the intent that the Owner can use this information at a future point in time, either on the current building or a different building. The structural, architectural, and MEP scopes are defined and are accessible through the roof drawings on the architectural drawing set.

2. <u>Tankless Hot Water Heater Storage Tank Add</u>:

The tankless hot water was sized to have a minimum output of (13) gpm. This is sufficient to serve the bathrooms and café area on the third floor. However, if the Owner would wish to expand the tankless hot water system to the first floor as well, a storage tank in combination with the tankless system will be required. The storage tank with a tankless system will still be more efficient than a standard water heater, since the storage tank required is only roughly (20) gallons, to accommodate for peak demand intervals that the tankless system cannot keep up on its own. The added storage tank evens out these fluctuations in demand, so that the tankless system can operate at a continual rate. When there is low demand on the water heater and the storage tank is at capacity, the water heater will use the storage tank hot water to mix with the cold water at the inlet, reducing the required temperature differential to be achieved by the water heater. The storage tank also serves the domestic hot water line directly. This keeps the energy efficiency trait of the system, while still being capable of handling greater peak demand loads.

Included in the design is an additional recirculation pump for the tank, an expansion tank and air separator.

3. Low Voltage Panel Relocation to Workroom:

In the drawings a low voltage controls panelboard (CPB-1) is shown for reference in the thirdfloor Utility Room that could be used for HVAC controls and/or communications controls. A low voltage panel may not be required for HVAC controls since the mechanical equipment manufacturer's controls are specified to be used as the temperature controls system.

For a communication system head-end unit, locating the head-end in the Workroom would be a cheaper alternative for the communication system. Overall, less homerun wire will be required back to the panel.

SECTION VII: ENGINEER'S COST ESTIMATE

The cost estimate for our preliminary design was estimated using 2018 RSMeans Building Construction Costs Handbook. A detailed Schedule of Values (SOV) sheet has been attached for backup in Appendix J. The SOV quantifies project costs and materials with units, such as: linear feet (LF), lump sum (ls), each (ea), ton, and cubic feet (CF). The schedule of values breaks down costs by Construction Specification Institute (CSI) Division number. All cost items include overhead and profit of 25%. Industry standard is 10% for overhead and 5% profit, but a 25% markup is a conservative choice given by RSMeans.

The SOV also serves as a List of Materials.

All project costs have been categorized into hard or soft construction costs in accordance with the American Institute of Architects (AIA).

The estimated construction cost is \$1,129,900. This includes hard construction costs of \$943,900, soft costs of \$74,500 and contingencies of \$111,500. A +5% markup has been included for expected subcontracted work under another contractor. Therefore, this estimate is less conservative. Due to the limited quantity of certain work, it is not feasible to bid the work separately to a contractor, since the work is not worthwhile. In these cases, there will either be issues finding a contractor to bid the work, or you will receive an extremely high bid for the work. To avoid these scenarios, it is best to lump work together. For example, casework is often lumped with general trades, since there is not enough casework to have its own bid package for the project.

 Table J-1: Total project costs by division. Costs do not include additional +5% markups. All values in Overhead & Profit markup of (25%).

	COSIS BY DIVISION	
Division 1	GENERAL REQUIREMENTS	\$4,825
Division 2	EXISTING CONDITIONS	\$5,147
Division 3	CONCRETE	\$0
Division 4	MASONRY	\$42,695
Division 5	METAL	\$11,262.67
Division 6	WOODS, PLASTICS & COMPOSITES	\$66,721
Division 7	THERMAL & MOISTURE PROTECTION	\$5,743
Division 8	OPENINGS	\$31,407
Division 9	FINISHES	\$84,762
Division 10	SPECIALTIES	\$24,700
Division 11	EQUIPMENT	\$32,400
Division 12	FURNISHINGS	\$31,500
Division 13	SPECIAL CONSTRUCTION	\$0
Division 14	CONVEYING SYSTEMS	\$230,145
Division 21	FIRE SUPRRESION	\$51,455
Division 22	PLUMBING	\$90,268
Division 23	HEATING, VENTILATING & AIR CONDITIONING	\$101,965
Division 26	ELECTRICAL	\$68.863
Division 27	TELECOMMUNICATIONS	\$6,808
Division 28	ELECTRONIC SAFETY & SECURITY	\$20,310
Division 31	EARTHWORK	\$0
Division 32	EXTERIOR IMPROVEMENTS	\$0
Division 33	UTILITIES	\$0
ALLOWANCES		\$54,713
CONTINGENCY		\$111,514

COSTS BY DIVISION

1. <u>Allowances</u>:

Allowances included in the cost estimate are for foreseeable extra work that may be required due to the nature of the project being renovation work. These allowances include: unforeseen electrical work, additional masonry allowance, and a general trades allowance for miscellaneous work and demolition.

Allowances are purchased from the contractors as part of their contract. If any on the allowance remains at the end of the project, the Owner receives this money back when closing out the contractor's contract. Allowances are great for unforeseen work that is very likely to happen, since it alleviates the need for an official change order. Contractors markup a profit on allowances at

base bid, so any work performed on allowance should not be charged with the overhead & profit on it. Note however, that the contractors still retain this overhead and profit at the end of the project, even if they return their allowance money that was not spent.

2. <u>Contingencies</u>:

Four contingencies in total have been included in the cost estimate based on our team's suggestion. These contingencies, include:

- 1. Asbestos Abatement
- 2. Lead Paint Remediation
- 3. Exterior Work Contingency
- 4. Overall Project Contingency

Testing of asbestos and lead paint has been included in the project's cost estimate as a soft cost because this work needs to be performed to identify if any materials are 'hot' with asbestos or lead. Whether or not remediation work will be required is an unknown at this time, which is why the remediation work (worst-case scenario) has been estimated by square footage and included in the estimate as a contingency.

The exterior work contingency is included in the case a major delay occurs in the project schedule due to an unknown, such as asbestos/lead remediation or having to require multiple mobilizations from contractors to work with the schedules of neighboring stores that will be open during the construction. The exterior work has been estimated as the cost for scaffolding and tarpaulin cover hung over the scaffolding, which is the cost required to complete the work in the winter.

3. Hard Construction Costs:

The hard construction costs include all costs that directly relate to material, labor and equipment to construct the project's design. All hard construction costs are directly attributable to trade contractors.

4. <u>Soft Costs</u>:

The project's soft costs include: necessary inspections, permit fees, furniture, general contractor overhead and profit, administration fees, builder's risk insurance, and asbestos/lead paint preliminary testing. All soft costs will be incurred by the project's design but are not directly relatable to a trade contractor.

SECTION VIII: APPENDICES

Appendix A: Methods and Design Guides

The following are methods and design guides used in combination to deliver drawings in accordance with the City of Clinton adopted building codes. The preliminary starting point for all codes was the 2018 International Building Code (IBC). The IBC classifies the building category type, and details specific requirements based on the building's occupancy and category type. These requirements are general in nature, and ensure all baseline requirements were followed, such as:

General Codes and Standards:

International Code Council. (2018). International Existing Building Code. Country Club Hill, IL. International Code Council. (2018). International Building Code. Country Club Hills, IL.

Structural Codes and Standards:

American Society of Civil Engineers. (2016). ASCE Minimum Design Loads and Associated Criteria for Building and Other Structures.

American Wood Council. National Design Standard for Wood Construction. Leesburg, VA.

Amrhein, J. (2000). *Reinforced Masonry Engineering Handbook Clay and Concrete Masonry*. Los Angeles: Masonry Institute of America.

American Institute of Steel Construction, Manual of Steel Construction, 15th Edition.

Mechanical Codes and Standards:

American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (2017). ASHRAE *Handbook-Fundamentals*.

Plumbing Codes and Standards:

International Association of Plumbing and Mechanical Officials. (2018). *Uniform Plumbing Code*. Ontario, CA: the International Association of Plumbing and Mechanical Officials. American Society of Plumbing Engineers (ASPE)

Fire Protection Codes and Standards:

International Code Council, INC. (2018). *International Fire Code*. Country Club Hills, IL. National Fire Protection Association. (2017). *National Fire Code*. Bostion, MA.

National Fire Protection Association. (2020). National Electrical Code. Quincy, MA.

Electrical Codes and Standards:

International Code Council, INC. (2018). *International Energy Conservation Code*. Country Club Hills, IL. National Fire Protection Association. (2017). *National Fire Code*. Bostion, MA.

Elevator Codes and Standards:

American Society of Mechanical Engineers. (2017). *Safety Code for Elevators and Escalators*. New York. International Code Council, INC. (2018). *International Mechanical Code*. Country Club Hills, IL.

<u>Appendix B</u>: Permits and Government Approvals

Electrical Building Permit Application:

			RHOOD SERVICES - CITY OR BUILDING PERMIT EL	ECTRICAL	I.					
		Ave S, Cl	ELECTRIC							
Permit Address	CITY USE ONLY									
	-				PIN:					
Contractor Name										
State License #					PERMIT #					
Phone #										
Contractor Addre	88				INSPECTIONS REQ'D					
City, St, Zip					Temp Electric					
E-mail					Svc/Panel Energize					
					Rough/Cover					
Owner Name	Bill Twyford				Final					
Owner Address					Hard-wired Smokes					
City, St, Zip										
Phone #										
E-mail	billtwyford@ac	billtwyford@aol.com								
	•									
Type of Occupa	ancy F	Residential	Commercial	Industrial						
City, St, Zip Phone # E-mail Type of Occup: Service Voltage	208	v		Additional w	ork to be performed:					
					w Lighting					
Service size			Single phase		Notification System					
			Three phase							
Type of release	Temporary									
	Permanent									
	Rewire									
	Rehook									
Estimate of const	ruction									
project cost:	\$	1,129	,900							

I agree to perform all work in accordance with the adopted codes of the City of Clinton, Iowa.

2018 International Building Code

2018 International Residential Code

2017 National Electric Code

Owner/Agent Signature

Certificate of Occupancy #3 Application:

Ċ	BUILDING & NEIGHBORHOOD SERVICES - CITY OF CLINTON, IOWA EASY-APP FOR BUILDING PERMIT AND CERTIFICATE OF OCCUPANCY - #3										
2	RESIDENTIAL (1 & 2 Family)	COMMERCIAL (M			anci - #		INDUSTRIAL				
	Building Address: 241-247 5 Ave S, C	linton, IA	TYPE	OF WORK	E	RESIDENTIAL BAS	SEMENT				
	Expected Start date:			New		Unfinished (No	occupancy)				
TA	Expected Occupancy date:			Remodel		Finished w/Egre	ess windows				
G DA	Use & Occupancy:			Addition		Bedroom	(#)				
BUILDING DATA	Mercantile			Accessory Bldg		Bath (#)				
BUI	Flood Plain (Elevation):			Attached		Family Ro					
	Zoning:			Detached	Finished bo	asement require room	s 1 hr rated mech				
	Code Edition: 2012 2018			SIGN							
	Name: Bill Twyford		TYPE:	Pole	Monument		Roof				
e.	Address:		SIZE:	Total Height		Copy Area					
OWNER	City, St, Zip:		VALUATION:	\$		Fee: \$					
0	Phone:										
	E-mail: billtwyford@aol.com			F	OR CITY USE	ONLY					
æ	Name:		PERM	NIT #							
ARCH/ENGINEEF	Address:		Zonin	g:							
/ENG	City, St, Zip:		Use 8	Occupancy:							
RCH	Phone:		Sprink	kler Required?		YES	NO				
A	E-mail:		Code	section allowing r	on-sprinkler	ed building:					
Ю	Name:										
CONTRACTOR	Address:		Size o	of Bldg:	х	=	sq ft				
ONTE	City, St, Zip:		Heigh	nt:		# Floors:					
	Phone:		Legal	:							
GENERAL	E-mail:										
9	State Reg #				NOTES						
z	No review will be performed without an estimated co			International Bui	-	Residential Code	e, Mechanical				
VALUATION	Estimated Cost of Construction: \$ 1,129,	900		, Zoning Code, Fu							
VALU	Fee to be determined by the City \$		2018	Uniform Plumbin	g Code, 201	7 National Elect	rical Code				
_											
	No review will be performed without all required con	struction documents :									
APPROPRIATE DOCUMENTS	For new construction on a vacant lot, stamped so	urvey attached									
PROP	Site Plan attached (Topo for SWPP)										
APF	Contractor Information Worksheet attached w/li	cense info									
	Building Plans stamped and attached (One stamp	oed full set, one pdf)									
	I certify that I am the owner of the property, or	, the gerneral contractor,	agent for the ow	ner for this projec	t.						
URES	DBA Name:										
SIGNATURES											
SIC											
	OWNER SIGNATURE	Date	CONTRACT	OR SIGNATURE			Date				

Deck Building Permit Application:

Image: Construction of the construc	1890								FOR B								Est. 1890
Contractor Name PERMIT # State License # PERMIT # Phone # INSPECTIONS REOT Contractor Address Contractor Address Contractor Address Contractor Address Contractor Address Contractor Address Contractor Address INSPECTIONS REOT Conter Name Bill Twyford Owner Address Is this a comer lot? Chy, St, Zip Property lines known/markx Phone # Property with dimensions to for lines and other buildings Utilities located? T I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I <th>Permit Addı</th> <th>ess</th> <th>241</th> <th>-247</th> <th>5 A)</th> <th>ve S</th> <th>S, C</th> <th>lin</th> <th>ton,</th> <th>IA</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>CITY USE ONLY</th>	Permit Addı	ess	241	-247	5 A)	ve S	S, C	lin	ton,	IA							CITY USE ONLY
State License # PERMIT # Phone # INSPECTIONS REDE Cdtractor Address INSPECTIONS REDE Cdtractor Address INSPECTIONS REDE Cdtractor Address Post depth Cdtractor Address Instructure Email Instructure Sketch of property with dimensions to lot lines and other buildings Instructure Instructure Sketch of property with dimensions to lot lines and other buildings Instructure Instructure Instructure Instructure<																	PIN:
Phone # INSPECTIONS RECT Contractor Address INSPECTIONS RECT City, St, Zip Post depth E-mail Inspection Owner Name Bill Twyford Owner Address Is this a comer lot? City, St, Zip Property lines known/marked Phone # Inspection Phone # Property with dimensions to lot lines and other buildings Vial Inspection Sketch of property with dimensions to lot lines and other buildings Vial deck be in front yard? Vial Inspection Vial Inspection <td>Contractor N</td> <td>lame</td> <td></td>	Contractor N	lame															
Contractor Address INSPECTIONS RECT City, St, Zip Zoning E-mail Inspection Owner Name Bill Twyford Owner Address Is his a corner lot? City, St, Zip Is his a corner lot? Phone # Property with dimensions to lot lines and other buildings View N Image: Stetch of property with dimensions to lot lines and other buildings View N Image: Stetch of property with dimensions to lot lines and other buildings View N Image: Stetch of property with dimensions to lot lines and other buildings View N Image: Stetch of property with dimensions to lot lines and other buildings View Image: Stetch of property with dimensions to lot lines and other buildings View deck be in front yard? View Image: Stetch of property with dimensions to lot lines and other buildings View deck be in front yard? View Image: Stetch of property with dimensional to lot lines and other buildings View deck be in front yard? View Image: Stetch of property with dimensional to lot lines and other buildings View deck be in front yard? View Image: Stetch of property with dimensional to lot lines and other buildings View deck be in front yard?	State Licens	e#															PERMIT #
City, St, Zip Zoning E-mail Doner Name Bill Tvyford Doner Name Bill Tvyford Cost of Dack S City, St, Zip Doner Name Bill Tvyford@aol.com Is this a control Integration of the Structure of Property with dimensions to lot lines and other buildings Is this a control Integration of Property with dimensions to lot lines and other buildings Utilities located? Image: Stetch of property with dimensions to lot lines and other buildings Utilities located? TBD Image: Stetch of property with dimensions to lot lines and other buildings Utilities located? TBD Image: Stetch of property with dimensions to lot lines and other buildings Utilities located? TBD Image: Stetch of property with dimensions to lot lines and other buildings Utilities located? TBD Image: Stetch of property with dimensions to lot lines and other buildings Utilities located? TBD Image: Stetch of property with dimensions to lot lines and other buildings Utilities located? TBD Image: Stetch of property with dimensions to lot lines and other buildings Utilities located? TBD Image: Stetch of property with dimensions to lot lines and other buildings Utilities located? TBD Image: Stetch of property with dimensions to lot lines located in tont yard? Image																	
E-mail Post depth Owner Name Bill Twyford Owner Address			<u> </u>														INSPECTIONS REQ'D
Image: bit with the state of the state		Zip	<u> </u>														
Owner Name Bill Twyford Owner Address	E-mail																
Owner Address Is the a corner lot? City, St, Zip Is the a corner lot? Phone # Property lines known/market E-mail bill/twyford@aol.com Sketch of property with dimensions to lot lines and other buildings I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII																	
City, St, Zip Initial content rist? Phone # Property with dimensions to lot lines and other buildings Property lines known/market ves Sketch of property with dimensions to lot lines and other buildings Utilities located? I N Initial Content rist? I N Initial Content rist? I Initial Content rist? Initial Content rist? VIII deck be in front yard? Initial Content rist? Initial Content rist? VIII deck be in front yard? Initial Content rist? Initial Content rist? VIII deck be in front yard? Initial Content rist? Initial Content rist? VIII deck be in front yard? Initial Content rist? Initial Content rist? VIII deck be in front yard? Initial Content rist? Initial Content rist? VIII deck be in front yard? Initial Content rist? Initial Content rist? VIII deck be in front yard? Initial Content rist? Initial Content rist? VIII deck be in front yard? Initial Content rist? Stati rist? VIII deck be in front yard? Initial Content rist? Stati rist? VIII deck be in fort? Initial Content rist? Stati rist? VIIII Internationa			Bill T	wyford													Cost of Deck \$
Phone # Property lines known/make E-mail billtwyford@aol.com N Property lines known/make Sketch of property with dimensions to lot lines and other buildings Utilities located? TBD I I I I I Itilities located? I I Itilities located? TBD I Itilities located? Itilities located? I Itilities located?			<u> </u>												 		
E-mail billtwyford@aol.com Yes Sketch of property with dimensions to lot lines and other buildings Utilities located? I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I			<u> </u>												 	_	Property lines known/marks
Image: Normal background of the second of the city of Clinton, Iowa. TBD Image: Normal background of the second of the city of Clinton, Iowa. Image: Normal background of the second of the city of Clinton, Iowa. Image: Normal background of the second of the city of Clinton, Iowa. Image: Normal background of the second of the city of Clinton, Iowa. Image: Normal background of the second of the city of Clinton, Iowa. Image: Normal background of the second of the city of Clinton, Iowa. Image: Normal background of the second of the city of Clinton, Iowa. Image: Normal background of the second of the city of Clinton, Iowa. Image: Normal background of the second of the city of Clinton, Iowa. Image: Normal background of the second of the city of Clinton, Iowa. Image: Normal background of the second of the city of Clinton, Iowa. Image: Normal background of the second of the city of Clinton, Iowa. Image: Normal Background of the city of Clinton, Iowa. Image: Normal Background of the second of the city of Clinton, Iowa. Image: Normal Background Iowa Image: Normal Background Iowa Image: Normal Background Iowa Image: Normal Background Iowa Image: Normal Background Iowa Image: Normal Background Iowa Image: Normal Iowa Iowa Image: Normal Iowa Image: Normal Iowa Image: Normal Iowa Image: Normal Iowa Iowa Iowa Iowa Image: Normal Iowa Image: Normal Iowa Image: Normal			billtw	yford@	aol.co	m											
Image: Stream of the stream			Sketo	h of pro	perty w	vith di	mens	sions	to lot li	nes	and	other	build	ings			Utilities located?
Image: Sector of the sector								N		_					_		TBD
yard setback) yard setback										_					_		Will deck be in front yard?
yard setback) yard setback		_	\vdash	_	$\left \right $					_					 _	+	(May extend up to 15' into fr
Image: Construction of the city of Clinton, Iowa. Image: Construction of the city of Clinton, Iowa. Image: Construction of the city of Clinton, Iowa. Image: Construction of the city of Clinton, Iowa. Image: Construction of the city of Clinton, Iowa. Image: Construction of the city of Clinton, Iowa. Image: Construction of the city of Clinton, Iowa. Image: Construction of the city of Clinton, Iowa. Image: Construction of the city of Clinton, Iowa. Image: Construction of the city of Clinton, Iowa. Image: Construction of the city of Clinton, Iowa. Image: Construction of the city of Clinton, Iowa. Image: Construction of the city of Clinton, Iowa. Image: Construction of the city of Clinton, Iowa. Image: Construction of the city of Clinton, Iowa. Image: Construction of the city of Clinton, Iowa. Image: Construction of the city of Clinton, Iowa. Image: Construction of Code Image: Construction of the city of Clinton, Iowa. Image: Construction of the city of the city of Clinton, I					$\left \right $					_			<u> </u>		 _		
Image:				_	\vdash		_			-			-		 -	\vdash	Height from grade to top of
W I							_								-		
Image: Construction of the construc	w															E	Depth, size, spacing of pos (42" min/min 4X4/suggest 6
Image: Construction of the second										_					_		Size of piere?
Image: Control of the control of th										_					_		
Image: Control of the control of th										_					 _		Size & no of support beams
Image: State stread? State stread? Image: State stread? State stread? Image: State stread State stread Image: State stread Stat										_					 _		(Depends upon size of deck
I agree to perform all work in accordance with the adopted codes of the City of Clinton, Iowa. I agree to perform all work in accordance with the adopted codes of the City of Clinton, Iowa. I agree to perform all work in accordance with the adopted codes of the City of Clinton, Iowa. I agree to perform all work in accordance with the adopted codes of the City of Clinton, Iowa. I agree to perform all work in accordance with the adopted codes of the City of Clinton, Iowa. I agree to perform all work in accordance with the adopted codes of the City of Clinton, Iowa. I agree to perform all work in accordance with the adopted codes of the City of Clinton, Iowa. I agree to perform all work in accordance with the adopted codes of the City of Clinton, Iowa. I agree to perform all work in accordance with the adopted codes of the City of Clinton, Iowa. I agree to perform all work in accordance with the adopted codes of the City of Clinton, Iowa. I agree to perform all work in accordance with the adopted codes of the City of Clinton, Iowa. I agree to perform all work in accordance with the adopted codes of the City of Clinton, Iowa. 2018 International Zoning Code Stair rise & tread? (Min 7 3/4 & 11) Height of guard/hand rail? Height of guard/hand rail?			$ \rightarrow $							_					 _		
I agree to perform all work in accordance with the adopted codes of the City of Clinton, Iowa. 2018 International Residential Code 2018 International Zoning Code Chapter 159 Zoning Ordinance Chapter 150 Zoning										_					 _		(Depends upon size of deck
I agree to perform all work in accordance with the adopted codes of the City of Clinton, Iowa. 2018 International Residential Code 2018 International Zoning Code Chapter 159 Zoning Ordinance Deck ledgered to house? (Suggested) Stair nse & tread? (Min 7 3/4 & 11) Height of guard/hand rail?										_					 _		
2018 International Residential Code Deck ledgered to house? (Suggested) 2018 International Zoning Code Stair rise & tread? (Min 7 3/4 & 11) Height of guard/hand rail?								-									Thickness of deck fir?
2018 International Zoning Code Chapter 159 Zoning Ordinance (Min 7 3/4 & 11) Height of guard/hand rail?	I agree	to perfor	m all wo	ork in acc	ordance	e with	the a	dopted	d codes	of t	he Ci	ly of C	linton	, Iowa			
Chapter 159 Zoning Ordinance Stair rise & tread? (Min 7 3/4 & 11) Height of guard/hand rail?	2	018 Inter	national	Residen	tial Cod	le											
(Min 7 3/4 & 11) Height of guard/hand rail?	2	018 Inter	national	Zoning (Code												
	c	Chapter 1	59 Zonir	ng Ordina	ince												
less)																	Spindle width? (Min 34"/4" of

Water Heater Building Permit Application:

ð	BUILDI	EASY-APP	: - CITY OF CLINTON, IOW MIT PLUMBING MBING	A	۲	
Permit Address	241-247	5 Ave S, C	linton, IA		C	ITY USE ONLY
						PIN:
Contractor Name						
State License #						PERMIT #
Phone #						
Contractor Address					IN	SPECTIONS REQ'D
City, St, Zip						Undergrd Plumb
E-mail						Rough/Cover
						Rough/Cover
Owner Name	Bill Twyford					Final
Owner Address						Grease Interceptor
City, St, Zip					1	Water Heater
Phone #						
E-mail	billtwyford@	aol.com			-	
<u>Plumbing:</u> Water Heater,	Gas	Additi	onal notes:	CITY	USE ON	LY
Water Heater,	Gas	Additi	onal notes:	CITY	USE ON	LY
Water Heater,				SERIAL #		
Water Heater,		Yes				
Piping, install of	or conversion	Install		MODEL #		
Geothermal Grease Interce	ptor	Yes		BRAND		
Other				GALLONS:		
				FUEL TYPE: 0	GAS	ELECTRIC
Estimate of constru	uction			VENT TYPE: 0	ORAFT	Disconnect req'd and in place
project cost:	\$	1,12	9,900	. F	POWER	
I agree to perfo	orm all work in ad	ccordance with the ad	lopted codes of the City	of Clinton, Iowa. (2012 accepted u	ntil Octobe	r 1, 2019)
2018 Inte	rnational Buildin	g Code 20	18 Uniform Plumbing Co	de		

Owner/Agent Signature

Mechanical Building Permit Application:

BUILDING & NEIGHBORHOOD SERVICES - CITY OF CLINTON, IOWA EASY-APP FOR BUILDING PERMIT MECHANICAL

HVAC

Permit Address	241-247	5 Ave S, Cli	nton, IA		CITY	USE ONLY
						PIN:
Contractor Name						
State License #					P	ERMIT #
Phone #						
Contractor Address					INSPEC	TIONS REQ'D
City, St, Zip					Under	rgrd Plumb
E-mail					Roug	h/Cover
					Roug	h/Cover
Owner Name	Bill Twyford				Final	
Owner Address					Furna	ce
City, St, Zip					Air Co	onditioner
Phone #					1	
E-mail	billtwyford@	aol.com			Fee: \$	
Type of occupan	су	Residential	Commercial	Industrial		
HVAC:						
Furnace, Gas		Additio	nal notes:	<u>CI</u>	TY USE ONLY	
Furnace, Electri	ic			SERIAL #		
Boiler						
Baseboard, Ele	ctric			MODEL #		
A/C Install						
Gas piping, inst	all			BRAND		
Gas piping, con	version					
Geothermal						
Supplemental u	init install					
Othe				FUEL TYPE:	GAS	ELECTRIC
						Disconnect
Estimate of constru	ction			VENT TYPE:	DRAFT	req'd and in place
project cost:	\$	1,129,	900		POWER	
I agree to perfo	rm all work in ac	cordance with the ado	pted codes of the City of	Clinton, Iowa. (2012 Codes a	ccepted until Octo	ber 1, 2019)
2018 Inter	national Building	Code 201	8 Uniform Plumbing Cod	e		

2018 International Residential Code

2018 International Mechanical Code

Owner/Agent Signature

Roof Building Permit Application:

BUILDING & NEIGHBORHOOD SERVICES - CITY OF CLINTON, IOWA

EASY-APP FOR BUILDING PERMIT

ROOF

Permit Address	241-247 5 Ave S, Clin	iton, IA		CITY USE ONLY
	,	,		PIN:
Contractor Name				
State License #				PERMIT #
Phone #				
Contractor Address				INSPECTIONS REQ'D
City, St, Zip				Pre-shingle
E-mail				or
				Final
Owner Name	Bill Twyford			
Owner Address				
City, St, Zip				
Phone #				Fee
E-mail	billtwyford@aol.com			\$
				-
Type of occupanc	y Residential	Commercial / Industrial		
		_		
Estimate of cor	struction project cost:		<u>CITY L</u>	JSE ONLY
\$	1,129,900		Ice & Water Barrier App	plied
			Venting appropriate	
			Chimney compliant	
When will work st	art: TBD		Final Approved	
Notes				
			Date of Inspection	Time
Verbally made aw	are of Ice and Water Inspection			

I agree to perform all work in accordance with the adopted codes of the City of Clinton, Iowa. 2018 International Building Code, 2018 International Residential Code

Owner/Agent Signature

<u>Appendix C</u>: Schedule of Value and Suggested Manufacturer Schedule of Values

	Description	Quantity		(INCLDO	M TOTAL G. OH&P)		st Type	SALES TAX
	<u>I</u>		Units	Unit Price	Amount	Hard	Soft	Amount
DIVISION 4	: MASONRY							
04 01 20	Maintenance of Masonry	3725	SF	\$6.75	\$25,143.75	Х		\$0.0
04 01 30	Unit Masonry Cleaning	3725	SF	\$1.16	\$4,321.00	Х		\$0.00
04 05 13	Masonry Mortaring	1400	CF	\$8.75	\$12,250.00	Х		\$980.00
04.20.00	Unit Masonry	0	ls	\$0.00	\$0.00			\$0.00
04.99.01	Other - Explain	0	ls	\$0.00	\$0.00			\$0.00
04.99.02	Other - Explain	0	ls	\$0.00	\$0.00			\$0.00
DIVISION 5	: METALS							
05.12.00	Structural Steel Framing	0	ls	\$0.00	\$0.00			\$0.00
05.41.00	Metal Stud Framing	0	ls	\$0.00	\$0.00			\$0.00
05.52.00	Metal Railings	77	LF	\$146.27	\$11,262.67	Х		\$0.00
05.99.01	Undercounter Steel	0	ls	\$0.00	\$0.00			\$0.00
DIVISION 6	: WOODS, PLASTICS &	COMPOSI	TES					
06.10.00	Rough Carpentry	1	MBF	\$3,650.00	\$3,650.00	Х		\$292.00
06 05 05.10	Selective Demolition Wood Framing	2700	SF	\$1.62	\$4,374.00	Х		\$349.92
06 05 05.10	Selective Demolition Wood Framing	4000	LF	\$1.77	\$7,080.00	Х		\$566.40
06 05 05.10	Selective Demolition Wood Framing	4000	SF	\$0.81	\$3,240.00	X		\$259.20

THE UNIVERSITY OF IOWA®

06 05 23.60	Timber Connectors	35.8	Lb.	\$1.27	\$45.47	X	\$3.64
06 05 23.60	Timber Connectors	0.9	Lb.	\$2.41	\$2.22	X	\$0.18
06 05 23.60	Timber Connectors	40.0	Ea.	\$0.76	\$30.40	X	\$2.43
06 05 23.60	Timber Connectors	1.0	Ca	\$25.00	\$25.00	X	\$2.00
06 05 23.60	Timber Connectors	1.0	Ca	\$55.00	\$55.00	X	\$4.40
06 05 23.60	Timber Connectors	84	Ea.	\$5.15	\$432.60	X	\$34.61
06 05 23.60	Timber Connectors	22	Ea.	\$5.15	\$113.30	X	\$9.06
06 05 23.60	Timber Connectors	33	Ea.	\$32.21	\$1,062.93	X	\$85.03
06 05 23.60	Timber Connectors	9	Ea.	\$34.03	\$306.27	X	\$24.50
06 05 23.60	Timber Connectors	33	Ea.	\$35.85	\$1,183.05	X	\$94.64
06 05 23.60	Timber Connectors	4	Ea.	\$388.00	\$1,552.00	X	\$124.16
06 11 10.18	Framing with Dimensional, Engineered or Composite Lumber	0.169	MBF	\$1,700.00	\$287.11	X	\$22.97
06 11 10.18	Framing with Dimensional, Engineered or Composite Lumber	0.200	MBF	\$1,750.00	\$350.29	X	\$28.02
06 11 10.18	Framing with Dimensional, Engineered or Composite Lumber	0.152	MBF	\$1,775.00	\$270.58	X	\$21.65

06 16 26	Underlayment	4000	SF	\$2.21	\$8,840.00	X	\$707.20
06 18 13.20	Laminated Framing	734	LF	\$7.25	\$5,320.92	X	\$425.67
06 18 13.20	Laminated Framing	699	LF	\$8.65	\$6,047.04	X	\$483.76
06 18 13.20	Laminated Framing	852	LF	\$10.85	\$9,248.54	X	\$739.88
06 18 13.20	Laminated Framing	347	LF	\$14.05	\$4,871.84	X	\$389.75
06 18 13.20	Laminated Framing	181	LF	\$0.00	\$0.00	X	\$0.00
06.22.00	Millwork	0	ls	\$0.00	\$0.00	X	\$0.00
06.41.00	Cabinetry & Shelving	0	ls	\$0.00	\$0.00	X	\$0.00
06.41.00	Kitchen & Breakroom Cabinetry	0	ls	\$0.00	\$0.00	X	\$0.00
06.41.00	Teller Lines	0	ls	\$0.00	\$0.00	X	\$0.00
06.41.00	Display Cases	0	ls	\$0.00	\$0.00	X	\$0.00
06.43.16	Wood Railing	51	l.f.	\$67.00	\$3,390.20	X	\$271.22
DIVISION 7	: THERMAL & MOISTU	RE PROTE	CTION				
07 05 05	Selective Demo., Thermal and Moisture Protection	2700	SF	\$1.21	\$3,267.00	X	\$261.36
07 10 00	Dampproofing and Waterproofing	0	ls	\$0.00	\$0.00	X	\$0.00
07 21 00	Thermal Insulation	0	ls	\$0.00	\$0.00	X	\$0.00
07 27 26	Fluid Applied Membrane Air Barrier	2100	SF	\$0.39	\$819.00	X	\$65.52

07 31 00	Shingles and Shakes	0	ls	\$0.00	\$0.00	Х	\$0.00
07 32 00	Roof Tiles	0	ls	\$0.00	\$0.00	Х	\$0.00
07 41 00	Roof Panels	0	ls	\$0.00	\$0.00	Х	\$0.00
07 50 00	Membrane Roofing	0	ls	\$0.00	\$0.00	Х	\$0.00
07 65 19.10	Plastic Sheet Flashing and Counter Flashing	360	LF	\$3.42	\$1,231.20	X	\$98.50
07 84 13	Firestopping	0	Ea	\$23.00	\$0.00	Х	\$0.00
07 84 13	Firestopping	0	Ea	\$45.50	\$0.00	Х	\$0.00
DIVISION 8	: OPENINGS				1		
08.10.00	Doors & Frames	0	ls	\$0.00	\$0.00		\$0.00
08.12.13	Metal Frames	4	Ea	\$330.00	\$1,320.00	X	\$105.60
08.14.16	Wood Door	4	Ea	\$605.00	\$2,420.00	Х	\$193.60
08.12.13	Metal Frames	1	Ea	\$340.00	\$340.00	X	\$27.20
	Wood Door	2	Ea	\$293.00	\$586.00	Х	\$46.88
08.30.00	Specialty Doors & Frames (Dorma Door)	0	ls	\$0.00	\$0.00	X	\$0.00
08.40.00	Entrances, Storefronts, and Curtain Walls	0	ls	\$0.00	\$0.00	X	\$0.00
08.34.59	Vault Doors	0	ls	\$0.00	\$0.00	Х	\$0.00
08.51.13	Aluminum Window	15	Ea	\$530.00	\$7,950.00	X	\$636.00
08.52.10	Picture Window	2	Ea	\$5,688.00	\$11,376.00	Х	\$910.08

08.52.10	Sliding Window	1	Ea	\$4,536.00	\$4,536.00	Х	\$362.88
08.70.00	Hardware	2	Ea.	\$0.00	\$0.00	Χ	\$0.00
08.80.00	Glazing	0	ls	\$0.00	\$0.00	X	\$0.00
08.70.00	Hardware	5	Ea.	\$24.50	\$122.50	X	\$9.80
08.70.00	Hardware	5	Ea.	\$86.00	\$430.00	X	\$34.40
DIVISION): FINISHES						
09.20.00	Gypsum Board	0	ls	\$0.00	\$0.00	Х	\$0.00
09.29.10	Gypsum Board, ceilings	181	sf	\$1.09	\$197.29	Χ	\$15.78
09.20.10	Gypsum Board, Wall, Fireproof	737	sf	\$1.03	\$759.11	Х	\$60.73
09.20.10	Gypsum Board, Wall	787	sf	\$1.01	\$794.87	Χ	\$63.59
09.30.00	Tiling	0	ls	\$0.00	\$0.00	Χ	\$0.00
09.51.23	Acoustical Tile Ceilings	293	sf	\$1.86	\$544.98	Χ	\$43.60
09.64.29	Wood Strip and Plank	1694	sf	\$6.00	\$10,164.00	Х	\$813.12
	Flooring						
09.65.19	Vinyl Tile Flooring	6617	sf	\$6.80	\$44,995.60	Χ	\$3,599.65
09.66.16	Terrazzo	302	sf	\$4.24	\$1,280.48	Χ	\$102.44
09.68.00	Carpeting	0	ls	\$0.00	\$0.00	Χ	\$0.00
09.69.00	Access Flooring	0	ls	\$0.00	\$0.00	Χ	\$0.00
09.70.00	Wall Finishes	0	ls	\$0.00	\$0.00	Χ	\$0.00
09.91.13	Painting - Exterior	0	ls	\$0.00	\$0.00	Χ	\$0.00
09.91.23	Painting - Interior	1400	SF	\$1.81	\$2,534.00	Х	\$202.72
09 91 13	Painting	5	ea	\$118.00	\$590.00	Χ	\$47.20
09 91 13	Painting	16000	SF	\$0.96	\$15,360.00	Χ	\$1,228.80
09 91 13	Painting - FP Pipe	820	LF	\$1.54	\$1,262.80	Χ	\$101.02
DIVISION	0: SPECIALTIES						
10.14.00	Signage - Interior Sign Band	0	ls	\$0.00	\$0.00	X	\$0.00

10.13.00	Directory Boards	0	ls	\$0.00	\$0.00	Х	\$0.00
10.15.00	ATM Signage	0	ls	\$0.00	\$0.00	Х	\$0.00
10.28.00	Toilet, Bath & Laundry Accessories	0	ls	\$0.00	\$0.00	Х	\$0.00
10.28.13	Towel Dispenser and Waste Receptacle	2	Ea	\$425.00	\$850.00	Х	\$68.00
10.28.13	Grab Bar	4		\$69.50	\$278.00	X	\$22.24
10.28.13	Hand Dryer	2		\$695.00	\$1,390.00	Х	\$111.20
10.28.13	Mirror	2		\$176.00	\$352.00	Х	\$28.16
10.44.00	Fire Extinguishers & Cabinets	0	ls	\$0.00	\$0.00	X	\$0.00
10.73.16	Metal Canopies	4	Ea.	\$5,000.00	\$20,000.00	Х	\$1,600.00
10.51.00	Wood and Metal Lockers	0	ls	\$0.00	\$0.00	Х	\$0.00
10.11.00	Visual Display Surfaces - Chalkboards & Tackboards	0	ls	\$0.00	\$0.00	Х	\$0.00
10.99.01	Other - Explain	0	ls	\$0.00	\$0.00	Х	\$0.00
10.99.02	Other - Explain	0	ls	\$0.00	\$0.00	Х	\$0.00
DIVISION	1: EQUIPMENT						
11.21.13	Checkout Counter	1	Ea	\$3,850.00	\$3,850.00	Х	\$308.00
11.41.13	Refrigerator	1	Ea	\$4,275.00	\$4,275.00	Х	\$342.00
11 44 00	Cooking	1	Ea	\$10,600.00	\$10,600.00	Χ	\$848.00
11 44 00	Cooking	1	Ea	\$3,575.00	\$3,575.00	Х	\$286.00
11 46 00	Ice Machines	1	Ea	\$2,000.00	\$2,000.00	Χ	\$160.00
11.48	Dishwasher	1	Ea	\$5,700.00	\$5,700.00	Χ	\$456.00

DIVISION 1	2: FURNISHINGS							
12.01.00	Furniture	0	ls	\$0.00	\$0.00			\$0.00
12.11.00	Artwork	0	ls	\$0.00	\$0.00			\$0.00
12.20.00	Window Treatments - Blinds / Shades	0	ls	\$0.00	\$0.00			\$0.00
12.35.80	Kitchen casewook, Base Cabinets	3	ea	\$240.00	\$720.00	Х		\$57.60
12.35.80	Kitchen casewook, Wall Cabinets	1	ea	\$225.00	\$225.00	Х		\$18.00
12.36.00	Wood countertop	32.0	lf	\$119.00	\$3,808.00	Х		\$304.64
12.36.16	Stainless Countertop	17.5	lf	\$445.00	\$7,787.50	X		\$623.00
12.37.00	Workstations (Cubicles)	0	ls	\$0.00	\$0.00			\$0.00
12.38.00	Moveable Wall Partitions (Fabric Panels)	0	ls	\$0.00	\$0.00			\$0.00
12.50.00	Kiosk Systems	0	ls	\$0.00	\$0.00			\$0.00
12.54.16	Tables	15	ea	\$200.00	\$3,000.00		X	\$240.00
12.54.16	Bar Table	21	l.f.	\$450.00	\$9,450.00		X	\$756.00
12.54.16	Chair	36	ea	\$116.00	\$4,176.00		X	\$334.08
	3: SPECIAL CONSTRUC							
DIVISION 1	4: CONVEYING SYSTEM	ЛS						
14 21 23.10	Electric Traction Passenger Elevator	1	ea	\$154,500.00	\$154,500.00	Х		\$12,360.00
14 27 13	Custom Elevator Cab Finishes	1	ea	\$670.00	\$670.00	X		\$53.60

14 27 13	Elevator Pit Ladder	1	ls	\$200.00	\$200.00	X	\$16.00
14 28 10.10	Elevator Controls and Doors	1	ea	\$1,275.00	\$637.50	X	\$51.00
14 28 10.10	Elevator Controls and Doors	1	ea	\$51,500.00	\$51,500.00	X	\$4,120.00
14 28 10.10	Elevator Controls and Doors	1	ea	\$4,125.00	\$4,125.00	X	\$330.00
14 28 10.10	Elevator Controls and Doors	1	ea	\$845.00	\$845.00	X	\$67.60
14 28 10.10	Elevator Controls and Doors	1	ea	\$620.00	\$620.00	X	\$49.60
14.99.02	Phone Jack & Data Service - Elevator	0	ls	\$0.00	\$0.00	X	\$0.00
DIVISION 2	1: FIRE SUPPRESSION						
21 05 23.50	Check, swing, C.I. body, brass fittings, auto, ball drip	2	ea	\$850.00	\$1,700.00	X	\$136.00
21 05 23.50	Check, wafer, butterfly type, C.I. body, bronze fittings	1	ea	\$1,725.00	\$1,725.00	X	\$138.00
21 12 23	Fire-Suppression Hose Valves	1	ea	\$330.00	\$330.00	X	\$26.40
21 12 23	FHV Markup	1	ls	\$165.00	\$165.00	X	\$13.20
21 13 13.50	Wet-Pipe Sprinkler System Components	51	ea	\$56.50	\$2,881.50	X	\$230.52
21 13 13.50	Wet-Pipe Sprinkler System Components	10	ea	\$89.00	\$890.00	X	\$71.20
21 22 16	Clean-Agent Fire Extinguisher System	2	ea	\$254.00	\$508.00	X	\$40.64

21 13 13	Welded, Sch. 40 Black Steel Pipe	194	LF	\$106.00	\$20,564.00	X	\$1,645.1
21 13 13	Welded, Sch. 40 Black Steel Pipe	25	LF	\$54.50	\$1,362.50	X	\$109.00
21 13 13	Welded, Sch. 40 Black Steel Pipe	336	LF	\$35.50	\$11,928.00	X	\$954.24
21 13 13	Welded, Sch. 40 Black Steel Pipe	253	LF	\$19.50	\$4,933.50	X	\$394.68
21 13 13	Welded, Sch. 40 Black Steel Pipe	12	LF	\$16.15	\$193.80	X	\$15.50
10 44 16.13	Portable Fire Extinguishers	1	ea	\$152.00	\$152.00	X	\$12.16
10 44 13	Fire Protection Cabinet	1	ea	\$310.00	\$310.00	X	\$24.80
DIVISION 22	2: PLUMBING						
22 01 02.20	Labor Adjustment Factors	0	ls	\$0.00	\$0.00	X	\$0.00
22 05 05.10	Plumbing Demolition	1	ea	\$107.00	\$107.00	Х	\$8.56
22 05 05.10	Plumbing Demolition	20	LF	\$15.00	\$300.00	X	\$24.00
22 05 05.10	Plumbing Demolition	2	Ton	(\$200.00)	(\$388.60)	X	(\$31.09)
22 05 23.10	Valves, Brass	3	ea	\$74.00	\$222.00	X	\$17.76
22 05 23.20	Valves, Bronze		ea	\$159.00	\$0.00	Х	\$0.00
22 05 23.20	Valves, Bronze		ea	\$50.00	\$0.00	X	\$0.00
22 05 23.20	Valves, Bronze	1	ls	\$302.00	\$302.00	X	\$24.16
22 05 23.20	Valves, Bronze	2	ea	\$795.00	\$1,590.00	X	\$127.20

22 05 23.20	Valves, Bronze	1	ls	\$354.00	\$354.00	X	\$28.32
22 11 19.42	Backflow Preventers	1	ea	\$585.00	\$585.00	X	\$46.80
22 11 19.54	Water Hammer Arresters/Shock Absorbers	1	ea	\$93.50	\$93.50	Х	\$7.48
22 13 23.10	Interceptors	1	ea	\$2,550.00	\$2,550.00	X	\$204.00
22 05 53	Identification for Plumbing Piping and Equipment	0	ls	\$0.00	\$0.00	X	\$0.00
22 07 00	Plumbing Insulation	0	ls	\$0.00	\$0.00	X	\$0.00
22 09 00	Instrumentation and Control for Plumbing	0	ls	\$0.00	\$0.00	X	\$0.00
22 10 00	Plumbing Piping	0	LF	\$22.50	\$0.00	X	\$0.00
22 10 00	Plumbing Piping	0	LF	\$34.00	\$0.00	X	\$0.00
22 10 00	Plumbing Piping	51	LF	\$39.50	\$2,014.50	X	\$161.16
22 10 00	Plumbing Piping	117	LF	\$49.00	\$5,733.00	X	\$458.64
22 10 00	Plumbing Piping	15	LF	\$54.00	\$810.00	X	\$64.80
22 10 00	Plumbing Piping	1	ls	\$2,567.25	\$2,567.25	X	\$205.38
22 10 00	Plumbing Piping	0	LF	\$11.40	\$0.00	X	\$0.00
22 10 00	Plumbing Piping	241	LF	\$12.95	\$3,114.48	X	\$249.16
22 10 00	Plumbing Piping	123	LF	\$14.80	\$1,820.40	X	\$145.63
22 10 00	Plumbing Piping	190	LF	\$18.60	\$3,534.00	X	\$282.72

22 10 00	Plumbing Piping	41	LF	\$26.00	\$1,066.00	X	\$85.28
22 10 00	Plumbing Piping	48	LF	\$37.50	\$1,800.00	X	\$144.00
22 10 00	Plumbing Piping	1	ls	\$3,400.46	\$3,400.46	X	\$272.04
22 07 00	Plumbing Insulation	3	LF	\$6.20	\$20.77	X	\$1.66
22 07 00	Plumbing Insulation	241	LF	\$6.20	\$1,494.20	X	\$119.54
22 07 00	Plumbing Insulation	123	LF	\$6.20	\$762.60	X	\$61.01
22 07 00	Plumbing Insulation	190	LF	\$3.20	\$608.00	X	\$48.64
22 07 00	Plumbing Insulation	41	LF	\$6.50	\$266.50	X	\$21.32
22 07 00	Plumbing Insulation	48	LF	\$8.00	\$384.00	X	\$30.72
22 11 23.26	Close-Coupled, Horizontally Mounted, In-Line Centrifugal Domestic- Water Pumps	1	ea	\$1,250.00	\$1,250.00	X	\$100.00
22 13 16.60	Traps	11	ea	\$247.00	\$2,717.00	X	\$217.36
22 13 16.80	Vent Flashing and Caps	2	ea	\$50.00	\$100.00	X	\$8.00
22 13 19.13	Sanitary Drains	5	ea	\$395.00	\$1,975.00	X	\$158.00
22 05 76.10	Cleanouts	3	ea	\$278.00	\$834.00	X	\$66.72
22 05 76.20	Cleanout Tees	1	ea	\$60.00	\$60.00	X	\$4.80
22 30 00	Plumbing Equipment	0	ls	\$0.00	\$0.00	X	\$0.00

22 33 33	Light-Commercial Electric Domestic Water Heaters	1	ls	\$6,175.00	\$6,175.00	X	\$494.00
22 42 13.13	Water Closets - Commercial	2	ea	\$1,300.00	\$2,600.00	X	\$208.00
22 42 13.13	Water Closets - Commercial	2	ea	\$1,828.00	\$3,656.00	X	\$292.48
22 41 16.13	Lavatories	2	ea	\$660.00	\$1,320.00	X	\$105.60
22 41 16.13	Lavatories	2	ea	\$1,325.00	\$2,650.00	X	\$212.00
22 41 16.16	Sinks	1	ea	\$575.00	\$575.00	X	\$46.00
22 41 16.16	Sinks	1	ea	\$935.00	\$935.00	Х	\$74.80
22 42 00	Sinks	1	ea	\$1,000.00	\$1,000.00	Х	\$80.00
22 42 16	Sinks	1	ea	\$1,025.00	\$1,025.00	Х	\$82.00
22 42 16.40	Service Sinks	1	ea	\$1,425.00	\$1,425.00	Х	\$114.00
22 42 16.40	Service Sinks	1	ea	\$1,875.00	\$1,875.00	Х	\$150.00
22 42 39.30	Carriers and Supports	2	ea	\$450.00	\$900.00	X	\$72.00
22 42 39.30	Carriers and Supports	1	ea	\$1,725.00	\$1,725.00	X	\$138.00
22 42 39.30	Carriers and Supports	1	ea	\$730.00	\$730.00	Х	\$58.40
22 42 39.10	Faucets and Fttings	2	ea	\$239.00	\$478.00	X	\$38.24
22 42 39.10	Faucets and Fttings	3	ea	\$137.00	\$411.00	X	\$32.88
22 42 39.10	Faucets and Fttings	2	ea	\$615.00	\$1,230.00	X	\$98.40
22 11 13.44	Pipe, Steel	297	LF	\$34.00	\$10,098.00	X	\$807.84

22 11 13.44	Pipe, Steel	1	ls	\$2,726.00	\$2,726.00	Χ	\$218.08
DIVISION 23:	HEATING, VENTILAT	TING & AIF	R CON	DITIONING (H	VAC)		
23 21 20.78	Strainer, y-Type	1	ls	\$53.00	\$53.00	Х	\$4.24
23 21 20.88	Venturi Flow Device	1	ls	\$350.00	\$350.00	Х	\$28.00
23 05 93	T.A.B. for HVAC - Air	1	ls	\$6,888.00	\$6,888.00	Х	\$551.04
23 07 13	Duct Insulation	2078	sf	\$4.46	\$9,267.88	Х	\$741.43
23.30.00	HVAC - Air Distribution (Ducts etc)	2500	lbs.	\$8.05	\$20,125.00	Х	\$1,610.00
23.30.00	For 40% Fittings, Added 34%	1	ls	\$18.02	\$18.02	Х	\$1.44
23 33 46.10	Flexible Air Ducts (Flex Ducts)	33	LF	\$8.45	\$278.85	Х	\$22.31
	Natural Gas Piping	297	LF	\$0.00	\$0.00	Х	\$0.00
23 33 13.13	Volume-Control Dampers	16	ea	\$148.00	\$2,368.00	Х	\$189.44
23 33 13.16	Fire Dampers	5	ea	\$156.00	\$780.00	Х	\$62.40
23 33 33	Duct Access Doors	4	ls	\$106.00	\$424.00	Х	\$33.92
23 55 33	Gas-Fired Furnace	1	ea	\$2,200.00	\$2,200.00	Х	\$176.00
23 63 13	Air-Cooled Condensing Unit	1	ea	\$14,400.00	\$14,400.00	Х	\$1,152.00
23 81 19	Self-Contained Air Conditions	1	ls	\$17,000.00	\$17,000.00	Х	\$1,360.00
23 74 33.10	Makeup Air Unit	1	ls	\$5,025.00	\$5,025.00	Х	\$402.00
22 11 13.23	Refrigerant Piping System	71	LF	\$13.02	\$924.42	Х	\$73.95
22 11 13.23	Refrigerant Piping System	80	LF	\$15.37	\$1,229.60	Х	\$98.37

			ls		\$0.00	Х	\$0.00
23 34 16	Centrifugal HVAC Fans	1	ls	\$3,875.00	\$3,875.00	Х	\$310.00
23 37 13	Diffusers, Registers, and Grilles	47	ea	\$75.00	\$3,525.00	Х	\$282.00
23.99.01	Louvers	2	ls	\$200.00	\$400.00	Х	\$32.00
23 38 13	Commercial Kitchen Hoods	1	ls	\$5,075.00	\$5,075.00	Х	\$406.00
23.99.02	HVAC Gravity Ventilators	1	ls	\$205.00	\$205.00	Х	\$16.40
DIVISION 26	ELECTRICAL						
26 01 02.20	Labor Adjustment Factors			10%			
26 01 02.20	Labor Adjustment Factors			25%			
				30%			
				35%			
				40%			
26 05 05.10	Electrical Demolition						
26 05 05.10	Electrical Demolition						
26.00.00	Electrical	0	ls	\$0.00	\$0.00		\$0.00
26 05 05	Electrical Demolition	0	ls	\$0.00	\$0.00	Х	\$0.00
26 05 19.90	Wire	3.30	CLF	\$1,350.00	\$4,455.00	Х	\$356.40
26 05 19.90	Wire	0.97	CLF	\$801.00	\$775.37	Х	\$62.03
26 05 19.90	Wire	3.07	CLF	\$465.00	\$1,425.23	Х	\$114.02

26 05 19.90	Wire	4.17	CLF	\$375.00	\$1,563.75	X	\$125.10
26 05 19.90	Wire	23.50	CLF	\$261.00	\$6,133.50	X	\$490.68
26 05 19.90	Wire	0.32	CLF	\$222.00	\$71.04	X	\$5.68
26 05 19.90	Wire	0.91	CLF	\$505.05	\$461.11	X	\$36.89
26 05 19.90	Wire	1.71	CLF	\$263.25	\$448.84	X	\$35.91
26 05 19.90	Wire	2.11	CLF	\$1,449.50	\$3,057.00	X	\$244.56
26 05 19.90	Wire	1.13	CLF	\$631.32	\$712.13	X	\$56.97
26 05 19.90	Wire	4.94	CLF	\$329.07	\$1,623.96	X	\$129.92
26 05 33.13	Conduit	300	LF	\$8.85	\$2,655.00	X	\$212.40
26 05 33.13	Conduit	300	LF	\$0.47	\$139.80	X	\$11.18
26 06 33.16	Boxes for Electrical Systems	84	ea	\$41.00	\$3,444.00	Х	\$275.52
26 27 26.20	Wiring Device Elements	96	ea	\$36.00	\$3,456.00	X	\$276.48
26 05 80.10	Motor Connections	8	ea	\$110.00	\$880.00	X	\$70.40
26 28 16.20	Safety Switches (Disconnect Switch)	2	ea	\$315.00	\$630.00	X	\$50.40
26 09 23	Lighting Control Devices		ea	\$244.00	\$0.00	X	\$0.00
26 09 23	Lighting Control Devices	1	ea	\$112.00	\$112.00	X	\$8.96
26 27 26.10	Low Voltage Switching	4	ea	\$103.00	\$412.00	X	\$32.96
26 27 26.20	Wiring Device Elements	2	ea	\$17.95	\$35.90	X	\$2.87
26 27 26.20	Wiring Device Elements	8	ea	\$32.00	\$256.00	X	\$20.48

26 24 16.30	Panelboards	1	ea	\$3,125.00	\$3,125.00	Х	\$250.00
	Commercial						
	Applications EPB-1						
26 24 16.30	Panelboards	1	ea	\$1,800.00	\$1,800.00	Х	\$144.00
	Commercial						
	Applications LPB-1						
26 24 16.30	Panelboards	1	ea	\$3,575.00	\$3,575.00	Х	\$286.00
	Commercial						
	Applications PPB-1				to 10.00		
26.51.00	Interior Lighting	2	ea	\$455.00	\$910.00	Х	\$72.80
26.51.00	Interior Lighting	4	ea	\$365.00	\$1,460.00	Х	\$116.80
26.51.00	Interior Lighting	11	ea	\$126.00	\$1,386.00	Х	\$110.88
26.51.00	Interior Lighting	32	ea	\$175.00	\$5,600.00	Х	\$448.00
26.51.00	Interior Lighting	3	ea	\$370.00	\$1,110.00	Х	\$88.80
26.51.00	Interior Lighting	3	ea	\$370.00	\$1,110.00	Х	\$88.80
26.51.00	Interior Lighting	2	ea	\$111.00	\$222.00	Х	\$17.76
26.51.00	Interior Lighting	56	ea	\$111.00	\$6,216.00	Х	\$497.28
26 52 13	EM LIGHT	8	ea	\$330.00	\$2,640.00	Х	\$211.20
	FIXTURES						
26.56.36	Exterior Building	6	ea	\$310.00	\$1,860.00	Χ	\$148.80
	Lighting						
DIVISON 27:	TELECOMMUNCATIO	NS					
27 51 19.10	Sound System	1	ea	\$279.00	\$279.00	Х	\$22.32
27 51 19.10	Sound System	1	ea	\$2,025.00	\$2,025.00	Х	\$162.00
26 05 23.10	Control Cable	1	CLF	\$119.00	\$159.46	Х	\$12.76
27 51 19.10	Sound System	16	ea	\$240.00	\$3,840.00	Х	\$307.20
DIVISION 28:	ELECTRONIC SAFET	Y & SECUI	RITY				
28 46 11.21	Carbon-Monoxide Detection Sensors	2	ea	\$88.50	\$177.00	Х	\$14.16

01.21.00	Allowance #00				\$0.00	X	\$0.00
	NCES and/or OTHER SPI	ECIALTIE	S				
DIVISION 33:							
DIVISION 32:	EXTERIOR IMPROVE	MENTS					
	EARTHWORK				· · ·		
28 46 21.50	Actuating Devices	3	ea	\$460.00	\$1,380.00	X	\$110.40
26 05 33.13	Conduit	118	LF	\$0.47	\$54.99	X	\$4.40
26 05 33.13	Conduit	118	LF	\$8.85	\$1,044.30	X	\$83.54
26 05 19.90	Electrical Wire	1.18	CLF	\$261.00	\$307.98	X	\$24.64
26 05 19.90	FA LV Cable	0.44	CLF	\$60.00	\$26.40	X	\$2.11
26 05 19.90	FALV Cable	1.54	CLF	\$60.00	\$92.40	X	\$7.39
26 05 19.90	FA LV Cable (free-air hung)	1.53	CLF	\$60.00	\$91.80	X	\$7.34
26 05 19.90	FA Wire	1.53		\$60.00	\$91.80	X	\$7.34
2605 10 00	key switch test station	1.50	CL F	\$ <0.00	\$01.00	37	•
28 46 21.50	Remote duct detector	1	ea	\$203.00	\$203.00	X	\$16.24
28 46 21.50	Manual Pull Station	1	ea	\$180.00	\$180.00	X	\$14.40
	(ADA-type)	1/	ea				
28 46 21.50	Strobe and Horn	<u> </u>	ea	\$300.00	\$5,100.00	X X	\$408.00
28 46 00	Device Alarm Flow Switch	1		\$350.00	\$350.00	X	\$28.00
28 46 21.50	Fire Alarm Actuating	3	ea	\$406.00	\$1,218.00	X	\$97.44
20 10 21	and rack	•	Cu	φ υρ υτου	φ050.00	2 x	φυσιτο
28 46 21	FA Panel - Battery	1	ea	\$630.00	\$630.00	X	\$50.40
28 46 21	Fire Alarm Panel	10	ea	\$1,100.00	\$1,100.00	X	\$88.00
28 46 11.50	type Heat Detectors	10	ea	\$144.00	\$1,440.00	X	\$115.20
28 46 11.27	Smoke Detector, Duct	2	ea	\$585.00	\$1,170.00	X	\$93.60
28 46 11.27	Smoke Detector, ceiling type	17	ea	\$244.00	\$4,148.00	X	\$331.84

01.21.01	Allowance #01 Ext. Brick Repairs	0	ls	\$0.00	\$0.00	X	\$0.00
01.21.02	Allowance #02 Transformer Upgrades	1	ls	\$10,000.00	\$10,000.00	X	\$800.00
01.21.03	Allowance #03 Building Fire Protection Upgrades	1	ls	\$10,000.00	\$10,000.00	X	\$800.00
01.21.04	Allowance #04	0	ls	\$0.00	\$0.00	X	\$0.00
01.21.05	Allowance #05 General Trades	1	ls	\$10,000.00	\$10,000.00	X	\$800.00
01.21.06	Allowance #06 Electrical	1	ls	\$20,660.00	\$20,660.00	X	\$1,652.80
CONTINGE	ENCY						
01.22.00	Exterior Work Contingency	160	Ea	\$109.93	\$17,588.80		\$0.00
01.22.01	Overall Project Contingency	1	ls	\$40,000.00	\$40,000.00		\$3,200.00
01.22.02	Asbestos Abatement	8500	SF	\$4.82	\$40,970.00		\$3,277.60
01.22.03	Lead Paint Remediation		SF	\$2.35	\$0.00		\$0.00

Recommended Manufacturers

DIVISION 4:	Description	High Level Description	SUGGESTED MANUFACTURERS AND/OR VENDORS
04 01 30	Unit Masonry Cleaning	Acid cleanser, smooth brick surface	Prosoco, Diedrich
04 05 13	Masonry Mortaring	Type O, 1:3 Mix for Foundation Repair	Spec Mix, Arcat, Cemex
DIVISION 5:	METALS		

05.52.00	Metal Railings		Viewrail, Feeney, Atlantis Rail
DIVISION 6: W	VOODS, PLASTICS & COMPOSITES		
06.10.00	Rough Carpentry	2" x 8" Blocking	Local
06 05 23.60	Timber Connectors	Common Nails	SIMPSON Strong-Tie
06 05 23.60	Timber Connectors	Galvanized Nails	SIMPSON Strong-Tie
06 05 23.60	Timber Connectors	3.5" SDS Screw	SIMPSON Strong-Tie
06 05 23.60	Timber Connectors	1/2" Anchor Bolt	SIMPSON Strong-Tie
06 05 23.60	Timber Connectors	Galvanized #10 x 1.5" Screw	SIMPSON Strong-Tie
06 05 23.60	Timber Connectors	2" x 6" Hangers	SIMPSON Strong-Tie
06 05 23.60	Timber Connectors	2" x 10" Hangers	SIMPSON Strong-Tie
06 05 23.60	Timber Connectors	1.75" x 9.25" LVL Hangers	SIMPSON Strong-Tie
06 05 23.60	Timber Connectors	1.75" x 11.25" LVL Hangers	SIMPSON Strong-Tie
06 05 23.60	Timber Connectors	1.75" x 14" LVL Hangers	SIMPSON Strong-Tie
06 05 23.60	Timber Connectors	5.25" x 18" PSL Hangers	SIMPSON Strong-Tie
06 11 10.18	Framing with Dimensional, Engineered or Composite Lumber	2" x 6"	Local
06 11 10.18	Framing with Dimensional, Engineered or Composite Lumber	2" x 10"	Local
06 11 10.18	Framing with Dimensional, Engineered or Composite Lumber	2" x 14"	Local
06 16 26	Underlayment	5/8" Thick Pneumatic nailed	Local
06 18 13.20	Laminated Veneer Lumber		Weyerhaeuser, Boise Cascade, Louisiana-Pacific

06 18 13.20	Parallel Strand Lumber		Weyerhaeuser, Boise Cascade, Louisiana-Pacific
06.41.00	Display Cases		
06.43.16	Wood Railing		
DIVISION 7: 1	HERMAL & MOISTURE PROTECTION		
07 05 05	Selective Demo., Thermal and Moisture Protection	DEMOLITION of Siding, Metal, Vertical	
07 10 00	Dampproofing and Waterproofing		
07 21 00	Thermal Insulation		
07 27 26	Fluid Applied Membrane Air Barrier	Only applied for the exterior limestone foundation walls	Dupont, WR Meadows, Carlisle
07 31 00	Shingles and Shakes		
07 32 00	Roof Tiles		
07 41 00	Roof Panels		
07 50 00	Membrane Roofing		
07 65 19.10	Plastic Sheet Flashing and Counter Flashing	White, 60 mil	
07 84 13	Firestopping	Metallic Piping, Insulated, Through Floors, 2" diameter	
07 84 13	Firestopping	Metallic Piping, Insulated, Through Walls, 2" diameter	
07 99 02	Other - Explain		
DIVISION 8: 0	DPENINGS	·	
08.12.13	Metal Frames		
08.14.16	Wood Door	1-hr Fire Rated Wood Door	

08.12.13	Metal Frames		
	Wood Door		
08.51.13	Aluminum Window	36''x72'' (3'x4')	
08.52.10	Picture Window	16'X9'	
08.52.10	Sliding Window	16'X9'	
08.70.00	Hardware	Pull Handle and Pushbar Aluminum	
08.70.00	Hardware	ADA Compliant Thresholds, 3' long saddles, Alum.	
08.70.00	Hardware	Kick Plates S.S050", 16ga, 8" x 28", US32	
DIVISION 9:	FINISHES		
09.20.00	Gypsum Board		
09.29.10	Gypsum Board, ceilings		
09.20.10	Gypsum Board, Wall, Fireproof		
09.20.10	Gypsum Board, Wall		
09.30.00	Tiling		
09.51.23	Acoustical Tile Ceilings		
09.64.29	Wood Strip and Plank Flooring	café area	
09.65.19	Vinyl Tile Flooring	Retail Area	
09.66.16	Terrazzo	Bathroom, Kitchen, Utility room	
09.91.13	Painting - Exterior	MURAL EXCLUDED FROM COSTS	

09.91.23	Painting - Interior	Spray, Primer & 2 coats, latex	
09 91 13	Painting	Doors & Windows, epoxy paint (hollow-metal)	
09 91 13	Painting	Lowered Ceiling - trusses/wood frames, Stain, brushwork, wipe off	
09 91 13	Painting - FP Pipe	1-4" diameter brushwork, Paint 2 Coats	
DIVISION 10:	SPECIALTIES		
10.28.13	Towel Dispenser and Waste Receptacle	Bathroom	Lavex Janitorial
10.28.13	Grab Bar	Two grab bars in each room	Lavex Janitorial
10.28.13	Hand Dryer	one in each room	Lavex Janitorial
10.28.13	Mirror	one in each room, currently have two in one. Delete	Bobrick
10.44.00	Fire Extinguishers & Cabinets	Cost item tracked under Division 21	Cato
10.73.16	Metal Canopies	Approximately (4) 20' sections of 6' wide wall hung canopies	Architectural Fabrications (Titan Canopy)
10.51.00	Wood and Metal Lockers		Winholt
10.11.00	Visual Display Surfaces - Chalkboards & Tackboards		Araco
10.99.01	Other - Explain		
10.99.02	Other - Explain		
DIVISION 11:	EQUIPMENT		
11.41.13	Refrigerator		Avantco Refrigeration
11 44 00	Cooking	oven	Cooking Performance Group
11 44 00	Cooking	range	Cooking Performance Group
11 46 00	Ice Machines		Scotsman
11.48	Dishwasher		Noble Warewashing
DIVISION 12:	FURNISHINGS		

12.35.80	Kitchen casewook, Base Cabinets		Avantco
12.35.80	Kitchen casewook, Wall Cabinets		Avantco
12.36.00	Wood countertop		Advance Tabco
12.36.16	Stainless Countertop		Regency Tables & Sinks
12.54.16	Tables	Cafe area table, 2 seater, 3 Seater, 4 Seater	Lancaster Table & Seating
12.54.16	Bar Table	SOFT COST	Lancaster Table & Seating
12.54.16	Chair	SOFT COST	Lancaster Table & Seating
	SPECIAL CONSTRUCTION		
	CONVEYING SYSTEMS		
14 21 23.10	Electric Traction Passenger Elevator	2,000lb capacity, 200fpm, 4 stop, std. fin.	Kone Elevators, Schindler Group
14 27 13	Custom Elevator Cab Finishes	Textured Rubber Flooring	Kone Elevators, Schindler Group
14 27 13	Elevator Pit Ladder	Provided by Elev. Contractor, installed by others	Kone Elevators, Schindler Group
14 28 10.10	Elevator Controls and Doors	Intercom Service	Kone Elevators, Schindler Group
14 28 10.10	Elevator Controls and Doors	Variable Voltage, O.H. gearless machine, min.	Kone Elevators, Schindler Group
14 28 10.10	Elevator Controls and Doors	12 month maintenance contract	Kone Elevators, Schindler Group
14 28 10.10	Elevator Controls and Doors	Signal Devices, hall lanterns	Kone Elevators, Schindler Group
14 28 10.10	Elevator Controls and Doors	Position Indicicators (up to 3)	Kone Elevators, Schindler Group
DIVISION 21:	FIRE SUPPRESSION		
21 13 13	Welded, Sch. 40 Black Steel Pipe	6" Diameter (Welded)	Charlotte Pipe and Foundry Co.
21 13 13	Welded, Sch. 40 Black Steel Pipe	3" Diameter (Threaded)	Charlotte Pipe and Foundry Co.
21 13 13	Welded, Sch. 40 Black Steel Pipe	2" Diameter (Threaded)	Charlotte Pipe and Foundry Co.

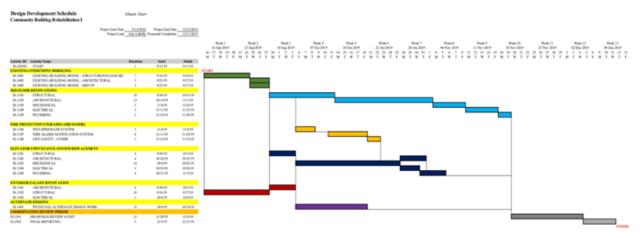
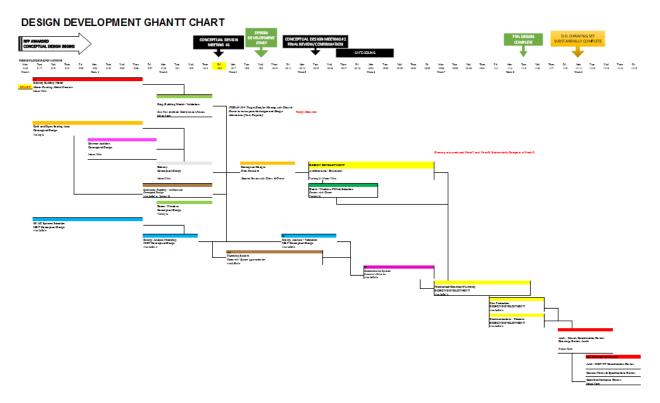
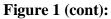
21 13 13	Welded, Sch. 40 Black Steel Pipe	1" Diameter (Threaded)	Charlotte Pipe and Foundry Co.
21 13 13	Welded, Sch. 40 Black Steel Pipe	1/2" Diameter (Threaded)	Charlotte Pipe and Foundry Co.
DIVISION 22:			
22 05 23.10	Valves, Brass	Gas cocks, threaded, 1" diam.	Legend Valve, Hammond Valve,
22 11 19.42	Backflow Preventers	1" pipe size	Watts Regulator, Zurn
22 11 19.54	Water Hammer Arresters/Shock Absorbers	3/4" male IPS For 1 to 11 fixtures	
22 13 23.10	Interceptors	Grease, 10 GPM, 20 lb. fat capacity	Jay R. Smith
22 10 00	Plumbing Piping	PVC Schedule 40 DWV	Charlotte Pipe and Foundry Co.
22 10 00	Plumbing Piping	COP TYP "L" Domestic Water	Cerro Copper, Mueller
22 07 00	Plumbing Insulation	3/4" & 1" wall COP Pipe	
22 11 23.26	Close-Coupled, Horizontally Mounted, In-Line Centrifugal Domestic-Water Pumps	3/4" to 1-1/2: size, 1/3 HP	Bell & Gossett, Taco
22 13 16.60	Traps	Standard 2" without vent (cost included in vent piping and fittings)	Jay R. Smith
22 13 16.80	Vent Flashing and Caps	Vent Caps Aluminum with lead ring 3" pipe (average)	Jay R. Smith
22 13 19.13	Sanitary Drains	Floor, medium duty, deep flange, 7" diam top 2-3" pipe diam.	Jay R. Smith

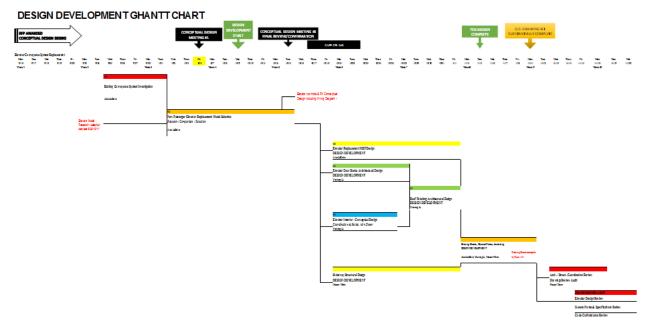
Jay R. Smitl	Floor type, 2" pipe size	Cleanouts	22 05 76.10
Jay R. Smitl	Access cover, wall cleanout, 2" pipe size	Cleanout Tees	22 05 76.20
Eemax, Chronomite, Rheen	all assembly components (not incldg. Backflow preventer, recirc pump)	TANKLESS Light-Commercial Electric Domestic Water Heaters	22 33 33
Мое	Wall hung, 1.6 gpf flush valve, seat	Water Closets - Commercial	22 42 13.13
Moen	Lavatories, wall mounted 20" x20" color: WHITE - same as residential (22 41 16)	Lavatories	22 41 16.13
Advance Tabco, Aero Manufacturing, Elkay	Sink - Kitchen, ctop style, PE on Cl 24"x21" single bowl (cafe barista workstation)	Sinks	22 41 16.16
Advance Tabco, Aero Manufacturing, Elkay	Commercial Sink - Double Bay Stainless Steel	Sinks	22 42 00
Advance Tabco, Aero Manufacturing, Elkay	Mop sink, floor mounted	Service Sinks	22 42 16.40
Holdrigh	Mounting Brackets, Carriers, hangers and supports	Carriers and Supports	22 42 39.30
American Standard, Aero Manufacturing, Sloan Chicago Faucets, Charlotte Pipe and Foundry	Faucets and associated accessories	Faucets and Fttings	22 42 39.10
Sloa	Automatic flush sensor and operator w.c. ADA compliant	Faucets and Fttings	22 42 39.10
Charlotte Pipe and Foundry Co	Natural Gas Piping 2"	Pipe, Steel	22 11 13.44

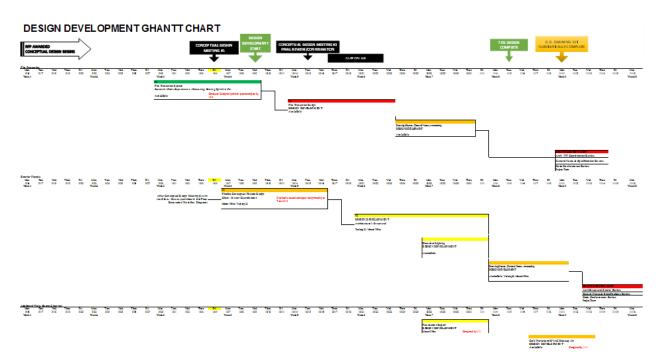
23 63 13	Air-Cooled Condensing Unit	20 ton	Carrier, Daiken
23 74 33.10	Makeup Air Unit	Rooftop unit, 3 ton cooling	Modine, Carrier, Daiken
DIVISION 26:	ELECTRICAL		
26 28 16.20	Safety Switches (Disconnect Switch)	30A Heavy Duty used	Square D , MARS
26 09 23	Lighting Control Devices	Occupany Sensors, Dual-tech, ceiling mounted	System Sensors, Simplex
26 27 26.10	Low Voltage Switching	Relays, 120 V or 277 V Standard	System Sensors, Simplex
26.51.00	Interior Lighting	EL2	GE, Phillips
26.51.00	Interior Lighting	EL4	GE, Phillips
26.51.00	Interior Lighting	CL1	GE, Phillips
26.51.00	Interior Lighting	L8 **LED RETROFIT REPLACEMENT PACKAGE housing E.T.R.	GE, Phillips
26.51.00	Interior Lighting	L4	GE, Phillips
26.51.00	Interior Lighting	L3	GE, Phillips
26.51.00	Interior Lighting	PL1	GE, Phillips
26.51.00	Interior Lighting	PL2	GE, Phillips

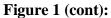
26 52 13	EM LIGHT FIXTURES		
26.56.36	Exterior Building Lighting	Wall mounted, indoor/outdoor, 12 watt LED	
DIVISON 27:	TELECOMMUNCATIONS		
27 51 19.10	Sound System	Microphone	Simplex, Johnson Controls
27 51 19.10	Sound System	Amplifier	Simplex, Johnson Controls
26 05 23.10	Control Cable	Copper, #14 THWN wire with PVC jacket, 2 wires	Simplex, Johnson Controls
27 51 19.10	Sound System	Speakers, Ceiling or Wall	Simplex, Johnson Controls
DIVISION 28:	ELECTRONIC SAFETY & SECURITY	(
28 46 11.21	Carbon-Monoxide Detection Sensors	Smoke and Carbon	Simplex, System Sensors
28 46 11.27	Smoke Detector, ceiling type		Simplex, System Sensors
28 46 11.27	Smoke Detector, Duct type		Simplex, System Sensors
28 46 11.50	Heat Detectors	Rate of rise	Simplex, System Sensors
28 46 21	Fire Alarm Panel	4 zone, conventional not including wires and conduits	Simplex-Grinnell, Firelite
28 46 21.50	Strobe and Horn (ADA-type)		Simplex, System Sensors
28 46 21.50	Manual Pull Station		Simplex, System Sensors
28 46 21.50	Remote duct detector key switch test station		Simplex, System Sensors

Appendix D: Gantt Chart and Work Plan


Figure 1: Design Development Gantt Chart submitted with proposal, and still valid through design development. Activities are categorized by construction discipline.





GENERAL NOTES

Summarv

EXISTING CONDITIONS MODELING

Design Development Schedule

Community Building Rehabilitation I

Project Start Date <u>9/13/2019</u> roject End Date <u>12/13/2019</u>
Projected Completion <u>12/11/2019</u>
Work Plan
10 days
design standards. This work will be performed ongoing 38 days

	s include coordination with codes and design standards. This work proximate time required for code and design standards coordinatio			38 days 11 days	3RD FLOOR RENOVATIONS FIRE PROTECTION UPGRADES - 3RD
design				27 days	ELEVATOR CONVEYANCE SYSTEM
	oduce General Notes drawing sheets has been included as separa	te schedule a	activities since	17 days	EXTERIOR FAÇADE RENOVATION
all project spe	ofications will be included within the design drawings.			11 days	ALTERNATE DESIGNS COORDINATION REVIEW PERIOD
Activity ID	Activity Name	Duration	Start	16 days Finish	Responsible Team Member
IS.GEN01	START	1 days	9/13/2019	9/13/2019	
	ONDITIONS MODELING	/ days	5/10/2015	5/10/2015	
IS.1001	EXISTING BUILDING MODEL - STRUCTURE / ENCLOSURE	7 days	9/16/2019	9/24/2019	Mason White
	SUBSTRUCTURE				
	SUPERSTRUCTURE				
IS.1001.3 IS.1002	BUILDING ENVELOPE	9 days	0/05/0010	9/27/2019	Windows I.I.
	EXISTING BUILDING MODEL - ARCHITECTURAL OPENINGS (DOORS, WINDOWS AND PASS-THROUGH)	3 days	312312013	312112013	Yuniong Li
	INTERIOR WALLS				
IS.1002.3	CEILINGS				
	CASEWORK				
	FINSHES				
IS.1002.6	STAIRCASES EXISTING BUILDING MODEL - MEP-FP	3 days	9/25/2019	9/27/2019	Alecxander LaBelle
	HVAC SYSTEMS	Juayo	012012010	512112015	
	WET-SPRINKLER SYSTEM				
IS.1003.3	ELECTRICAL POWER AND LIGHTING SYSTEMS				
IS.1003.4					
SRD FLOOR IS.1101	RENOVATIONS STRUCTURAL	10 days	9/20/2019	10/11/2019	Mason White
	FLOOR DECK	ro uaya	313012013	10/11/2013	Meson vinite
	BEARING WALLS				
IS.1101.3	STRUCTURAL COLUMNS				
	GENERAL NOTES				
IS.1102	ARCHITECTURAL	15 days	10/14/2019	11/1/2019	Yuniong Li
	OPENINGS (DOORS, WINDOWS AND PASS-THROUGH)				
	INTERIOR WALLS (BEARING / NON-BEARING) * CEILINGS				
	ARCHITECTURAL FINISHES				
IS.1102.5	CASEWORK				
	TYPICAL DETAILS				
IS.1102.7					
IS.1102.8 IS.1102.9					
15.1103	MECHANICAL	5 days	11/4/2019	11/8/2019	Alecxander LaBelle
IS.1103.1	MECHANICAL EQUIPMENT				
	AIR TERMINALS				
IS.1103.3					
	ACCESS PANELS, DAMPERS AND FIRE DAMPERS MECHANICAL PIPING				
	MECHANICAL VALVES				
	ENERGY CONSERVATION				
	TEMPERATURE CONTROLS				
	MECHANICAL SCHEDULES & DIAGRAMS				
	0 TYPICAL DETAILS 1 GENERAL NOTES				
15,1104	ELECTRICAL	5 days	11/11/2019	11/15/2019	Alecxander LaBelle
	ELECTRICAL SERVICE	,.			
IS.1104.2	ELECTRICAL POWER				
	LIGHTING				
	ELECTRICAL PANELS COMMUNICATIONS / TELECOM				
	FIRE ALARM **				
	LIFE SAFETY **				
	GENERAL NOTES				
18.1105	PLUMBING	3 days	11/18/2019	11/20/2019	Alecxander LaBelle
	PLUMBING EQUIPMENT				
	PLUMBING FIXTURES DOMESTIC PIPING				
	WASTE PIPING				
	STORM PIPING				
IS.1105.6	PLUMBING VALVES AND SPECIALTIES				
	PLUMBING SCHEDULES				
15.1105.8	GENERAL NOTES				

					_
FIRE PROTEC	CTION UPGRADES - 3RD FLOOR RENOVATIONS				
IS.1106	WET-SPRINKLER SYSTEM	5 days	11/4/2019	11/8/2019	Alecxan der LaBelle
IS.1106.1	SPRINKLER EQUIPMENT AND CONTROL ROOM				
IS.1106.2	SPRINKLER SYSTEM ZONING				
	STANDPIPES AND MAINS				
IS.1106.4					
IS.1108.5					
IS.1107		6 days	11/11/2019	11/18/2019	Alecxander LaBelle
IS.1107.1		0 days	11/11/2013	11/10/2013	Arechander Labene
	STROBE RELAYS				
	PULL STATIONS				
IS.1107.4					
IS.1107.5					
IS.1107.6					
IS.1108	LIFE SAFETY - OT HER	2 days	11/14/2019	11/15/2019	Alecxander LaBelle
	EXIT SIGNS (ACCESS / EGRESS)				
IS.1108.2	AREA OF RESCUE				
IS.1108.3					
ELEVATOR C	ONVEYANCE SYSTEM REPLACEMENT				
IS.1201	ST RUCT URAL	4 days	9/30/2019	10/3/2019	Ma.son White
IS.1201.1	ELEVATOR SHAFT				
IS.1201.2	FOUNDATION				
IS.1201.3	GENERAL NOTES				
IS.1201.4					
IS.1202	ARCHITECTURAL	4 days	10/28/2019	10/31/2019	Yunlong Li
IS 1202.1					
IS.1202.2					
IS.1203		16 days	10/4/2019	10/25/2019	Alecxander LaBelle
	HYDRAULIC/NON-HYDRAULIC CONVEYANCE SYSTEM		101412010	10/20/2010	
	ELEVATOR CONTROL PANEL / CONTROL ROOM				
	ACCESS AND MAINTENANCE				
IS.1203.3					
		2 -	10/28/2019	40.00.0040	Alecxander LaBelle
IS.1204	ELECTRICAL	3 days	10/28/2019	10/30/2019	Arecxander Labene
IS.1204.1					
	SUMP-PUMP POWER (IF HYDRAULIC)				
IS.1204.3					
IS.1204.4	ELEVATOR COMMUNICATIONS				
IS.1205	PLUMBING	4 days	10/31/2019	11/5/2019	Alecxander LaBelle
IS.1205.1	SUMP PUMP (IF HYDRAULIC), FLOOR DRAIN (NON-HYDR				
13.1200.1	SUMP FUMP (IF HT DRAULIC), FLOOR DRAIN (NON-HTDR	AULIC)			
IS.1205.2	STORM SEWER PIPING				
	CADE RENOVATION				
IS.1301	ARCHITECTURAL	4 days	9/30/2019	10/3/2019	Yunlon g Li
IS.1301.1	DEMOLITION DESIGN OF EXISTING CURTAIN WALL SYS	-	010012010	10/0/2010	ramong 2
	BRICK PATCHING/REPAIR DESIGN	L C M			
		De			
	ROOF PATCHING, ROOF SOFFITS, FASCIAS AND GUTTE	сл			
IS.1301.4					
IS.1301.5					
IS.1301.6		10.1		0.07.00.00	
IS.1302	STRUCTURAL	10 days	9/16/2019	9/27/2019	Ma son White
	DORMER DESIGN WITH REQ'D ROOF REINFORCEMENT				
	BALCONY STRUCTURAL DESIGN				
IS.1302.3					
IS.1303	ELECTRICAL	3 days	10/4/2019	10/8/2019	Alecxander LaBelle
IS.1303.1	EXTERIOR BUILDING LIGHTING				
IS.1303.2	BALCONY LIGHTING				
ALTERNATE	DE SIGN S				
IS.1401	POTENTIAL ALTERNATE DESIGN WORK	11 days	10/4/2019	10/18/2019	Project Team
IS.1401.1	ALTE RNATE #1, #2, #3	-			
IS.1401.2	GENERAL NOTES				
	ON REVIEW PERIOD				
IS.1501	DRAWINGS REVIEW AUDIT	11 days	11/20/19	12/4/2019	Project Team
IS.1501.1	ARCHITECTURAL / MEP-FP DRAWINGS COORDINATION				
IS.1501.2	ARCHITECTURAL / STRUCTURAL COORDINATION REVIE				
IS.1501.2					
IS.1501.3 IS.1501.4					
IS.1501.4 IS.1502	CODE CONFORMANCE REVIEW FINAL REPORTING	E deur	40/5/40	12/14/2040	Project Team
	FINAL REPORTING	5 days	12/0/19	12/11/2019	r loject leam
IS.1502.1	FINAL REPORTING				

*IN COORDINATION WITH STRUCTURAL DESIGN **IN COORDINATION WITH FIRE PROTECTION FIRE ALARM AND LIFE SAFETY DESIGN

Appendix E: Electrical Calculation

VOLTAGE DROP CALCULATIONS – REVIT:

CHCUT NO. PARLE WIKE SLE VUC IT AGE DROP POWER PAULOR STATE LDADD 19 PPE-1 1-#8, 1+#8, 1+#8 2.V 1 Lagging No 2 MOB 3+#0, 1+#10, 1+#0 2.V 1 Lagging No 7 MPB-1 1+#3, 1+#1, 1+#1 6.V 0.93833 Lagging No 1 XEEL-1 3+#1, 1+#1, 1+#1 6.V 0.938183 Lagging No 1 XEEL-1 3+#1, 1+#1, 1+#1 6.V 0.938184 Lagging No 1 XEEL-1 3+#1, 1+#1, 1+#1 6.V 0.938184 Lagging No 1 LEQP 1 3+#1, 1+#1, 1+#1 6.V 0.938184 Lagging No 1 LEQE 1 3+#1, 1+#1, 1+#1 6.V 0.938184 Lagging No 1 LEQE 1 3+#1, 1+#1, 1+#1 0.V 0.8 Lagging No 1 LEQE 1 1+#10, 1+10, 1+#10 0.V 0.95 Lagging No			CI	RCUIT WIRE SCHEDU	LE		
8 PPB-1 1-46, 1-46, 1-46 2 V 1 Lagging No 9 PPB-1 1-48, 1-48, 1-48 2 V 1 Lagging No 7 PPB-1 1-48, 1-48, 1-48 2 V 1 Lagging No 1 XREM-1 3-41, 1-41, 1-41 6 V 0.991834 Lagging No 1 MDB 3-41, 1-41, 1-41 6 V 0.991834 Lagging No 5 MDB 3-41, 1-41, 1-41 6 V 1 Lagging No 1 ECP 1-410, 1-410, 1-410 0 V 1 Lagging No 4 MDB 3-46, 1-46, 4-40 4 V 0.927271 Lagging No 10.12,14 EPB-1 1-410, 1-410 0 V 0.95 Lagging No 2 LPB-1 1-410, 1-410 0 V 0.95 Lagging No 11.24,14 EPB-1 1-410, 1-410 0 V 0.95 Lagging No 1	CIRCUIT NO.	PANEL	WIRE SIZE	VOLTAGE DROP	POWER FACTOR		BALANCED LOAD
2 MDB 3+01 1+41 1+48 1+48 2.V 1 Lagging No 7 PPE-1 1+410 1+10 2.V 1 Lagging No 1 XREM1 3+11 1+10 2.V 1 Lagging No 1 MDB 3+11 1+10 1 0.938918 Lagging No 5 MDB 3+11 1+10 1+10 1 Lagging No 1 ECP 1+110 1+10 <	19	PPB-1	1-#8, 1-#8, 1-#8	2 V	1	Lagging	No
9 PPB-1 1-#8, 1-#8, 1-#6 2 V 1 Lagging No 1 XREM-1 3-#1, 1-#1, 1-#1 6 V 0.991834 Lagging No 1 MDB 3-#1, 1-#1, 1-#1 6 V 0.991834 Lagging No 5 MDB 3-#1, 1-#1, 1-#1 5 V 1 Lagging No 1 ECP 1.#10, 1-#10, 1-#10 0 V 1 Lagging No 16.18,20 EPB-1 3-#10, 1-#10, 1-#10 0 V 0.95 Lagging No 4 MDB 3-#6, 1-#6, 1-#6 4 V 0.972771 Lagging No 10.12,14 EPB-1 1-#10, 1-#10 0 V 0.95 Lagging No 2 LPB-1 1-#10, 1-#10, 1-#10 0 V 0.95 Lagging No 1 LPB-1 1-#10, 1-#10, 1-#10 0 V 0.95 Lagging No 1 LPB-1 1-#10, 1-#10, 1-#10 0 V 0.95 Lagging No	8	PPB-1	1-#6, 1-#6, 1-#6	2 V	1	Lagging	No
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	MDB	3-#10, 1-#10, 1-#10	3 V	0.93363	Lagging	No
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	PPB-1	1-#8, 1-#8, 1-#8	2 V	1	Lagging	No
1 XREM-1 3#10.1.#10.1.#10 1 V 0.999518.4 Lagging No 1 MDB 3.#1.1.#1.1.#1 5 V 0.999518 Lagging No 1 ECP 1.410.1.#10 0 V 1 Lagging No 1 ECP 1.810.1.#10.1.#10 0 V 1 Lagging No 1 ECP 1.8410.1.#10.1.#10 0 V 0.85 Lagging No 3 LPB-1 1.410.1.#10.1.#10 0 V 0.95 Lagging No 10.12.14 ECP.1 1.410.1.#10.1.#10 0 V 0.95 Lagging No 3 LPB-1 1.410.1.#10.1.#10 0 V 0.95 Lagging No 2 LPB-1 1.410.1.#10 2 V 0.95 Lagging No 2 LPB-1 1.410.1.#10 0 V 1 Lagging No 3 LPB-1 1.410.1.#10 0 V 1 Lagging No 3 ECP	7	PPB-1		2 V	1	000	No
1 MDB 3-#1(0, 1#10) 1 V 0.999318 Lagging No 5 MDB 3-#1, 1-#1 5 V 1 Lagging No 1 ECP 1-#10, 1-#10, 1-#10 0 V 1 Lagging No 9 LPB-1 1-#10, 1-#10, 1-#10 0 V 0.8 Lagging No 10,12,14 EPB-1 3-#10, 1-#10, 1-#10 0 V 0.95 Lagging No 10,12,14 EPB-1 1-#10, 1-#10, 1-#10 0 V 0.95 Lagging No 3 LPB-1 1-#10, 1-#10, 1-#10 2 V 0.95 Lagging No 7 LPB-1 1-#10, 1-#10, 1-#10 2 V 0.95 Lagging No 6 LPB-1 1-#10, 1-#10 2 V 0.95 Lagging No 7 LPB-1 1-#10, 1-#10 0 V 0.95 Lagging No 6 LPB-1 1-#10, 1-#10 1 V 1 Lagging No 7	1			6 V	0.991834	000	No
5 MDB 3+f1.1+f1.1 5 V 1 Lagging No 1 ECP 1+f10.1+f10 0 V 1 Lagging No 9 LPB-1 1+f10.1+f10 0 V 0.5 Lagging No 9 LPB-1 1+f10.1+f10 2 V 0.55 Lagging No 10.12.14 EPB-1 3+f10.1+f10.1+f10 0 V 1 Lagging No 5 LPB-1 1+f10.1+f10.1+f10 0 V 0.95 Lagging No 3 LPB-1 1+f10.1+f10.1+f10 2 V 0.95 Lagging No 7 LPB-1 1+f10.1+f10.1+f10 2 V 0.95 Lagging No 6 LPB-1 1+f10.1+f10.1+f10 0 V 1 Lagging No 7 EPB-1 1+f10.1+f10.1+f10 0 V 1 Lagging No 8 EBB-1 1+f10.1+f10.1+f10 0 V 1 Lagging No 1 EPB-1 <	1	MDB		1 V	0.995918	000	No
1 ECP 1.410.1.410.1.410 0.V 1 Lagging No 16,18,20 EPB-1 3.410.1.410.1.410 0.V 0.8 Lagging No 9 LPB-1 1.410.1.410.1.410 0.V 0.95 Lagging No 10,12,14 EPB-1 3.410.1.410.1.410 0.V 0.95 Lagging No 11 LPB-1 1.410.1.410.1.410 0.V 0.95 Lagging No 11 LPB-1 1.410.1.410.1.410 0.V 0.95 Lagging No 2 LPB-1 1.410.1.410.1.410 2.V 0.95 Lagging No 7 LBB-1 1.410.1.410 2.V 0.95 Lagging No 7 LBB-1 1.410.1.410 0.V 0.95 Lagging No 7 LBB-1 1.410.1.410 1.V 1 Lagging No 7 LBB-1 1.410.1.410 1.V 1 Lagging No 3.5 <t< td=""><td>5</td><td>MDB</td><td></td><td>5 V</td><td></td><td></td><td>No</td></t<>	5	MDB		5 V			No
16,18.20 EPB-1 3#10, 1#10, 1#10, 1#10 0.V 0.8 Lagging Yes 9 LPB-1 1#10, 1#10, 1#10 2.V 0.95 Lagging No 10,12,14 EPB-1 3#0, 1#10, 1#10, 1#10 0.V 1 Lagging No 5 LPB-1 1#10, 1#10, 1#10 0.V 0.95 Lagging No 3 LPB-1 1#10, 1#10, 1#10 0.V 0.95 Lagging No 2 LPB-1 1#40, 1#10, 1#10 2.V 0.95 Lagging No 6 LPB-1 1#40, 1#10, 1#10 2.V 0.95 Lagging No 7 EPB-1 1#40, 1#10, 1#10 0.V 1 Lagging No 1 PPB-1 1#40, 1#10, 1#10 0.V 1 Lagging No 3 EPB-1 1#40, 1#410, 1#40 1.V 1 Lagging No 3 EPB-1 1#40, 1#410, 1#410 0.V 1 Lagging No <						000	
9 LPB-1 1+#10, 1+#10, 1+#10 2.V 0.95 Lagging No 4 MDB 3.#6, 1.#6, 1.#6 4.V 0.972771 Lagging No 10,12,14 EPB-1 1.#10, 1.#10, 1.#10 0.V 0.95 Lagging No 3 LPB-1 1.#10, 1.#10, 1.#10 0.V 0.95 Lagging No 11 LPB-1 1.#10, 1.#10, 1.#10 2.V 0.95 Lagging No 2 LPB-1 1.#10, 1.#10, 1.#10 2.V 0.95 Lagging No 3 TPB-1 1.#10, 1.#10, 1.#10 2.V 0.95 Lagging No 4 DPB-1 1.#10, 1.#10, 1.#10 0.V 1 Lagging No 5 EPB-1 1.#10, 1.#10, 1.#10 0.V 1 Lagging No 3.5 EPB-1 1.#40, 1.#10, 1.#10 1.V 1 Lagging No 3.5 ECP1 1.#20, 1.#12, 1.#12 0.V 1 Lagging No	16.18.20	EPB-1		0 V	0.8	000	Yes
				2 V		000	
10.12.14 EPB-1 3#10.1#10.1#10.1#10 0 V 1 Lagging Yes 3 LPB-1 1#10.1#10.1#10.1#10 0 V 0.95 Lagging No 11 LPB-1 1#10.1#10.1#10 2 V 0.95 Lagging No 2 LPB-1 1#10.1#10.1#10 2 V 0.95 Lagging No 7 LPB-1 1#10.1#10.1#10 2 V 0.85 Lagging No 6 LPB-1 1#10.1#10.1#10 0 V 0.85 Lagging No 1 PPB-1 1#10.1#10.1#10 0 V 1 Lagging No 3 LPB-1 1#10.1#10.1#10 1 V 1 Lagging No 3 LPB-1 1#10.1#10.1#10 1 V 1 Lagging No 2 ECP 1#12.1#12.1#12 0 V 1 Lagging No 3 ECP 1#12.1#12.1#12 0 V 1 Lagging No 4 ECP	4	MDB		4 V			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$, ,				
3 LPB-1 1+#10, 1+#10, 1+#10 0 V 0.95 Lagging No 11 LPB-1 1+#10, 1+#10, 1+#10 2 V 0.95 Lagging No 2 LPB-1 1+#10, 1+#10, 1+#10 2 V 0.95 Lagging No 6 LPB-1 1+#10, 1+#10, 1+#10 2 V 0.887244 Lagging No 6 LPB-1 1+#10, 1+#10, 1+#10 0 V 0.955 Lagging No 7 EPB-1 1+#10, 1+#10, 1+#10 0 V 1 Lagging No 8 EPB-1 1+#10, 1+#10, 1+#10 1 V 1 Lagging No 3,5 EPB-1 1+#10, 1+#10, 1+#10 0 V 1 Lagging No 2 ECP 1+#12, 1+#12, 1+#12 0 V 1 Lagging No 3 ECP 1+#12, 1+#12, 1+#12 0 V 1 Lagging No 2 ECP 1+#12, 1+#12, 1+#12 0 V 1 Lagging No 3 ECP 1+#1	· · ·			-	-	000	
				-		000	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				-			
7 LPB-1 1+#10, 1+#10, 1+#10 2 V 0.887244 Lagging No 6 LPB-1 1+10, 1+#10, 1+#10 0 V 0.95 Lagging No 1 PPB-1 1+10, 1+#10, 1+#10 1 V 1 Lagging No 7 EPB-1 1+10, 1+#10, 1+#10 1 V 1 Lagging No 3.5 EPB-1 2+66, 1+66, 1+#6 4 V 1 Lagging No 2 ECP 1+#12, 1+#12, 1+#12 0 V 0.95 Lagging No 3 ECP 1+#12, 1+#12, 1+#12 0 V 1 Lagging No 4 ECP 1+#12, 1+#12 0 V 1 Lagging No 6 ECP 1+#12, 1+#12 0 V 1 Lagging No 13 PPB-1 1+#10, 1+#10 1 V 1 Lagging No 14 PPB-1 1+#10, 1+#10 1 V 1 Lagging No 14 PPB-1	-						
6 LPB-1 1.#10, 1.#10, 1.#10 0 V 0.95 Lagging No 1 PPB-1 1.410, 1.#10, 1.#10 0 V 1 Lagging No 7 EPB-11 1.410, 1.#10, 1.#10 1 V 1 Lagging No 3.5 EPB-11 2.#6, 1.#6, 1.#6 4 V 1 Lagging No 1 EPB-11 1.410, 1.#10, 1.#10 0 V 1 Lagging No 2 ECP 1.412, 1.#12, 1.#12 0 V 0.95 Lagging No 3 ECP 1.#10, 1.#10, 1.#10 0 V 1 Lagging No 4 ECP 1.#12, 1.#12, 1.#12 0 V 1 Lagging No 5 ECP 1.#10, 1.#10, 1.#10 1 V 1 Lagging No 13 PB-1 1.#10, 1.#10, 1.#10 1 V 1 Lagging No 4 PB-1 1.#10, 1.#10, 1.#10 1 V 1 Lagging No 14							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-					000	
7 EPB-1 1.#10, 1.#10, 1.#10 1 V 1 Lagging No 8 EPB-1 1.#10, 1.#10, 1.#10 1 V 1 Lagging No 3,5 EPB-1 1.#6, 1.#6, 1.#6, 1.#4 4 V 1 Lagging No 2 ECP 1.#10, 1.#10, 1.#10, 1.#10 0 V 1 Lagging No 3 ECP 1.#12, 1.#12, 1.#12 0 V 0.95 Lagging No 4 ECP 1.#12, 1.#12, 1.#12 0 V 1 Lagging No 5 ECP 1.#12, 1.#12, 1.#12 0 V 1 Lagging No 2 PB-1 1.#10, 1.#10, 1.#10 1 V 1 Lagging No 14 ECP 1.#10, 1.#10, 1.#10 1 V 1 Lagging No 14 PB-1 1.#10, 1.#10, 1.#10 1 V 1 Lagging No 2 EPB-1 1.#10, 1.#10, 1.#10 1 V 1 Lagging No 4 <td></td> <td></td> <td>-, -, -</td> <td>-</td> <td></td> <td>000</td> <td></td>			-, -, -	-		000	
8 EPB-1 1.#10, 1.#10, 1.#10 1 1 Lagging No 3,5 EPB-1 2.#6, 1.#6, 1.#6 4 1 Lagging Yes 1 EPB-1 1.#10, 1.#10, 1.#10 0 1 Lagging No 2 ECP 1.#12, 1.#12, 1.#12 0 V 0.95 Lagging No 3 ECP 1.#12, 1.#12, 1.#12 0 V 1 Lagging No 4 ECP 1.#12, 1.#12, 1.#12 0 V 1 Lagging No 5 ECP 1.#12, 1.#12, 1.#12 0 V 1 Lagging No 6 ECP 1.#12, 1.#12, 1.#12 0 V 1 Lagging No 13 PPB-1 1.#10, 1.#10, 1.#10 1 V 1 Lagging No 4 PPB-1 1.#10, 1.#10, 1.#10 1 V 1 Lagging No 2 EPB-1 1.#10, 1.#10, 1.#10 1						000	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-					000	-
1 EPB-1 1.#10, 1.#10, 1.#10 0.V 1 Lagging No 2 ECP 1.#12, 1.#12, 1.#12 0.V 0.95 Lagging No 3 ECP 1.#10, 1.#10, 1.#10 0.V 1 Lagging No 4 ECP 1.#12, 1.#12, 1.#12 0.V 1 Lagging No 5 ECP 1.#12, 1.#12, 1.#12 0.V 1 Lagging No 6 ECP 1.#12, 1.#12, 1.#12 0.V 1 Lagging No 13 PPB-1 1.#10, 1.#10 1.V 1 Lagging No 14 PPB-1 1.#10, 1.#10 1.V 1 Lagging No 2 EPB-1 1.#10, 1.#10 1.V 1 Lagging No 14 PPB-1 1.#10, 1.#10 1.V 1 Lagging No 2 EPB-1 1.#10, 1.#10 1.V 1 Lagging No 13,15 EPB-1 1.#						000	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	· · · · · · · · · · · · · · · · · · ·		, ,				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-			-		000	
4ECP1-#12, 1-#12, 1-#120V1LaggingNo5ECP1-#12, 1-#12, 1-#12, 0V1LaggingNo6ECP1-#12, 1-#12, 1-#120V1LaggingNo2PPB-11-#10, 1-#10, 1-#101V1LaggingNo13PPB-11-#10, 1-#10, 1-#101V1LaggingNo14PPB-11-#10, 1-#10, 1-#101V1LaggingNo4PPB-11-#10, 1-#10, 1-#101V1LaggingNo4LPB-11-#10, 1-#10, 1-#100V1LaggingNo2EPB-11-#10, 1-#10, 1-#100V1LaggingNo3PPB-11-#10, 1-#10, 1-#100V1LaggingNo6PPB-11-#10, 1-#10, 1-#100V1LaggingNo6PPB-11-#10, 1-#10, 1-#100V1LaggingNo7ECP1-#10, 1-#10, 1-#100V1LaggingNo17,19,21EPB-13-#10, 1-#10, 1-#100V1LaggingNo17PPB-11-#10, 1-#10, 1-#100V1LaggingNo11PPB-11-#10, 1-#10, 1-#101V1LaggingNo12PPB-11-#10, 1-#10, 1-#101V1LaggingNo14PPB-11						000	
5 ECP 1.#12, 1.#12, 1.#12 0 V 1 Lagging No 6 ECP 1.#12, 1.#12, 1.#12 0 V 1 Lagging No 2 PPB-1 1.#10, 1.#10, 1.#10 1 V 1 Lagging No 13 PPB-1 1.#10, 1.#10, 1.#10 1 V 1 Lagging No 16 PPB-1 1.#10, 1.#10, 1.#10 1 V 1 Lagging No 4 PPB-1 1.#10, 1.#10, 1.#10 1 V 1 Lagging No 4 PB-1 1.#10, 1.#10, 1.#10 0 V 0.95 Lagging No 2 EPB-1 1.#10, 1.#10, 1.#10 0 V 1 Lagging No 3 PB-1 1.#10, 1.#10, 1.#10 0 V 1 Lagging No 6 PB-1 1.#10, 1.#10, 1.#10 0 V 1 Lagging No 7 ECP 1.#10, 1.#10, 1.#10 0 V 1 Lagging No 17,19,21			, ,	-		000	
6 ECP 1.#12, 1.#12, 1.#12 0 V 1 Lagging No 2 PPB-1 1.#10, 1.#10, 1.#10 1 V 1 Lagging No 13 PPB-1 1.#10, 1.#10, 1.#10 1 V 1 Lagging No 16 PPB-1 1.#10, 1.#10, 1.#10 1 V 1 Lagging No 4 PPB-1 1.#10, 1.#10, 1.#10 1 V 1 Lagging No 4 LPB-1 1.#10, 1.#10, 1.#10 1 V 1 Lagging No 2 EPB-1 1.#10, 1.#10, 1.#10 0 V 0.95 Lagging No 13,15 EPB-1 2.#10, 1.#10, 1.#10 0 V 1 Lagging No 6 PPB-1 1.#10, 1.#10, 1.#10 0 V 1 Lagging No 17,19,21 EPB-1 3.#10, 1.#10, 1.#10 0 V 1 Lagging No 17 PECP 1.#10, 1.#10, 1.#10 0 V 1 Lagging No	-	-	, ,	-			
2 PPB-1 1+#10, 1+#10, 1+#10 1 V 1 Lagging No 13 PPB-1 1+#10, 1+#10, 1+#10 1 V 1 Lagging No 16 PPB-1 1+#10, 1+#10, 1+#10 1 V 1 Lagging No 14 PPB-1 1+#10, 1+#10, 1+#10 1 V 1 Lagging No 4 PPB-1 1+#10, 1+#10, 1+#10 1 V 1 Lagging No 2 EPB-1 1+#10, 1+#10, 1+#10 0 V 0.95 Lagging No 13,15 EPB-1 1+#10, 1+#10 0 V 1 Lagging No 6 PPB-1 1+#10, 1+#10 0 V 1 Lagging No 17,9,21 EPB-1 1+#10, 1+#10 0 V 1 Lagging No 17 PPB-1 1+#10, 1+#10 0 V 1 Lagging No 17 PPB-1 1+#10, 1+#10 0 V 1 Lagging No 11 PPB-1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
13 PPB-1 1-#10, 1-#10, 1-#10 1 V 1 Lagging No 16 PPB-1 1-#10, 1-#10, 1-#10 1 V 1 Lagging No 14 PPB-1 1-#10, 1-#10, 1-#10 1 V 1 Lagging No 4 PPB-1 1-#10, 1-#10, 1-#10 1 V 1 Lagging No 4 LPB-1 1-#10, 1-#10, 1-#10 0 V 0.95 Lagging No 2 EPB-1 1-#10, 1-#10, 1-#10 0 V 1 Lagging No 3 PPB-1 1-#10, 1-#10, 1-#10 0 V 1 Lagging No 6 PPB-1 1-#10, 1-#10, 1-#10 0 V 1 Lagging No 17, 19,21 EPB-1 3-#10, 1-#10, 1-#10 0 V 1 Lagging No 17 PPB-1 1-#10, 1-#10, 1-#10 0 V 1 Lagging No 21				-		000	-
16 PPB-1 1-#10, 1-#10, 1-#10 1 1 Lagging No 14 PPB-1 1-#10, 1-#10, 1-#10 1 V 1 Lagging No 4 PPB-1 1-#10, 1-#10, 1-#10 1 V 1 Lagging No 4 LPB-1 1-#10, 1-#10, 1-#10 0 V 0.95 Lagging No 2 EPB-1 1-#10, 1-#10, 1-#10 0 V 1 Lagging No 13,15 EPB-1 2-#10, 1-#10, 1-#10 0 V 1 Lagging No 6 PPB-1 1-#10, 1-#10, 1-#10 0 V 1 Lagging No 17,19,21 EPB-1 3-#10, 1-#10, 1-#10 0 V 1 Lagging No 20 PPB-1 1-#10, 1-#10, 1-#10 0 V 1 Lagging No 11 PPB-1 1-#10, 1-#10, 1-#10 1 Lagging No 21 PPB-1 1-#10, 1-#10, 1-#10						000	
14 PPB-1 1.#10, 1.#10, 1.#10 1 1 Lagging No 4 PPB-1 1.#10, 1.#10, 1.#10 1 V 1 Lagging No 4 LPB-1 1.#10, 1.#10, 1.#10 0 V 0.95 Lagging No 2 EPB-1 1.#10, 1.#10, 1.#10 0 V 1 Lagging No 13,15 EPB-1 1.#10, 1.#10, 1.#10 0 V 1 Lagging No 3 PPB-1 1.#10, 1.#10, 1.#10 0 V 1 Lagging No 6 PPB-1 1.#10, 1.#10, 1.#10 0 V 1 Lagging No 7 ECP 1.#10, 1.#10, 1.#10 0 V 1 Lagging No 17, 19,21 EPB-1 3.#10, 1.#10, 1.#10 2 V 1 Lagging No 17 PPB-1 1.#10, 1.#10, 1.#10 2 V 1 Lagging No 18 PPB-1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
4 PPB-1 1-#10 1 V 1 Lagging No 4 LPB-1 1-#10, 1-#10, 1-#10 0 V 0.95 Lagging No 2 EPB-1 1-#10, 1-#10, 1-#10 0 V 1 Lagging No 3 PPB-1 1-#10, 1-#10, 1-#10 0 V 1 Lagging No 6 PPB-1 1-#10, 1-#10, 1-#10 0 V 1 Lagging No 7 ECP 1-#10, 1-#10, 1-#10 0 V 1 Lagging No 7 ECP 1-#10, 1-#10, 1-#10 0 V 1 Lagging No 7 ECP 1-#10, 1-#10, 1-#10 0 V 1 Lagging No 17,19,21 EPB-1 3-#10, 1-#10, 1-#10 0 V 0.8 Lagging No 17 PPB-1 1-#10, 1-#10, 1-#10 2 V 1 Lagging No 11 PPB-1 1-#8, 1-#8 2 V 1 Lagging No 15 PPB-1							
4 LPB-1 1-#10, 1-#10, 1-#10 0 V 0.95 Lagging No 2 EPB-1 1-#10, 1-#10, 1-#10 0 V 1 Lagging No 13,15 EPB-1 2-#10, 1-#10, 1-#10 0 V 1 Lagging No 3 PPB-1 1-#10, 1-#10, 1-#10 0 V 1 Lagging No 6 PPB-1 1-#10, 1-#10, 1-#10 0 V 1 Lagging No 7 ECP 1-#10, 1-#10, 1-#10 0 V 1 Lagging No 17,19,21 EPB-1 3-#10, 1-#10, 1-#10 0 V 0.8 Lagging No 17 PPB-1 1-#10, 1-#10, 1-#10 0 V 1 Lagging No 11 PPB-1 1-#1,0, 1-#10, 1-#10 2 V 1 Lagging No 11 PPB-1 1-#1,0, 1-#10, 1-#10 1 V 1 Lagging No 15 </td <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-						
2 EPB-1 1-#10, 1-#10, 1-#10 0 V 1 Lagging No 13,15 EPB-1 2-#10, 1-#10, 1-#10 0 V 1 Lagging Yes 3 PPB-1 1-#10, 1-#10, 1-#10 1 V 1 Lagging No 6 PPB-1 1-#10, 1-#10, 1-#10 0 V 1 Lagging No 7 ECP 1-#10, 1-#10, 1-#10 0 V 1 Lagging No 17,19,21 EPB-1 3-#10, 1-#10, 1-#10 0 V 0.8 Lagging No 17 PPB-1 1-#1/0, 1-#1/0, 1-#1/0 2 V 1 Lagging No 21 PPB-1 1-#1/0, 1-#1/0, 1-#1/0 2 V 1 Lagging No 11 PPB-1 1-#1/0, 1-#1/0, 1-#1/0 1 V 1 Lagging No 22 PPB-1 1-#1/0, 1-#1/0 1 V 1 Lagging No 11 PPB-1 1-#1/0, 1-#1/0 1 V 1 Lagging No						000	
13,15 EPB-1 2.#10, 1.#10, 1.#10 0 V 1 Lagging Yes 3 PPB-1 1.#10, 1.#10, 1.#10 1 V 1 Lagging No 6 PPB-1 1.#10, 1.#10, 1.#10 0 V 1 Lagging No 7 ECP 1.#10, 1.#10, 1.#10 0 V 1 Lagging No 17,19,21 EPB-1 3.#10, 1.#10, 1.#10 0 V 0.8 Lagging No 20 PPB-1 1.#1/0, 1.#1/0, 1.#1/0 2 V 1 Lagging No 17 PPB-1 1.#1/0, 1.#1/0, 1.#1/0 2 V 1 Lagging No 21 PPB-1 1.#8, 1.#8, 1.#8 2 V 1 Lagging No 5 PPB-1 1.#10, 1.#10, 1.#10 1 V 1 Lagging No 22 PPB-1 1.#42, 1.#2, 1.#2 2 V 1 Lagging No 5 PPB-1 1.#10, 1.#10, 1.#10 1 V 1 Lagging No			, ,	-		000	
3 PPB-1 1.#10, 1.#10, 1.#10 1 Lagging No 6 PPB-1 1.#10, 1.#10, 1.#10 0 V 1 Lagging No 7 ECP 1.#10, 1.#10, 1.#10 0 V 1 Lagging No 17,19,21 EPB-1 3.#10, 1.#10, 1.#10 0 V 0.8 Lagging Yes 20 PPB-1 1.#1/0, 1.#1/0, 1.#1/0 2 V 1 Lagging No 17 PPB-1 1.#1/0, 1.#1/0, 1.#1/0 2 V 1 Lagging No 21 PPB-1 1.#10, 1.#10, 1.#10 2 V 1 Lagging No 5 PPB-1 1.#10, 1.#10, 1.#10 1 V 1 Lagging No 22 PPB-1 1.#2, 1.#2, 1.#2 2 V 1 Lagging No 5 PPB-1 1.#10, 1.#10, 1.#10 1 V 1 Lagging No 22 PPB-1 1.#							
6 PPB-1 1-#10, 1-#10 0 V 1 Lagging No 7 ECP 1-#10, 1.#10, 1.#10 0 V 1 Lagging No 17,19,21 EPB-1 3-#10, 1.#10, 1.#10 0 V 0.8 Lagging Yes 20 PPB-1 1.#1/0, 1.#1/0, 1.#1/0 2 V 1 Lagging No 17 PPB-1 1.#1/0, 1.#1/0, 1.#1/0 2 V 1 Lagging No 21 PPB-1 1.#8, 1.#8, 1.#8 2 V 1 Lagging No 11 PPB-1 1.#10, 1.#10, 1.#10 1 V 1 Lagging No 5 PPB-1 1.#2, 1.#2, 1.#2 2 V 1 Lagging No 15 PPB-1 1.#10, 1.#10, 1.#10 1 V 1 Lagging No 22,24,26 EPB-1 3.#10, 1.#10, 1.#10 0 V 0.8 Lagging No 12 PPB-1 1.#6, 1.#6, 1.#6 2 V 1 Lagging No <				-		000	
7 ECP 1-#10, 1-#10 0 V 1 Lagging No 17,19,21 EPB-1 3-#10, 1-#10, 1-#10 0 V 0.8 Lagging Yes 20 PPB-1 1-#1/0, 1-#1/0, 1-#1/0 2 V 1 Lagging No 17 PPB-1 1-#1/0, 1-#1/0, 1-#1/0 2 V 1 Lagging No 21 PPB-1 1-#8, 1-#8, 1-#8 2 V 1 Lagging No 11 PPB-1 1-#10, 1-#10, 1-#10 1 V 1 Lagging No 5 PPB-1 1-#10, 1-#10, 1-#10 1 V 1 Lagging No 15 PPB-1 1-#10, 1-#10, 1-#10 1 V 1 Lagging No 22 PPB-1 1-#10, 1-#10, 1-#10 1 V 1 Lagging No 22.4,26 EPB-1 3-#10, 1-#10, 1-#10 0 V 0.8 Lagging No 12 PPB-1 1-#6, 1-#6, 1-#6 2 V 1 Lagging No						000	
17,19,21 EPB-1 3-#10, 1-#10, 1-#10 0 V 0.8 Lagging Yes 20 PPB-1 1-#1/0, 1-#1/0, 2 V 1 Lagging No 17 PPB-1 1-#1/0, 1-#1/0, 2 V 1 Lagging No 21 PPB-1 1-#10, 1-#1/0, 1-#1/0 2 V 1 Lagging No 21 PPB-1 1-#8, 1-#8, 1-#8 2 V 1 Lagging No 11 PPB-1 1-#10, 1-#10, 1.#10 1 V 1 Lagging No 5 PPB-1 1-#2, 1-#2, 1-#2 2 V 1 Lagging No 15 PPB-1 1-#10, 1-#10, 1-#10 1 V 1 Lagging No 22 PPB-1 1-#10, 1-#10, 1-#10 2 V 1 Lagging No 22,24,26 EPB-1 3-#10, 1-#10, 1-#10 0 V 0.8 Lagging No 12 PPB-1 1-#6, 1-#6, 1-#6 2 V 1 Lagging No 12 PPB-1				-		Lagging	
20 PPB-1 1-#1/0, 1-#1/0 2 V 1 Lagging No 17 PPB-1 1-#1/0, 1-#1/0 2 V 1 Lagging No 21 PPB-1 1-#8, 1-#8, 1-#8 2 V 1 Lagging No 11 PPB-1 1-#10, 1-#10, 1-#10 1 V 1 Lagging No 5 PPB-1 1-#2, 1-#2, 1-#2 2 V 1 Lagging No 15 PPB-1 1-#10, 1-#10, 1-#10 1 V 1 Lagging No 22 PPB-1 1-#10, 1-#10, 1-#10 1 V 1 Lagging No 22 PPB-1 1-#10, 1-#10, 1-#10 2 V 1 Lagging No 22,24,26 EPB-1 3-#10, 1-#10, 1-#10 0 V 0.8 Lagging No 12 PPB-1 1-#6, 1-#6, 1-#6 2 V 1 Lagging No 12 PPB-1 3-#10, 1-#10, 1-#10 0 V 1 Lagging Yes 8,10				-			
17 PPB-1 1-#1/0, 1-#1/0 2 V 1 Lagging No 21 PPB-1 1-#8, 1-#8, 1-#8 2 V 1 Lagging No 11 PPB-1 1-#10, 1-#10, 1.#10 1 V 1 Lagging No 5 PPB-1 1-#2, 1-#2, 1.#2 2 V 1 Lagging No 15 PPB-1 1-#10, 1.#10, 1.#10 1 V 1 Lagging No 22 PPB-1 1-#10, 1.#10, 1.#10 1 V 1 Lagging No 22,24,26 EPB-1 3-#10, 1.#10, 1.#10 0 V 0.8 Lagging Yes 10 PPB-1 1-#6, 1.#6, 1.#6 2 V 1 Lagging No 12 PPB-1 1-#10, 1.#10 2 V 1 Lagging No Feed Through Lugs PPB-1 3-#10, 1.#10, 1.#10 0 V 1 Lagging Yes 1 LPB-1 2-#10, 1.#10, 1.#10 0 V 1 Lagging Yes	· · ·		, ,			00 0	
21 PPB-1 1-#8, 1-#8, 1-#8 2 V 1 Lagging No 11 PPB-1 1-#10, 1-#10, 1-#10 1 V 1 Lagging No 5 PPB-1 1-#2, 1-#2, 1-#2 2 V 1 Lagging No 15 PPB-1 1-#10, 1-#10, 1-#10 1 V 1 Lagging No 22 PPB-1 1-#10, 1-#10, 1-#10 1 V 1 Lagging No 22,24,26 EPB-1 3-#10, 1-#10, 1-#10 0 V 0.8 Lagging Yes 10 PPB-1 1-#6, 1-#6, 1-#6 2 V 1 Lagging No 12 PPB-1 1-#10, 1-#10, 1-#10 2 V 1 Lagging No Feed Through Lugs PPB-1 3-#10, 1-#10, 1-#10 0 V 1 Lagging Yes 8,10 LPB-1 2-#10, 1-#10, 1-#10 0 V 1 Lagging No 18 PPB-1 1-#10, 1-#10 1 V 1 Lagging No							
11 PPB-1 1-#10, 1-#10, 1-#10 1 V 1 Lagging No 5 PPB-1 1-#2, 1-#2, 1-#2 2 V 1 Lagging No 15 PPB-1 1-#10, 1-#10, 1-#10 1 V 1 Lagging No 22 PPB-1 1-#10, 1-#10, 1-#10 1 V 1 Lagging No 22,24,26 EPB-1 3-#10, 1-#10, 1-#10 0 V 0.8 Lagging Yes 10 PPB-1 1-#6, 1-#6, 1-#6 2 V 1 Lagging No 12 PPB-1 1-#10, 1-#10, 1-#10 2 V 1 Lagging No Feed Through Lugs PPB-1 3-#10, 1-#10, 1-#10 0 V 1 Lagging Yes 8,10 LPB-1 2-#10, 1-#10, 1-#10 0 V 1 Lagging Yes 1 LPB-1 1-#10, 1-#10 0 V 1 Lagging Yes 1 LPB-1 1-#10, 1-#10 0 V 1 Lagging No							
5 PPB-1 1-#2, 1-#2, 1-#2 2 V 1 Lagging No 15 PPB-1 1-#10, 1-#10, 1-#10 1 V 1 Lagging No 22 PPB-1 1-#1/0, 1-#1/0, 1-#1/0 2 V 1 Lagging No 22,24,26 EPB-1 3-#10, 1-#10, 1-#10 0 V 0.8 Lagging Yes 10 PPB-1 1-#6, 1-#6, 1-#6 2 V 1 Lagging No 12 PPB-1 1-#10, 1-#10, 1-#10 2 V 1 Lagging No Feed Through Lugs PPB-1 3-#10, 1-#10, 1-#10 0 V 1 Lagging Yes 8,10 LPB-1 2-#10, 1-#10, 1-#10 0 V 1 Lagging Yes 1 LPB-1 1-#10, 1-#10 0 V 1 Lagging Yes 8,10 LPB-1 1-#10, 1-#10 0 V 1 Lagging No 18 PPB-1 1-#10, 1-#10 1 V 1 Lagging No						00 0	No
15 PPB-1 1-#10, 1-#10, 1-#10 1 V 1 Lagging No 22 PPB-1 1-#1/0, 1-#1/0, 1-#1/0 2 V 1 Lagging No 22,24,26 EPB-1 3-#10, 1-#10, 1-#10 0 V 0.8 Lagging Yes 10 PPB-1 1-#6, 1-#6, 1-#6 2 V 1 Lagging No 12 PPB-1 1-#10, 1-#10, 1-#10 2 V 1 Lagging No Feed Through Lugs PPB-1 3-#10, 1-#10, 1-#10 0 V 1 Lagging Yes 8,10 LPB-1 2-#10, 1-#10, 1-#10 0 V 1 Lagging Yes 1 LPB-1 1-#10, 1-#10 0 V 1 Lagging Yes 8,10 LPB-1 2-#10, 1-#10, 1-#10 0 V 1 Lagging No 18 PPB-1 1-#10, 1-#10 1 V 1 Lagging No			, ,				
22 PPB-1 1-#1/0, 1-#1/0, 1-#1/0 2 V 1 Lagging No 22,24,26 EPB-1 3-#10, 1-#10, 1-#10 0 V 0.8 Lagging Yes 10 PPB-1 1-#6, 1-#6, 1-#6 2 V 1 Lagging No 12 PPB-1 1-#10, 1-#10, 1-#10 2 V 1 Lagging No Feed Through Lugs PPB-1 3-#10, 1-#10, 1-#10 0 V 1 Lagging Yes 8,10 LPB-1 2-#10, 1-#10, 1-#10 0 V 1 Lagging Yes 1 LPB-1 1-#10, 1-#10 0 V 1 Lagging Yes 8,10 LPB-1 1-#10, 1-#10 0 V 1 Lagging Yes 1 LPB-1 1-#10, 1-#10 0 V 1 Lagging No 18 PPB-1 1-#10, 1-#10 1 V 1 Lagging No						000	
22,24,26 EPB-1 3-#10, 1-#10, 1-#10 0 V 0.8 Lagging Yes 10 PPB-1 1-#6, 1-#6, 1-#6 2 V 1 Lagging No 12 PPB-1 1-#10, 1-#10, 1-#10 2 V 1 Lagging No Feed Through Lugs PPB-1 3-#10, 1-#10, 1-#10 0 V 1 Lagging Yes 8,10 LPB-1 2-#10, 1-#10, 1-#10 0 V 1 Lagging Yes 1 LPB-1 1-#10, 1-#10 0 V 1 Lagging Yes 1 LPB-1 1-#10, 1-#10 0 V 1 Lagging Yes 1 LPB-1 1-#10, 1-#10 0 V 1 Lagging No 18 PPB-1 1-#10, 1-#10 1 V 1 Lagging No		1					
10 PPB-1 1-#6, 1-#6, 1-#6 2 V 1 Lagging No 12 PPB-1 1-#10, 1-#10, 1-#10 2 V 1 Lagging No Feed Through Lugs PPB-1 3-#10, 1-#10, 1-#10 0 V 1 Lagging Yes 8,10 LPB-1 2-#10, 1-#10, 1-#10 0 V 1 Lagging Yes 1 LPB-1 1-#10, 1-#10 0 V 1 Lagging No 18 PPB-1 1-#10, 1-#10 1 V 1 Lagging No							
12 PPB-1 1-#10, 1-#10, 1-#10 2 V 1 Lagging No Feed Through Lugs PPB-1 3-#10, 1-#10, 1-#10 0 V 1 Lagging Yes 8,10 LPB-1 2-#10, 1-#10, 1-#10 0 V 1 Lagging Yes 1 LPB-1 1-#10, 1-#10 0 V 1 Lagging Yes 1 LPB-1 1-#10, 1-#10 0 V 1 Lagging No 18 PPB-1 1-#10, 1-#10 1 V 1 Lagging No	22,24,26	EPB-1	, ,		0.8	Lagging	Yes
Feed Through Lugs PPB-1 3-#10, 1-#10, 1-#10 0 V 1 Lagging Yes 8,10 LPB-1 2-#10, 1-#10, 1-#10 0 V 1 Lagging Yes 1 LPB-1 1-#10, 1-#10 0 V 1 Lagging Yes 1 LPB-1 1-#10, 1-#10 0 V 1 Lagging No 18 PPB-1 1-#10, 1-#10 1 V 1 Lagging No			, ,			Lagging	No
8,10 LPB-1 2-#10, 1-#10, 1-#10 0 V 1 Lagging Yes 1 LPB-1 1-#10, 1-#10 0 V 1 Lagging No 18 PPB-1 1-#10, 1-#10 1 V 1 Lagging No	12	PPB-1	1-#10, 1-#10, 1-#10	2 V	1	Lagging	No
1 LPB-1 1-#10, 1-#10, 1-#10 0 V 1 Lagging No 18 PPB-1 1-#10, 1-#10 1 V 1 Lagging No	Feed Through Lugs	PPB-1	3-#10, 1-#10, 1-#10	0 V	1	Lagging	
1 LPB-1 1-#10, 1-#10, 1-#10 0 V 1 Lagging No 18 PPB-1 1-#10, 1-#10 1 V 1 Lagging No	8,10	LPB-1	2-#10, 1-#10, 1-#10	0 V	1		Yes
18 PPB-1 1-#10, 1-#10 1 V 1 Lagging No	1	LPB-1	1-#10, 1-#10, 1-#10	0 V	1	Lagging	
23 PPB-1 1-#10 1-#10 2 V 1 Langing No	18	PPB-1	1-#10, 1-#10, 1-#10	1 V	1		No
	23	PPB-1	1-#10, 1-#10, 1-#10	2 V	1	Lagging	No

DESIGN ILLUMINANCE

TRANSFORMER SIZING		
Volts (3-phase)	208	
Current Draw (A)	177	
kVA	64 kVA	kVA = (V * I * 1.732) 1000
Added Transformer Power Required:	75 kVA	

Figure E-1: Added power demand on the building's transformer from new design.

Project Lighting Summary

Project:	COMMERCIAL BUILDING REHABILITATION I
Engineer:	Alecxander LaBelle
Date:	10/28/2019

REQUIRED ILLUMINANCE

	Maint.			Fixtures	Watts		Maint.			Luminares	Watts
Room / Area	(fc)	Width	Length	Required	per SqFt	Room / Area	(fc)	Width	Length	Specified	per SqFt
Retail-1	10	48	55.5	12	0.6	Retail-1	11			12	0.6
Retail-2	10	20	72	6	0.5	Retail-2	10			6	0.5
Retail-3	10	18	90.5	7	0.6	Retail-3	12			8	0.6
Retail-4	10	20	25	3	0.8	Retail-4	15			3	0.8
Retail-5	10	19	33	3	0.6	Retail-5	12			3	0.6
Café Seating-1	10	23	49.25	7	0.9	Café Seating-1	39			56	1.2
Café Seating-2	10	12.25	49.25	16	1.6	Café Seating-2	39			18	1.8
Café Workroom	10	19	16.25	1	0.5	Café Workroom	49			4	2.1
North Bathroom	10	15	6.66	1	0.8	North Bathroom	15			1	0.8
South Bathroom	10	14.5	6.66	1	0.8	South Bathroom	16			1	0.8
Utility Room	10	9	15	2	0.5	Utility Room	11			2	0.5
		Project Av			0.7			Project A			0.

Figure E-2: Comparison of required illuminance per 2018-IBC and design illuminance.

Room Width (ft)	48	Lamp Lumen Depreciation	0.8
Room Length	55.5	Luminaire Dirt Depreciation	0.8
Luminaire Height	10.75	Ballast Factor	0.95
Lumens per Lamp	3205	Work Plane (ft)	2.5
Watts Per Lamp	64		
Coefficient of Utilization	0.6		
alculated	1.6		
alculated Room Cavity Ratio	1.6		
		Luminaires Required	
Room Cavity Ratio		Luminaires Required	10
Room Cavity Ratio	:)		10 2
Room Cavity Ratio laintained Illuminance (fc Number of Luminaires	;) 12 2	Desired Illuminance (fc)	

Figure E-3: Retail-1 Lighting backup calculations.

Quick Lighting Calculator

riables		Constants	
Room Width (ft)	20	Lamp Lumen Depreciation	0.8
Room Length	72	Luminaire Dirt Depreciation	0.8
Luminaire Height	10.75	Ballast Factor	0.95
Lumens per Lamp	3205	Work Plane (ft)	2.5
Watts Per Lamp	64		
Coefficient of Utilization	0.63		
liculated			
Iculated Room Cavity Ratio	2.6		
Room Cavity Ratio		Luminaires Required	
Room Cavity Ratio		Luminaires Required	10
Room Cavity Ratio intained Illuminance (fc) Number of Luminaires			10
Alculated Room Cavity Ratio Antained Illuminance (fc) Number of Luminaires Lamps per Luminaire Maintained Illuminance (fc)	6	Desired Illuminance (fc)	

Figure E-4: Retail-2 Lighting backup calculations.

ariables		Constants	
Room Width (ft)	18	Lamp Lumen Depreciation	0.8
Room Length	90.5	Luminaire Dirt Depreciation	0.8
Luminaire Height	10.75	Ballast Factor	0.95
Lumens per Lamp	3205	Work Plane (ft)	2.5
Watts Per Lamp	64		
Coefficient of Utilization	0.63		
alculated	27		
Room Cavity Ratio	2.7	Luminairea Demoired	
Room Cavity Ratio	2.7	Luminaires Required	
Room Cavity Ratio	2.7	Luminaires Required	10
Room Cavity Ratio aintained Illuminance (fc)			
Room Cavity Ratio aintained Illuminance (fc) Number of Luminaires	8	Desired Illuminance (fc)	10 2 7

Figure E-5: Retail-3 Lighting backup calculations.

ariables		Constants	
Room Width (ft)	20	Lamp Lumen Depreciation	0.8
Room Length	25	Luminaire Dirt Depreciation	0.8
Luminaire Height	10.75	Ballast Factor	0.95
Lumens per Lamp	3205	Work Plane (ft)	2.5
Watts Per Lamp	64		
Coefficient of Utilization	0.63		
	0.03		
	3.7		
alculated Room Cavity Ratio	3.7	Luminaires Required	
alculated	3.7	Luminaires Required	10

Figure E-6: Retail-4 Lighting backup calculations

ariables		Constants	
Room Width (ft)	19	Lamp Lumen Depreciation	0.8
Room Length	33	Luminaire Dirt Depreciation	0.8
Luminaire Height	10.75	Ballast Factor	0.95
Lumens per Lamp	3205	Work Plane (ft)	2.5
Watts Per Lamp	64		
Coefficient of Utilization	0.63		
alculated			
	3.4		
alculated Room Cavity Ratio	3.4	Luminaires Required	
alculated	3.4	Luminaires Required	11
alculated Room Cavity Ratio aintained Illuminance (fc)	3.4	·	10
alculated Room Cavity Ratio aintained Illuminance (fc) Number of Luminaires	3.4	Desired Illuminance (fc)	

Figure E-7: Retail-5 Lighting backup calculations.

Quick Lighting Calculator

Variables		Constants	
Room Width (ft)	23	Lamp Lumen Depreciation	1
Room Length	49.25	Luminaire Dirt Depreciation	0.8
Luminaire Height	9.25	Ballast Factor	0.95
Lumens per Lamp	2400	Work Plane (ft)	2.5
Watts Per Lamp	24		
0 m	0.00		
Coefficient of Utilization	0.89		
	2.2		
Calculated	2.2	Luminaires Required	
Calculated Room Cavity Ratio	2.2	Luminaires Required	10
Calculated Room Cavity Ratio Maintained Illuminance (fc)	2.2		10
Calculated Room Cavity Ratio Maintained Illuminance (fc) Number of Luminaires	2.2	Desired Illuminance (fc)	

Figure E-8: Café Seating-1 Lighting backup calculations.

Room Width (ft)	12.25	Lamp Lumen Depreciation	
Room Length	49.25	Luminaire Dirt Depreciation	0.8
Luminaire Height	11	Ballast Factor	0.95
Lumens per Lamp	1800	Work Plane (ft)	2.5
Watts Per Lamp	60		
Coefficient of Utilization	0.61		
alculated			
alculated Room Cavity Ratio	4.3		
		Luminaires Required	
Room Cavity Ratio		Luminaires Required	
Room Cavity Ratio	ic)		
Room Cavity Ratio laintained Illuminance (f Number of Luminaires	ic) 28 1	Desired Illuminance (fc)	1(

Figure E-9: Café Seating-2 Lighting backup calculations.

ariables		Constants	
Room Width (ft)	19	Lamp Lumen Depreciation	1
Room Length	16.25	Luminaire Dirt Depreciation	0.8
Luminaire Height	9	Ballast Factor	0.95
Lumens per Lamp	5200	Work Plane (ft)	2.5
Watts Per Lamp	80		
Coefficient of Utilization	0.48		
algulated			
alculated Room Cavity Ratio	3.7		
Room Cavity Ratio		Luminaires Required	
Room Cavity Ratio		Luminaires Required	10
Room Cavity Ratio aintained Illuminance (fc)			
aintained Illuminance (fc) Number of Luminaires	4	Desired Illuminance (fc)	10 2 1

Figure E-10: Café Workroom lighting backup calculations.

ariables		Constants	
Room Width (ft)	15	Lamp Lumen Depreciation	0.8
Room Length	6.66	Luminaire Dirt Depreciation	0.8
Luminaire Height	9	Ballast Factor	0.9
Lumens per Lamp	2600	Work Plane (ft)	2.5
Watts Per Lamp	40		
Coefficient of Utilization	0.40		
alculated	0.48		
	7.0		
alculated Room Cavity Ratio	7.0	Luminaires Required	
alculated	7.0	Luminaires Required	12
alculated Room Cavity Ratio aintained Illuminance (fc)	7.0		
alculated Room Cavity Ratio aintained Illuminance (fc) Number of Luminaires	7.0	Desired Illuminance (fc)	

Figure E-11: North bathroom lighting backup calculations.

Quick Lighting Calculator Variables Constants Room Width (ft) 14.5 0.8 Lamp Lumen Depreciation Room Length 6.66 Luminaire Dirt Depreciation 0.8 9 0.95 Luminaire Height Ballast Factor 2600 Work Plane (ft) 2.5 Lumens per Lamp Watts Per Lamp 40 Coefficient of Utilization 0.48 Calculated **Room Cavity Ratio** 7.1 Maintained Illuminance (fc) Luminaires Required 1 12 Number of Luminaires Desired Illuminance (fc) Lamps per Luminaire 2 Lamps per Luminaire 2 Maintained Illuminance (fc) 16 **Fixtures Required** 1 0.8 Watts per Sq.Ft. 0.8 Watts per Sq.Ft.

Figure E-12: South Bathroom Lighting backup calculations

Room Width (ft)	9	Lamp Lumen Depreciation	8.0
Room Length	15	Luminaire Dirt Depreciation	8.0
Luminaire Height	10	Ballast Factor	0.95
Lumens per Lamp	3049.9	Work Plane (ft)	2.5
Watts Per Lamp	32		
Coefficient of Utilization	0.4		
alculated	67		
alculated Room Cavity Ratio	6.7		
Room Cavity Ratio		Luminaires Required	
Room Cavity Ratio		Luminaires Required Desired Illuminance (fc)	10
Room Cavity Ratio aintained Illuminance (fc)			10
Room Cavity Ratio aintained Illuminance (fc) Number of Luminaires		Desired Illuminance (fc)	

Figure E-13: Utility room lighting backup calculations.

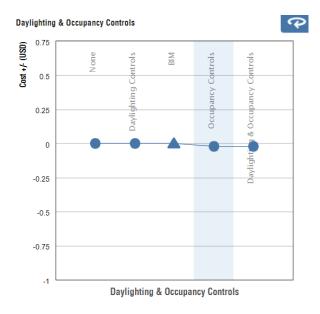


Figure E-14. Daylight

<u>Appendix F</u>: Fire Protection Calculations

Table F-1: Selected design parameters for third floor sprinkler system. These parameters are specified on Sheet F0.1.

DESIGN GENERAL REQUIREMI	ENTS:		
Maximum Spacing per NFPA:			
Light Hazard, Non-Combust	ible, Unobstructed		220 SF
Ordinary I Hazard			130 SF
Design Sprinkler Spacing:	15' x 12'	180 SF	
15' x 12' Optimal spacing in re	elation to new ductwo	ork	

Table F-2: Third floor rooms categorized by hazard type with comparison of minimum sprinkler heads to design sprinkler heads.

Sprinkler Hazard Zon	es per NFPA 13:					
	Farthest Hydraulic					
	Design Area of					Sprinkler
Room	Hazard Classification	Operation		Sprinkler Heads	Heads	
Cafe Seating	Light	1500 SF		1695 SF	8	9
Retail	Light	1500 SF		6629 SF	30	37
Bathrooms	Light	1500 SF		182 SF	1	1
Workroom	Ordinary I	2000 SF		222 SF	2	2
Utility Room	Ordinary I	2000 SF		121 SF	1	1

	Space So	chedule	
Name	Area	Level	Volume
Retail	805 SF	Level 3	8853.36 CF
Retail	853 SF	Level 3	9379.45 CF
Café Seating	806 SF	Level 3	8860.99 CF
Café Seating	889 SF	Level 3	9775.72 CF
Retail	450 SF	Level 3	4953.88 CF
Retail	455 SF	Level 3	5007.22 CF
Retail	422 SF	Level 3	4641.03 CF
Retail	434 SF	Level 3	4778.95 CF
Retail	479 SF	Level 3	5272.24 CF
Retail	390 SF	Level 3	4285.26 CF
Retail	414 SF	Level 3	4555.32 CF
Retail	371 SF	Level 3	4083.31 CF
Retail	463 SF	Level 3	5092.66 CF
Retail	451 SF	Level 3	4961.31 CF
Retail	243 SF	Level 3	2672.43 CF
Retail	312 SF	Level 3	3432.60 CF
Utility Room	121 SF	Level 3	1328.80 CF
Retail	87 SF	Level 3	952.20 CF
North Bathroom	92 SF	Level 3	1016.85 CF
South Bathroom	90 SF	Level 3	987.81 CF
Workroom	222 SF	Level 3	2447.23 CF

Table F-3: Third floor room coverage area breakdown.

Table F-4: Water demand based on NFPA 13 Coverage Area method and using

	a Curve:		
Light	Area of Sprinkler Operati	8506 SF	
	Density (gpm/SF)	0.1	
	GPM Demanded:		850.6 gpm
Ordinary I	Area of Sprinkler Operati	343 SF	
	Density (gpm/SF)	0.12	
	GPM Demanded:		41.2 gpm
THIRD FLOOR TOTA	AL DEMAND:		
Approximato Flow - Don	rity x Aroa x Overflow Pate + Here Allowan	60	
Approximate Flow = Dens	sity x Area x Overflow Rate + Hose Allowan	ce	
Overflow Rate:	1.3		
Overflow Rate: Hose Allowance	1.3 250.0 gpm		
	250.0 gpm	mate Flow:	1409.3 gpm
Hose Allowance	250.0 gpm Approxi	mate Flow:	1409.3 gpm
Hose Allowance FIRST FLOOR TOTA	250.0 gpm Approxi	mate Flow:	1409.3 gpm 1409.3 gpm
Hose Allowance FIRST FLOOR TOTA Assuming equal dema	250.0 gpm Approxi L DEMAND: nd and hazard classification areas	mate Flow:	
Hose Allowance FIRST FLOOR TOTA	250.0 gpm Approxi L DEMAND: nd and hazard classification areas	mate Flow:	

THE UNIVERSITY

Nominal K-Factor [gpm/(psi) ^{1/2}]	Nominal K-Factor [L/min/(bar) ^{1/2}]	K-Factor Range [gpm/(psi) ^{1/2}]	K-Factor Range [L/min/(b ar) ^{1/2}]	Percent of Nominal K-5.6 Discharge	Thread Type
1.4	20	1.3–1.5	19–22	25	1/2 in. NPT
1.9	28	1.8-2.0	26–29	33.3	1/2 in. NPT
2.8	40	2.6-2.9	38–42	50	1/2 in. NPT
4.2	61	4.0-4.4	57-63	75	1/2 in. NPT
5.6	81	5.3-5.8	76-84	100	1/2 in. NPT

Table F-5: NFPA 13 Density/Area Curve for Coverage Area sprinkler operation.

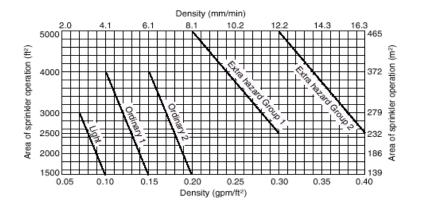


Figure F-1: Sprinkler discharge characteristics per NFPA 13 Table 6.2.3.1.

THE UNIVERSITY

SPRINKLER ROOM SCHEDULE							
Room	Hazard Classification	Min. Required Sprinkler Heads	Design Sprinkler Heads				
Cafe Seating	Light	8	9				
Retail	Light	30	37				
Bathrooms	Light	1	1				
Workroom	Ordinary I	2	2				
Utility Room	Ordinary I	1	1				

Table F-6: Minimum required sprinkler heads per NFPA 72 and design quantity of sprinkler heads per room.

 Table F-7: Critical sprinkler head characteristics.

Critical	Critical Path Sprinkler Head				
К	K 5.6				
Q	Q 20 gpm				
Р	12.76 psi				

THE UNIVERSITY

Path	Q (gpm)	D (in.)	Length of Straight Pipe (ft.) (a)	Fitting and Devices	Qty.	Equivalent Length (fittings) (b)	Total Equivalent Lengths (a+b)	Friction Loss (psi/ft)	Pressure Friction (psi)	P (psi)	Notes	
1-2	20	1	9.5	Tee or Cross	1	5	23	0.1643	3.6961	12.7551	P2 =	12.76 ps
1-2	20	1	9.5	90 Elbow	4	2	25	0.1045	5.0901	12.7551	К =	K = 5.6
											Q2 =	20
2-3		2	19	90 Elbow	1	5	34	0.0203	0.6885	12.7551		
2-5	40	2	19	Tee or Cross	1	10	54	0.0203	0.0805	12.7551		
											Q3 =	40
3-4		6	12.256	TEE OR CROSS	3	30	102	0.0009	0.0964	13.4436		
	137.44											
											Q4 =	60
4-5		6	12	TEE OR CROSS	2	30	72	0.0018	0.1327	13.5401		
	197.44											
											Q5 =	60
5-6		6	12	TEE OR CROSS	1	30	42	0.0030	0.1265	13.6728		
	257.44											
											Q6 =	40
6A		6	84	TEE OR CROSS	5	30	234	0.0039	0.9206	13.7993		
	297.44											
											QRISER ^ =	1112
				CHECK VALVE	1	32						
RISER	1409.44	6	40	GLOBE VALVE	2	1	248	0.0700	17.3478	14.7199		
RISER	1409.44	D	40	90 Elbow	6	14	248	0.0700	17.3478	14.7199	QBASEMENT * =	1410
				Tee or Cross	3	30						
				90 Elbow	2	14						
BASEMENT**	2819.44	c	32	Tee or Cross	1	30	128	0.2523	32.2900	32.0677		
DAGEIVIEINI	2819.44	6	32	Alarm Check Valve	1	32	128	0.2523	52.2900	32.0077		
				Double Gate Valve	1	6						
							PF	RESSURE LOSSES		19.31 psi		

Tuble 1 0, 1 lobbule 1055 culculations for entitial path spinklet near furthest spinklet near from set the main, must main 20 gpin	Table F-8: Pressure loss calcul	lations for critical path sprinkler h	head (farthest sprinkler head from	service main; must main 20 gpm).
---	---------------------------------	---------------------------------------	------------------------------------	----------------------------------

* Assumption: Total first floor demand same as third floor demand (equivalent areas of protection, equivalent hazard types, etc.). No documentation could be found on the existing sprinkler system. **Additional alarm check valve in basement (seriving first floor) assumed to remain for economical purposes. Therefore, the first floor alarm check valve impacts the critical path on the third floor. ^ Overflow Rate and Hose Allowance added at Riser to account for friction losses at peak demand

$$p = \frac{4.52Q^{185}}{C^{1.85}d^{4.87}} \qquad Q = K \times P^{1/2}$$

Appendix G: Architectural Designs

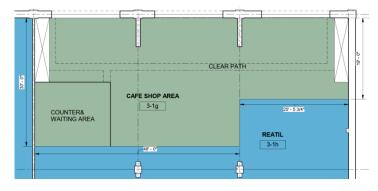


Figure G-1: Café area option 1

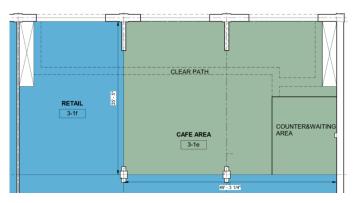


Figure G-2: Café area option 2

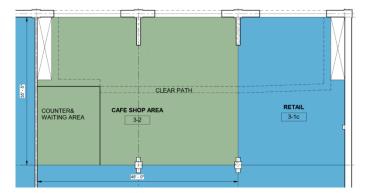


Figure G-3: Café area option 3

Figure G-4: Skydeck design

<u>Appendix H</u>: Elevator System

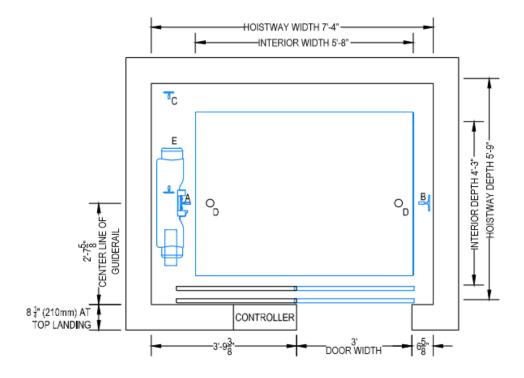


Figure H-1. Hostway plan view

Table H-1	. Hoist	beam	and	life	line	vertical	forces
-----------	---------	------	-----	------	------	----------	--------

HOISTBEAM & LIFE LINE VERTICAL FORCES (lbf)							
REACTION LOCATION A B C D							
Z DIRECTION	4800	4700	5000	5000			

<u>Appendix M</u>: Mechanical Calculation

HEATING & COOLING LOADS CALCULATION

EXHAUST VENTILATION

	Area (SF)	Volume (CF)	Airflow Rate (Air Changes/hr	Exhaust Airflow Rate	Ventilation	
)	(CFM/SF)	Airflow (CFM)	
North Bathroom:	92 SF	1016.85 CF			70 CFM	PER 2018 IMC CHAPTER 4 TABLE 403.3.1.1 MINIMUM VENTILATION RATES (70 CFM PER W.C./URINAL - ONLY OPERATIONAL WHEN ROOM OCCUPIED)
South Bathroom:	90 SF	987.81 CF			70 CFM	PER 2018 IMC CHAPTER 4 TABLE 403.3.1.1 MINIMUM VENTILATION RATES (70 CFM PER W.C./URINAL - ONLY OPERATIONAL WHEN ROOM OCCUPIED)
Workroom (Exhaust Hood)	293 SF	3217.81 CF		0.7	450 CFM	STANDARD SUGGESTED PRACTICE FOR COMMERCIAL KITCHEN EXHAUST HOODS: 150 CFM/LN FT OF STOVETOP. HOOD ASSUMED TO BE WALL MOUNTED WITH EDGE PANELS.
Utility Room (Wind Turbine EF)	121 SF	1328.80 CF		0.04	5 CFM	PER 2018 IMC CHAPTER 4 VENTILATION SECTION 403.2 MINIMUM VENTILATION REQUIREMENT
Elevator Shaft Hoistway	76 SF	3929.19 CF	12		786 CFM	PER 2012 IBC - AIR CHANGES PER HOUR IN ELEVATOR SHAFTS SHALL BE A MINIMUM OF 12 AIR CHANGES PER AN HOUR
						Air Changes / hCFM x 60 min Volume of Room
						Elevator Shaft Parameters:
						Height (Bot. of Pit to T.O. Shaft) 51.44 ft
						Area: 76.384 SF
						Width: 8.8
						Depth: 8.68
						Volume: 3929.19 CF

Figure M-1. Ventilation loads

AIR TERMINALS

SUPPLY AIR	Total Cooling Airflow	Qty. Diffusers	Airflow per Diffuser
Supply - Retail:	4967	24	207 CFM
Supply - Café Seating:	1350	9	150 CFM
Supply - Workroom:	232	1	232 CFM
Supply - North Bathroom:	84	1	84 CFM
Supply - South Bathroom:	82	1	82 CFM

Figure M-2. Supply air

RETURN AIR	Total Cooling Airflow	Qty. Diffusers	Airflow per Diffuser
Return - Retail (North)	2106 CFM	1	2106 CFM
Return - Retail (East)	2106 CFM	1	2106 CFM
Return - Retail (South)	2106 CFM	1	2106 CFM
Return - Workroom	232 CFM	1	232 CFM
Return - North Bathroom	84	1	84 CFM
Return - South Bathroom	82	1	82 CFM

Figure M-3. Design airflow per return grille type – return airflow equals supply airflow.

EXHAUST AIR	Total Exhaust Airflow	Qty. Diffusers	Airflow per Diffuser**
Exhaust - North Bathroom	70 CFM	1	70 CFM
Exhaust - South Bathroom	70 CFM	1	70 CFM
Exhaust - Utility Room	5 CFM	1	5 CFM
Exhaust - Workroom (kitchen hood)	450 CFM	1	450 CFM
Exhaust - Elev. Shaft (Pressure Relief Damper)	786	1	786 CFM

SUDDI V AIDELOW

Figure M-4. Exhaust air grilles and louvers design airflow. All exhaust airflow values are in accordance with 2018 International Mechanical Code

Duct	Airflow (CFM)	in. wg-100ft	Velocity (FPM)	Equivalent Diameter (in.)	Design Diameter (in.)	Rectangular Size (in. x in.)
B1-A	1449	0.08	951.3	16.7	17	
B1-B	828	0.08	828.5	13.5	14	
B2-A	1449	0.08	951.3	16.7	17	
B2-B	828	0.08	828.5	13.5	14	
B3-A	1537	0.08	965.2	17.1	17	
B3-B	828	0.08	828.5	13.5	14	
B3-C	450	0.08	711.8	10.8	11	
B4-A	1744	0.08	995.6	17.9	18	
B4-B	957	0.08	858.8	14.3	14	
B4-D	166	0.08	553.3	7.4	8	
B4-D TAKEOFFS	84	0.08	464.7	5.8	6	
B4-E	450	0.08	711.8	10.8	11	
M3	1449	0.08	951.3	16.7	17	
M2	2898	0.08	1127.1	21.7	22	
M1	4435	0.08	1249.9	25.5	26	
SUPP-MAIN	6261	0.08	1358.5	29.1	29	30 x 24
MAU-1 SUPP-DROP	682	0.08	789.6	12.6	12	20 x 7
MAU-1 RETURN-DROP	232	0.08	602.4	8.4		6 x 10

DUCTWORK SIZING

Figure M-5. Ductwork size

RETURN AIRFLOW

Duct	Airflow (CFM) in. w	in. wg-100ft	Velocity (FPM)	Equivalent		Rectangular Size
Duct	AIFIIOW (CFM)	m. wg-100m	velocity (FFWI)	Diameter (in.)	Diameter (in.)	(in. x in.)
RB-1	2338	0.08	1069.6	20	20	20
RB-1 TAKEOFF	232	0.08	602.4	8.4	8	
RB-1	2338	0.08	1069.6	20	20	
RM-2	4528	0.08	1256.2	25.7	26	
RM-2 TAKEOFF	84	0.08	464.7	5.8	б	
RM-1	4528	0.08	1256.2	25.7	26	
RB3-A	2106	0.08	1042.6	19.2	20	20 x 15
RB3-B TAKEOFF	82	0.08	461.8	5.7	б	
RB3-B	2188	0.08	1052.4	19.5	20	
RETURN-MAIN	6716	0.08	1381.7	29.9	30	23 x 33

Figure M-6. Return air

EXHAUST AIRFLOW

Duct	Airflow (CFM)	in. wg-100ft	Velocity (FPM)	Equivalent	Design Rect.	Rectangular Size
Duct	AITHOW (CFM)	III. wg-100ft	velocity (FFWI)	Diameter (in.)	Size (in. x in.)	(in. x in.)
EB-1	70	0.08	443.3	5.4	5 x 5	5 x 5
EB-2	70	0.08	443.3	5.4	5 x 5	5 x 5
EB-3	140	0.08	529.8	7	8 x 5	8 x 5
EK-1	450	0.08	711.8	10.8	10 x 10	10 x 10
EK-2	5	0.08	219.06	2		

Figure M-7. Exhaust airflow

Y|A|M

Refrigerant Piping Schedule					_
					Тор
Comments	System Name	Schedule/Type	Diameter	Length	Elevation
LIQUID-LINE	Refrigerant Piping	К	1"		5.986 -0' - 11 5/8
LIQUID-LINE	Refrigerant Piping	K	1"		0.213 4' - 8 3/4"
LIQUID-LINE	Refrigerant Piping	K	1"		5.47 4' - 6 3/8"
SUCTION LINE	Refrigerant Piping	K	1"		13.273 1' - 1 3/4"
SUCTION LINE	Refrigerant Piping	K	2"		5.337 4' - 9 3/4"
SUCTION LINE	Refrigerant Piping	K	1"		0.377 4' - 9 1/2"
SUCTION LINE	Refrigerant Piping	K	2"		3.236 4' - 7 1/2"
LIQUID-LINE	Refrigerant Piping	K	1"		13.305 13' - 0 5/8"
LIQUID-LINE	Refrigerant Piping	K	1"		1.692 0' - 9"
SUCTION LINE	Refrigerant Piping	K	1"		14.418 1' - 1 3/8"
LIQUID-LINE	Refrigerant Piping	K	1"		22.203 1' - 0 1/2"
SUCTION LINE	Refrigerant Piping	K	1"		22.505 13' - 1 3/8"
SUCTION LINE	Refrigerant Piping	K	1"		0.216 3' - 6 3/4"
SUCTION LINE	Refrigerant Piping	K	1"		8.367 11' - 11 3/8
SUCTION LINE	Refrigerant Piping	K	1"		0.587 12' - 0 3/8"
SUCTION LINE	Refrigerant Piping	K	1"		10.4 12' - 0 7/8"
SUCTION LINE	Refrigerant Piping	K	1"		0.832 12' - 11 1/8
LIQUID-LINE	Refrigerant Piping	K	1"		10.735 12' - 0 7/8"
LIQUID-LINE	Refrigerant Piping	K	1"		0.763 12' - 10 1/4
LIQUID-LINE	Refrigerant Piping	K	1"		0.224 3' - 2 5/8"
LIQUID-LINE	Refrigerant Piping	K	1"		0.235 3' - 2 1/2"
LIQUID-LINE	Refrigerant Piping	K	1"		1.044 3' - 2 3/8"
LIQUID-LINE	Refrigerant Piping	Κ	1"		8.732 11' - 11 1/2
	SUCT	ION-LINE TOTA	L LENGTH	[79.548 ft.
		ID I INF TOTAL	IENCTH		70 602 ft

Table M-1. Refrigerant piping schedule

LIQUID-LINE TOTAL LENGTH: 70.602 ft.

NOTE: MAXIMUM EQUIVALENT PIPE LENGTH FOR STANDARD SIZING METHOD IS 75'-0". ACCU PIPING EXCEEDS THIS CONSTRAINT.

LONG LINE SET APPLICATIONS WILL BE USED FOR SIZING THE REFRIGERANT PIPING.

Y|A|M

Tons	Line		Maxir	num	Fotal	Equiv	alent	Leng	th	Velocity		
10115	Size	75	100	125	150	175	200	225	250	FPM		
1.5	5/16	75	90	85	85	80	75	75	70	223		
1.5	3/8	75	100	95	95	95	95	90	90	138		
2.0	5/16	75	80	75	70	65	60	55	50	297		
2.0	3/8	75	95	90	90	85	85	85	80	184		
2.5	3/8	75	90	85	85	80	80	75	70	230		
2.5	1/2	75	100	100	100	100	95	95	95	123		
3.0	3/8	75	85	85	80	75	70	65	60	276		
5.0	1/2	75	100	100	95	95	95	90	90	148		
3.5	3/8	75	80	75	70	65	60	55	50	322		
3.5	1/2	75	95	95	95	95	90	90	90	173		
4.0	3/8	75	75	70	60	55	45	40	35	368		
4.0	1/2	75	95	95	95	90	90	90	85	198		
5.0	3/8	70	60	50	40	30	20	10	0	*460		
5.0	1/2	75	95	90	90	85	85	80	80	247		
7.5	1/2	75	80	80	75	70	65	60	55	370		
1.5	5/8	75	95	95	95	90	90	90	85	231		
10	5/8	75	90	90	85	85	80	80	75	307		
10	3/4	75	100	95	95	95	95	90	90	210		
12.5	5/8	75	85	85	80	75	70	65	65	384		
12.5	3/4	75	95	95	90	90	90	90	85	262		
15	3/4	75	95	90	90	85	85	85	80	315		
15	7/8	75	100	95	95	95	95	95	90	222		
20	3/4	75	85	85	80	75	70	70	65	419		
20	7/8	75	95	95	90	90	90	85	85	296		
25	7/8	75	95	90	90	85	85	80	75	371		
20	1-1/8	75	100	100	100	95	95	95	95	217		

Table M-2. Long Line Set sizing chart used from Carrier design guide for sizing of refrigerant lines.

*Note: Exceeds recommended maximum velocity of 400 fpm, consider noise when selecting this pipe size.

SELECTED REFRIGERANT PIPE SIZES:		
SUCTION LINE	3/4"	
LIQUID LINE	1/2"	

TABLE 5: R-410A LIQUID LINE, MAXIMUM RISE CHART

NATURAL GAS PIPE SIZING

Table M-3. Calculated static pressure for exhaust fan systems on third floor serving the bathrooms (EF-1 and EF-2) and Workroom

		(H-x/EF-3).			
GENERAL INFORMATION:					
	Sizing Method:	Longest Length Method (2018 UPC Chap	oter 12 Section 1	215.1 and Tables	1215.2(1) through Table 1215.2(36)
	Assumption:	Standard Delivery pressure above 0.7 w. Table A1215.2(1) will be used for pipe size		er MidAmerican E	nergy), therefore 2018 UPC
	Assumption:	Nat Gas stovetop (GST) will not require d	0	ry standard comme	ercial cooktop
PATH	PIPE LENGTH	-			
TO GST	238 ft.	-			
TO TWH-1	201 ft.				
TO FU-1	197 ft.				
TO MAU-1	224 ft.	> FARTHEST PIPE ROUTE			
3RD FLOOR SUPPLY FROM GAS ME					
**(NOTE 3RD FLOOR SUPPLY ADDED					
TO ALL LISTED PATHS ABOVE)	192 ft.				
TAG	NAME	OUTPUT CAPACITY / DEMAND	Conversion Factor	Demand (CF/h)	
FU-1	COMMERCIAL FURNACE	222000 btu/h	1062	209 CF/h	
GST	GAS STOVETOP	18000 btu/h	1062	17 CF/h	PEAK DEMAND (ALL
TWH-1	TANKLESS WATER HEATER	428400 btu/h	1062	403 CF/h	BURNERS ON)
MAU-1	MAKEUP AIR UNIT	5500 btu/h	1062	5 CF/h	
MAO-1	MAREOF AIR UNIT	5500 blu/11	1002	5 CF/II	
	•	TOTAL E	DEMAND (CF/h)	635 CF/h	
Pipe Sizing:					
Path:	Demand Load (CF/h)	Length:	Selected Size	Length (ft):	238 ft.
Gas Meter to 3rd Floor (FU-1 branch o	635 CF/h	191.63	2" To	otal Demand (CF/h	n): 635 CF/h
3rd Floor to TWH-1 Branch off	420 CF/h	9 ft.	2"		* -
TWH-1 Branch off to GST	17 CF/h	47 ft.	2"		
MAU-1 Branch	5 CF/h	33 ft.	2"	2" SCHED 40 ME	ETALLIC PIPE SELECTED BASED ON
	UNITS OFF MAIN BRANCH	33 ft. I LINES SHALL BE SIZED BASED ON ITS FOR FURNISHED EQUIPMENT.	2"		ETALLIC PIPE SELECTED BASED (E 1215.2(1) [NFPA 54: TABLE 6.2(B

M7 of M13

Y|A|M

Table M-4. MAU-1 STATIC HEAD CALCULATION

		T: COMMERCIA 0. : MAU-1	L BUILDIN	G REHAF	BILITATIO	NI		ILDING FLOOR			S .				ne : 12/5/2 Revision : (NOTE: MARE-UP ARS UPPLY AND RETURN ONLY HAS ONE UPCT FOR EACH MAN. HEAR DUCT TARGOFFS TO DIFFLISERS ARE SIZED FOR DIFFLISER NIET. THEREFORE, DIFFLISER SIZE. AND NIET SIZE WERE SELECTED BASED ON EQUIVALENT DIAMETER													
GENERAL DATA						***INCI	LUDE REFRI	IGERANT I	LINE SIZE	SCHEDUL	E IN DWG	S FOR IN FIELD /	ADJUSTMENTS																	
Design Airflow:	75deg Air at 50%	RH and 1 atm	DUCT M.	ATERIAL				G. I. Shee	1																					
Fluid Density	0.0731	/b/ft ³	ROUGHN	ESS COEF.				0.93					32.1740	b = 1 slur																
Fluid viscosity	0.0441	b/t-h	ALTITUE	Œ				179	Meters	588	feet																			
Specific Heat	0.24	Btu/lb-degF	ALTITUE	DE COEF.				0.000																						
nergy Factor	1.05	Btu/h-degF-c/m	AIR DEN	SITY				0.00227	slugs/CF																					
DUCTS PRESSURE LOSSE	S BOARD																													
										POSITIVE	AIR											NEGAT	TVE AIR						1	
ECTION		SUPP-DROP																RETURN-DRO)P										TOT	TAL
LOW	CFM	682		T	T	T								T				232												
ENGTH	ft	5.00																9.00									_		5.0	ft.
RAM.	in	12.60																8.40											1	
DIAM. EQUIV.	in.	12.60															_	8.40	1										1	
VIDTH	in	20	-	-	-	-				I						-	-	6	I										-	
IEIGHT	in	7	+	+		-		-	-	<u> </u>	-		_	+		-	+	10	I					_	_				-	
AREA VELOCITY	sqin	124.69	_	-	-	-								_				55.42				_							-	
	FPM	787.62	-	-	-	-	_	-	-	_			-			_	_	602.84				_		-	_	_				
'D per ft. dact 'D x LENGTH	in w.g100 ft in w.g.	0.08		_	-	_	_			_						_	_	0.08				_		_						0 Pa
ELBOW 30°	Co 0.07	SUPP-MAIN																RETURN-DRO)P										TOT	TAL
ELBOW 45° ROUNDED (d < 1')	0.2																													
ELBOW 45° ROUNDED (d > 1')	0.05																													
ELBOW 45°, SHARP	0.5																													
ELBOW 90°, SHARP	13	4																												
ELBOW 90° ROUNDED (d < 1)	0.5				_													3				_		_					-	
LBOW 90° ROUNDED (d > 1)	0.25	2	+	-	-	-	_	-	-	<u> </u>				-		-	+	-	I					_	_				-	
THE 45° (FLOW TO BRANCH) THE 90°	0.3		-	-	+	+		-	-	<u> </u>	-			+		-	1	+	+	+	+			+	_			_	4	
ND THE	15		+	+	+	-		-	-		-	-		-		-	+	-	<u> </u>			-				_			-	
IND THE IRANCH THE	0.05		+	+	+	-	-			+				+		-	+	+	+	-				-	-	_		_	-	
IRANGH THE IRANSITION	0.03	4	+	+	+	+		1	1	1	+	-	1	+	-	+	1		+	+	1	+		1	_				1	
CONTRACTION	0.05		1	1	+	1		1	1	1	1		1	1		1	1	t i	1	1				1					1	
WIRE MESH	0.04																	i											1	
TOTAL	Co	6.63	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.81	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0		0.0	8.	44
DUCTS PD	psf (lb/SF)	1.30	0.00	0.00		0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.0			0.0		
PRESSURE DROP	Pa	1.70	0.00	0.00		0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.0			0.00		
SPECIAL FITTING PRESSU	URE DROPS		P	D(PA)	QTY	_	TOTAL	1		STATIC	PRESSURE	AT 100%					6 W.g 8 Pa	7												

DESIGNATION	PD(PA)	QTY	TOTAL
FIRE DAMPER	10	0	0
VOLUME DAMPER	10	2	20
SUPPLY GRILLE	15	1	15
RETURN GRILLE	10	1	10
FRESH AIR LOUVER	20		0
VAV BOX	100		0
ALUMINUM HLTER	80	2	160
BAG FILTER	150		0
PLENUM BOX	50		0
DUCT HEATER	5		0
DISC EXHAUST VALVE	70		0
REXIBLE DUCT CONNECTION	15	2	30
SOUND ATTENUATOR	75	-	
TOTAL			235 Pa

	0.95 W.g
STATIC PRESSURE AT 100%	238 Pa
FLOW AT 100%	682 CFM
* DUCTS PRESSURE DROP :	3 Pa
* FITTING PRESSURE DROP :	235 Pa

Table M-5. FU-1 STATIC HEAD CALCULATION

	PROJECT UNIT.NO	F: COMMERCI	AL BUILD	ING REH.	ABILITAT	ION I		ILDING : FLOOR			L.				ate : 12/5/20 Revision : 0												
GENERAL DATA						***INCLU	UDE REFRI	IGERANTI	INE SIZE	SCHEDUL	E IN DWG	S FOR IN FIELD AI	JUSTMENTS														
Design Airflow:	75deg Air at 50% RH a	ind 1 atm	DUCT MA	TERIAL				G. I. Shee	t																		
Fluid Density	0.0731	lb/ft*3	ROUGHN	ESS COEF.				0.93																			
luid viscosity	0.0441	lb/ft-h	ALTITUD	E				179	Meters	588	feet																
pecific Heat	0.24	Btu/lb-degF	ALTITUD	E COEF.			1	0.000																			
		Btu/h-degF-																									
nergy Factor	1.05	cfm	AIR DENS	SILA			-	0.00234	slugs/CF																		
OUCTS PRESSURE LOSSE	S BOARD																										
										POSITIV	EAIR											NEGAT	TVE AIR				1
CTION		SUPP-MAIN	MI	B4-A	B4-D	B4-C	B4-B	B4-E	B3-A	B3-B	B3-C	M2	B2-A	B2-B	M3	B1-A	B1-B	RB-1	RB-1 TAKEOFF	RM-2	RM-2 TAKEOFF	RB3-A	RB3-B TAKEOFF	RB3-B	RETURN-MAIN		TOT
LOW	CFM	6715	4435	1826.0	166	232	1039	450	1537	657	450	2898	1449	828	1449	1449	828	2338	232	4528	84	1656	82	2188	6261		
																			1								1
ENGTH	ft	9.91	22.50	39.02	23.24	13.60	21.81	19.11	37.73	21.81	20.50	27.55	39.02	38.00	18.10	39.04	38.00	14.10	15.10	16.10	17.10	19.10	20.10	21.10	22.10		333.
IAM.	in	24.00	22.00	18.00	8.00	8.00	14.00	11.00	17.00	14.00	11.00	22.00	17.00	14.00	17.00	17.00	14.00	16.00	8.00	26.00	6.00	19.00	6.00	20.00	26.00		1
IAM. EQUIV.	in.	24.00	22.00	18.00	8.00	8.00	14.00	11.00	17.00	14.00	11.00	22.00	17.00	14.00	17.00	17.00	14.00	16.00	8.00	26.00	6.00	19.00	6.00	20.00	26.00		1
IDTH	in																										1
BGHT	in]
REA	sqin	452.39	380.13				153.94		226.98			380.13	226.98	153.94				201.06	50.27	530.93	28.27	283.53	28.27	314.16	530.93]
ELOCITY	FPM	2137.45	1680.04	1033.30	475.55	664.63	971.92	681.87	975.10	614.58	681.87	1097.81	919.27	774.55	919.27	919.27	774.55	1674.47	664.63	1228.10	427.81	841.06	417.62	1002.91	1698.12		1
D per ft. duct	in w.g100 ft	0.24	0.17	0.09	0.05	0.10	0.10	0.07	0.08	0.04	0.07	0.08	0.07	0.07	0.07	0.07	0.07	0.25	0.10	0.08	0.06	0.05	0.06	0.07	0.14		
	in w.g100 ft in w.g.						0.10 2.26	0.07	0.08 3.11	0.04	0.07 1.46	0.08	0.07 2.87	0.07	0.07 1.33	0.07 2.88	0.07	0.25 3.49	0.10	0.08	0.06	0.05	0.06	0.07 1.50	0.14 3.11		49.63
	-	0.24	0.17 3.81	3.35	1.23	1.36	2.26	1.36	3.11	0.95										1.22	1.05						49.63
	in wg. Co	0.24	0.17 3.81	3.35	1.23	1.36		1.36	3.11	0.95	1.46				1.33	2.88		3,49		1.22		1.04					49.63 TOT
D x LENGTH	in wg.	0.24 2.38	0.17 3.81	3.35	1.23	1.36	2.26	1.36	3.11	0.95	1.46	2.08	2.87	2.56	1.33	2.88	2.56	3,49	151	1.22	1.05	1.04	1.18	1.50	3.11		
D x LENGTH LBOW 30° LBOW 45° ROUNDED (d < 1')	in wg. Co 0.07 0.2	0.24 2.38	0.17 3.81	3.35	1.23	1.36	2.26	1.36	3.11	0.95	1.46	2.08	2.87	2.56	1.33	2.88	2.56	3,49	151	1.22	1.05	1.04	1.18	1.50	3.11		
D x LENGTH LBOW 30° LBOW 45° ROUNDED (d < 1')	in wg. Co 0.07	0.24 2.38	0.17 3.81	3.35	1.23	1.36	2.26	1.36	3.11	0.95	1.46	2.08	2.87	2.56	1.33	2.88	2.56	3,49	151	1.22	1.05	1.04	1.18	1.50	3.11		
2 x LENGTH LBOW 30 ^a LBOW 45 ^a ROUNDED (d < l') LBOW 45 ^a ROUNDED (d > l') LBOW 45 ^a , SHARP	in wg. Co 0.07 0.2 0.05 0.5	0.24 2.38	0.17 3.81	3.35	1.23	1.36	2.26	1.36	3.11	0.95	1.46	2.08	2.87	2.56	1.33	2.88	2.56	3,49	151	1.22	1.05	1.04	1.18	1.50	3.11		
D x LENGTH LEOW 30 ¹ LEOW 45 ² ROUNDED (d < 1 ¹) LEOW 45 ² ROUNDED (d > 1 ¹) LEOW 45 ² ROUNDED (d > 1 ²) LEOW 45 ² , SILARP LEOW 90 ³ , SILARP	in wg. Co 0.07 0.2 0.05 0.5 1.3	0.24 2.38	0.17 3.81	3.35	1.23	1.36	2.26	1.36 B4-E	3.11	0.95	1.46 B3-C	2.08	2.87	2.56	1.33	2.88	2.56	3,49	151	1.22	1.05	1.04	1.18	1.50	3.11		
D a LENGTH LBOW 30 ⁴ LBOW 45 ⁶ ROUNDED (d < l') LBOW 45 ⁶ ROUNDED (d > l') LBOW 45 ⁶ ROUNDED (d > l') LBOW 90 ⁶ SUBARP LBOW 90 ⁶ ROUNDED (d < l)	Co 0.07 0.2 0.05 0.5 1.3 0.5	0.24 2.38 SUPP-MAIN 4	0.17 3.81	3.35	1.23	1.36	2.26	1.36	3.11	0.95	1.46	2.08	2.87	2.56	1.33	2.88	2.56	3.49 RB-1	151	1.22	1.05	1.04	1.18	1.50	3.11		
Da LENGTH LBOW 30° LBOW 45° ROUNDED (d < 1') LBOW 45° ROUNDED (d < 1') LBOW 45° ROUNDED (d < 1') LBOW 50° ROUNDED (d < 1) LBOW 50° ROUNDED (d < 1)	in wg. Co 0.07 0.2 0.05 1.3 0.25	0.24 2.38 SUPP-MAIN	0.17 3.81	3.35	1.23	1.36	2.26	1.36 B4-E	3.11	0.95	1.46 B3-C	2.08	2.87	2.56	1.33	2.88	2.56	3,49	151	1.22	1.05	1.04	1.18	1.50	3.11		
D & LENGTH LBOW 30 ^c LBOW 45 ^c ROUNDED (d < 1 ^c) LBOW 45 ^c ROUNDED (d < 1 ^c) LBOW 45 ^c , SIAAP LBOW 50 ^c , SIAAP LBOW 50 ^c , ROUNDED (d < 1) LBOW 50 ^c ROUNDE	Co 0.07 0.2 0.05 0.5 1.3 0.5	0.24 2.38 SUPP-MAIN 4	0.17 3.81	3.35	1.23	1.36	2.26	1.36 B4-E	3.11	0.95	1.46 B3-C	2.08	2.87	2.56	1.33	2.88	2.56	3.49 RB-1	151	1.22	1.05	1.04	1.18	1.50	3.11		
D & LENGTH LENGW 89 LENGW 87 SOLONED (d < 17) LENGW 87 SOLONED (d > 17) LENGW 87, SOLONED (d > 1) LENGW 87, SOLONED (d < 1)	in wg. Co 0.07 0.2 0.05 1.3 0.5 0.5 0.25 0.3 1	0.24 2.38 SUPP-MAIN 4	0.17 3.81	3.35	1.23	1.36	2.26	1.36 B4-E	3.11	0.95	1.46 B3-C	2.08	2.87	2.56	1.33	2.88	2.56	3.49 RB-1	151	1.22	1.05	1.04	1.18	1.50	3.11		
D & LENGTH LEOW 30° LEOW 45° ROUNDED (4<7) LEOW 45° ROUNDED (4<7) LEOW 95° SURAP LEOW 95° RUNNED 4<7) LEOW 95° ROUNDED 4<7) ELOW 95° ROUNDED 4(-1) EL 40° (FLOW TO BRANCH) EL 40° REM	in wg. Co 0.07 0.2 0.05 0.5 0.5 0.25 0.3 1.5	0.24 2.38 SUPP-MAIN 4	0.17 3.81	3.35	1.23	1.36	2.26	1.36 B4-E	3.11	0.95	1.46 B3-C	2.08	2.87	2.56	1.33	2.88	2.56	3.49 RB-1 2	151	RM-2	1.05	1.04	1.18	1.50 RB3-B	3.11 RETURN-MAIN 1 2		
LENGTH LENGW 30° LENGW 35° SOLONDED (d < 1) LENGW 45° SOLONDED (d < 1) E 45° (d UNY 10 BRAACH) E 45° E 40°	in wg. Co 0.07 0.2 0.5 1.3 0.5 0.5 0.5 0.5 0.5 0.5 0.3 1 1 1.5 0.05	0.24 2.38 SUPP-MAIN 4 2	0.17 3.81	3.35	1.23	1.36	2.26	1.36 B4-E	3.11	0.95	1.46 B3-C	2.08	2.87	2.56	1.33	2.88	2.56	3.49 RB-1	151	1.22	1.05	1.04	1.18	1.50	3.11		
LENGTH LEGW 89 LEGW 87 BOLONDED (4 - 17) LEGW 87 BOLONDED (4 - 17) LEGW 87 BOLONDED (4 - 17) LEGW 87 BOLONDED (4 - 1) LEGW 87 BOLONDED (4 - 1)	in wg. Co 0.007 0.2 0.055 0.5 1.3 0.5 0.25 0.3 1 1.5 0.05 0.22	0.24 2.38 SUPP-MAIN 4 2 2 4	0.17 3.81	3.35	1.23	1.36	2.26	1.36 B4-E	3.11	0.95	1.46 B3-C	2.08	2.87	2.56	1.33	2.88	2.56	3.49 RB-1 2	151	RM-2	1.05	1.04	1.18	1.50 RB3-B	3.11 RETURN-MAIN 1 2		
LENGTH LENGTH LENGTH LENGTH SP JOLINDED (d < 1)	in wg. Co 0.67 0.2 0.05 0.5 0.3 1.3 0.5 0.3 1.5 0.05 0.25 0.3 1.5 0.05 0.25 0.3 0.5 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.24 2.38 SUPP-MAIN 4 2	0.17 3.81	3.35	1.23	1.36	2.26	1.36 B4-E	3.11	0.95	1.46 B3-C	2.08	2.87	2.56	1.33	2.88	2.56	3.49 RB-1 2	151	RM-2	1.05	1.04	1.18	1.50 RB3-B	3.11 RETURN-MAIN 1 2		
LENGTH LENGTH LENGTH LENGTH SP JOLINDED (d < 1)	in wg. Co 0.007 0.2 0.055 0.5 1.3 0.5 0.25 0.3 1 1.5 0.05 0.22	0.24 2.38 SUPP-MAIN 4 2 2 4	0.17 3.81	3.35	1.23	1.36	2.26	1.36 B4-E	3.11	0.95	1.46 B3-C	2.08	2.87	2.56	1.33	2.88	2.56	3.49 RB-1 2	151	RM-2	1.05	1.04	1.18	1.50 RB3-B	3.11 RETURN-MAIN 1 2		
Di LENOTI Di LENOTI LENOTA VE RENOLTED (4-17) LENOTA VE RENOLTED (4-17) LENOTA VE RENOLTED (4-17) LENOTA VE RENOLTED (4-1) LENOTA VE RENOLTED (4-1	in wg. Co 0.67 0.2 0.05 0.5 0.3 1.3 0.5 0.3 1.5 0.05 0.25 0.3 1.5 0.05 0.25 0.3 0.5 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.24 2.38 SUPP-MAIN 4 2 2 4	0.17 3.81	3.35	1.23	1.36 B4-C	2.26	1.36 B4-E	3.11	0.95 B3-B	1.46 B3-C	2.08	2.87	2.56	1.33 M3	2.88	2.56	3.49 RB-1 2	151	RM-2	1.05	1.04	1.18	1.50 RB3-B	3.11 RETURN-MAIN 1 2	0.00	TOT
10 pr f. A ar 0 t 1 LN 671 LL007 W LL007 W L007 W LL007 W L0	in wg. Co 0.07 0.2 0.5 1.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.24 2.38 SUPP-MAIN 4 2 2 4 4 1	0.17 3.81 M1	3.35 B4-A	1.23 B4-D 1 3 3	1.36 B4-C 2 2	2.26 B4-B	1.36 B4-E 2 1 3	3.11 B3-A	0.95 B3-B	1.46 B3-C 2 1 3	2.08 M2 2	2.87 B2-A	2.56 B2-B	1.33 M3	2.88 B1-A	2.56	3.49 RB-1 2	151 RB-1 TAKEOFF 1	1.22 RM-2	1.05 RM-2 TAKEOFF I I I I I I I I I I I I I I I I I I	1.04 RB3-A 2 1 1 1	1.18 RB3-B TAKEOFF 	1.50 RB3-B	3.11 RETURN MAIN 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.00	TOT

DESIGNATION	PD (PA)	QTY.	TOTAL
FIRE DAMPER	10	4	40
VOLUME DAMPER	10	19	190
SUPPLY GRILLE	15	35	525
RETURN GRILLE	10	6	60
FRESH AIR LOUVER	20		0
VAV BOX	100		0
ALUMINUM FILTER	80		0
BAGHLTER	150		0
PLENUM BOX	50	1	50
DUCT HEATER	5		0
DISC EXHAUST VALVE	70	1	70
FLEXIBLE DUCT CONNECTION	15	10	150
SOUND ATTENUATOR	75		
TOTAL			1085 Pa

	4.59 W.4
STATIC PRESSURE AT 100%	1142 Pa
FLOW AT 100%	6715 CFM
* DUCTS PRESSURE DROP :	57 Pa
* FITTING PRESSURE DROP :	1085 Pa

Y|A|M

Table M-6. EF-1 STATIC HEAD CALCULATION

	PROJECT: UNIT.NO. :	COMMERCI EF-1	AL BUILDI	NG REH/	ABILITATI	ON I			241-247 3RD FL		5.				tte : 12/5/20 evision : 0	
GENERAL DATA			DUCT MA ROUGHNE ALTITUDE	ESS COEF.		***INCLU	DE REFRI : :	GERANT L G. I. Shee 0.93 179		SCHEDUL		S FOR IN FIELD AD	JUSTMENTS			
DUCTS PRESSURE LOSSES	BOARD		ALTITUDI AIR DENS	E COEF.			: :	0.000 0.00234		500						
SECTION		EB-1	EB-3	3	4	5	6	7	8	9	10	11	12	13	14	TOTAL
FLOW	CFM	70	70													
LENGTH	ft	10.50	18.79													29.3 ft.
DIAM.	in	14.21	14.21													
DIAM. EQUIV.		14.21	14.21													4 1
WIDTH	in	13	13													
HEIGHT	in	13	13													
AREA	sq in	158.62	158.62													
VELOCITY	FPM	63.55	63.55													4 1
PD per ft. duct	in w.g100 ft	0.00	0.00													
PD x LENGTH	in w.g.	0.01	0.01													0.02 Pa
	Co	EB-1	EB-3	3	4	5	6	7	8	9	10	11	12	13	14	TOTAL
ELBOW 30°	0.07															4 1
ELBOW 45° ROUNDED (d < 1')	0.2															
ELBOW 45° ROUNDED (d > 1'), SHARP	0.05															
ELBOW 45°, SHARP	0.5	2														
ELBOW 90°, SHARP	0.5	2	_													
ELBOW 90° ROUNDED (d < 1) ELBOW 90° ROUNDED (d > 1)	0.25															
TEE 45° (FLOW TO BRANCH)	0.25		1													
TEE 45° (FLOW TO BRANCH)	0.5							-	1		-			1		1 1
END TEE	1.5		+				1	1		-	1		+	+	-	1
BRANCH TEE	0.05	1							1				1			1
TRANSITION	0.22	1	1		1				1				1	1	1	1
CONTRACTION	0.05	i .	· ·													1
WIRE MESH	0.04															1
TOTAL	Co	2.82	0.52	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.34
DUCTS PD	psf (lb/SF)	0.04	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.05 Pa
PRESSURE DROP	Pa	0.05	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.07 Pa

SPECIAL FITTING PRESSURE DROPS

DESIGNATION	PD (PA)	QTY	TOTAL
FIRE DAMPER	10	1	10
VOLUME DAMPER	10	0	0
SUPPLY GRILLE	15		0
RETURN GRILLE	10		0
FRESH AIR LOUVER	20		0
VAV BOX	100	1	100
ALUMINUM FILTER	80		0
BAG FILTER	150		0
PLENUM BOX	50	0	0
DUCT HEATER	5		0
DISC EXHAUST VALVE	70	1	70
FLEXIBLE DUCT CONNECTION	15	0	0
SOUND ATTENUATOR	75		
TOTAL			180 Pa

	0.72 W.g
STATIC PRESSURE AT 100%	180 Pa
FLOW AT 100%	70 CFM
* DUCTS PRESSURE DROP :	0.07 Pa
* FITTING PRESSURE DROP :	180 Pa

Y|A|M

Table M-7. EF-2 STATIC HEAD CALCULATION

LOW CFM 70 7		PROJECT: UNIT.NO. :		IAL BUILDING REHABILITATION I SITE : 241-247 5 AVE S. FLOOR: 3RD FLOOR						Date : 12/5/2019 Revision : 0							
HITTUDE : 17 Mers 58 fed DE DESTE : 0.023 isgeCE : 0.023 isgeCE JUTIDE : 0.023 isgeCE : 0.023 isgeCE : 0.023 isgeCE JUTIDE : 0.023 isgeCE : 0.023 isgeCE : 0.023 0.00 <	GENERAL DATA						***INCLU	:	G. I. Shee		CHEDUL	E IN DWG	S FOR IN FIELD AD	JUSTMENTS			
HUTUE CODE: E. D.002.3. HUTUE CODE: LINE CODE: D.002.3. Support JUCTS PRESSURE LOSSES BOAD Non-operation Non-operatioperation <																	
LIR DENSIT 20.023 sgcCF DISTRESSURE COSSES BOAD								-		Meters	588	feet					
DUCTS PRESSURE LOSSES BOARD SCTION EB-2 EB-3 3 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								-									
SECTION EB-2 EB-3 <				AIR DENS	ITY			-	0.00234	slugs/CF							
LOW CPM 70 7	DUCTS PRESSURE LOSSES	BOARD															
ROW CFM 70 7																	
ROW CFM 70 7	SECTION		FB-2	FB-3	3	3	3	3	3	3	3	3	3	3	3	3	TOTAL
Lengrin fr. O.3 I.S. I.S. <thi.s.< th=""> I.S. I.S. <th< td=""><td></td><td>CEM</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5</td><td></td><td>5</td><td></td><td></td><td></td><td>TOTAL</td></th<></thi.s.<>		CEM									5		5				TOTAL
DAM. in 14.21 14.		2.1.11	10														
DAM. EQUIV. 114.21 14.21 14.21 1 <td>LENGTH</td> <td>ft</td> <td>0.33</td> <td>18.79</td> <td></td> <td>19.1 ft.</td>	LENGTH	ft	0.33	18.79													19.1 ft.
WDTH in 13 13 13 14 15 16 1	DIAM.	in	14.21	14.21													
HEIGHT in 13 13 13 14 15 158.02 160.01 158.02 160.01 158.02 160.01 158.02 160.01 158.02 160.01 160.01 160.01 160.01 160.01 160.01 160.01 160.01 160.01 160.01 160.01 160.01 160.01 160.01<	DIAM. EQUIV.		14.21	14.21													
AREA sq in 158.02 158.02 i	WIDTH	in	13	13													
VELOCITY FPM 63.55 63.55 0	HEIGHT	in	13	13													
ID pr fi. dact in w.g. 0.00 0.00 0.00 0.01 0 0 0 0 0 0 0 0 0.01 0 0.01 0 0 0.01 0 0.01 0 0.01 0 0.01 0 0.01 0 0.01		sq in															
PD & LENGTH in wg. 0.00 0.01 I	VELOCITY	FPM	63.55	63.55													
Co 1 2 3 4 5 6 7 8 9 10 11 12 13 14 TOT ELBOW 30° 0.07 1 <td>PD per ft. duct</td> <td>in w.g100 ft</td> <td>0.00</td> <td>0.00</td> <td></td>	PD per ft. duct	in w.g100 ft	0.00	0.00													
LLBOW 39° 0.07 1 I <t< td=""><td>PD x LENGTH</td><td>in w.g.</td><td>0.00</td><td>0.01</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.01 Pa</td></t<>	PD x LENGTH	in w.g.	0.00	0.01													0.01 Pa
LLBOW 39° 0.07 1 I <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																	
LIBOW 48° ROUNDED (d<1) 0.2 Image: constraint of the second			1	2	3	4	5	6	7	8	9	10	11	12	13	14	TOTAL
LIBOW 49° ROUNDED (d>1) SHARP 0.05 Image: constraint of the state of the s	ELBOW 30°	0.07	1														
LIEDW 43°, SHARP 0.5 I <thi< th=""> I I</thi<>																	
LIBOW 90, SIARP 1.3 1 <th1< th=""> 1 1</th1<>																	
ELBOW 99 ROUNDED (a<1) 0.5 Image: constraint of the second secon																	
DELBOW 90° ROUNDED (a/s1) 0.25 Image: model of the second			1	1													
TEE 49° (FLOW TO BRANCH) 0.3 1																	
TEE 90 1 I <td></td>																	
END TEE 1.5 Image: constraint of the state of the st				1													
BRANCH TEE 0.05																	
IRANSITION 0.22 1 1												+					
CONTRACTION 0.05 Image: state sta			-														
WIRE MESH 0.04 Image: Constraint of the state of the			1		H		+					+			+		
IOTAL Co 1.82 0.00				-								+					
DUCTS PD psf (b/SF) 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.0	WIKE MEST	0.04										+					
DUCTS PD psf (b/SF) 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.0	TOTAL	Co	1.59	1.82	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.41
																	0.05 Pa
PRESSURE DROP Pa 0.03 0.04 0.00 0.00 0.00 0.00 0.00 0.00	PRESSURE DROP		0.03	0100	0.00	0.00	0.00	0.00	0.00			0.00		0.00	0.00	0.00	0.05 Pa 0.07 Pa

SPECIAL FITTING PRESSURE DROPS

DESIGNATION	PD (PA)	QTY	TOTAL
FIRE DAMPER	10	1	10
VOLUME DAMPER	10		0
SUPPLY GRILLE	15		0
RETURN GRILLE	10		0
FRESH AIR LOUVER	20		0
VAV BOX	100		0
ALUMINUM FILTER	80		0
BAG FILTER	150		0
PLENUM BOX	50		0
DUCT HEATER	5		0
DISC EXHAUST VALVE	70	1	70
FLEXIBLE DUCT CONNECTION	15		0
SOUND ATTENUATOR	75		
TOTAL			80 Pa

	0.32 W.g
STATIC PRESSURE AT 100%	80 Pa
FLOW AT 100%	70 CFM
* DUCTS PRESSURE DROP :	0.07 Pa
* FITTING PRESSURE DROP :	80 Pa

Table M-8. EF-3/H-x STATIC HEAD CALCULATION

	PROJECT: UNIT.NO. :	COMMERCIA EF-3	AL BUILD	ING REHA	ABILITATI	ON I		SITE : FLOOR:	241-247 3RD FL		l.				te : 12/5/20 evision : 0	19
GENERAL DATA																
			DUCT MA	TERIAL			:	G. I. Shee	t							
			ROUGHNI	ESS COFF			-	0.93								
			ALTITUD					179	Meters	588	feet					
			ALTITUD				•		Wieters	200	reet					
							:	0.000	1 (07)							
	DOADD		AIR DENS	11 Y			÷	0.00234	slugs/CF							
DUCTS PRESSURE LOSSES	BUARD						1									
SECTION		1	2	3	4	5	6	7	8	9	10	11	12	13	14	TOTAL
LOW	CFM	450														
LENGTH	ft	3.00														3.0 ft.
DIAM.	in	14.16														
DIAM. EQUIV.		14.16														
VIDTH	in	12														
IEIGHT	in	14														
AREA	sq in	157.44														
VELOCITY	FPM	411.57														
PD per ft. duct	in w.g100 ft	0.02														
PD x LENGTH	in w.g.	0.06				1										0.06 Pa
														-		
	Co	1	2	3	4	5	6	7	8	9	10	11	12	13	14	TOTAL
ELBOW 30°	0.07															
ELBOW 45° ROUNDED $(d < 1')$	0.2															
ELBOW 45° ROUNDED (d > 1'), SHARP	0.05	1														
ELBOW 45°, SHARP	0.5	1														
ELBOW 90°, SHARP	1.3															
ELBOW 90° ROUNDED ($d < 1$)	0.5															
ELBOW 90° ROUNDED $(d > 1)$	0.25	1														
FEE 45° (FLOW TO BRANCH)	0.3															
ГЕЕ 90°	1															
END TEE	1.5															
3RANCH TEE	0.05															
FRANSITION	0.22	1														
CONTRACTION	0.05	1														
WIRE MESH	0.04	1														
FOTAL	Co	1.11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.11
	psf (lb/SF)	0.11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.11 Pa
DUCTS PD																

SPECIAL FITTING PRESSURE DROPS

DESIGNATION	PD (PA)	QTY	TOTAL
FIRE DAMPER	10		0
VOLUME DAMPER	10		0
SUPPLY GRILLE	15		0
RETURN GRILLE	10		0
FRESH AIR LOUVER	20		0
VAV BOX	100		0
ALUMINUM FILTER	80		0
BAG FILTER	150		0
PLENUM BOX	50		0
DUCT HEATER	5		0
DISC EXHAUST VALVE	70	1	70
FLEXIBLE DUCT CONNECTION	15		0
SOUND ATTENUATOR	75		
TOTAL			70 Pa

	0.28 W.g
STATIC PRESSURE AT 100%	70 Pa
FLOW AT 100%	450 CFM
* DUCTS PRESSURE DROP :	0.17 Pa
* FITTING PRESSURE DROP :	70 Pa

<u>Appendix P</u>: Plumbing Calculations

Tankless HW Heater Sizing

TWH-1 FLOW DEMAND								
HW FIXTURES FU DEMAND:	8.75 FU							
HW FIXTURES GPM DEMAND:	7.00 gpm							
HWR LOOP GPM DEMAND:	5.43 gpm							
DESIGN GPM DEMANDED	12.43 gpm							
Tankless HW Heater Minimum Output:								

HW Heater Minimum	
GN GPM DEMANDED	12.43 gpm
LOOP GPM DEMAND:	5.43 gpm
URES GPM DEMAND:	7.00 gpm
XTURES FU DEMAND:	8.75 FU

Figure P-1. Tankless hot water heat design flow in gallons per minute (GPM).

RECIRCULATION PUMP PERFORMANCE PARAMETERS:							
6 GPM	FLOW						
20 ft.	PRESSURE HEAD						

DOMESTIC SUPPLY PIPING

A 102.0 PRELIMINARY INFORMATION

A 102.1 Daily Service Pressure. *Minimum Daily Service Pressure in the Area: *Based on buildings location

essure in the Area:

A 102.2 Water Meter.

^ Friction Loss in Meter Relevative to the Rate of Flow of Meter:
^ Friction-loss data is capable of being obtained from most manufacturers of water meters. Friction losses for disk type meters shall be permitted to be obtained from Chart A 102.2.

A 103.0 DEMAND LOAD

A 103.1 Supply Demand.

ADDED DEMAND TO BUILDING SUPPLY

FIXTURE UNITS AND ESTIMATED DEMANDS											
B	UILDING SUPPLY DEMAND	BRANCH TO HOT WATER SYSTEM									
KIND OF FIXTURES	NUMBER OF FIXTURES	FIXTURE UNIT DEMAND	TOTAL UNITS	BUILDING SUPPLY DEMAND (gpm)	NUMBER OF FIXTURES	FIXTURE UNIT DEMAND CALCULATION	DEMAND (gpm)				
Water Closets - 1.6 gpf Flushometer Valve	2	5.0	10	-	Included in Building Supply Demand						
Urinals - 1.0 gpf Flushometer Valve	1	4.0	4	-	Included in Building Supply Demand						
Lavatories	2	1.0	2	-	Included in Building Supply Demand						
Service Sinks	1	3.0	3	-	Included in Building Supply Demand						
Kitchen Sinks	1	2.0	2	-	Included in Building Supply Demand						
Tankless Hot Water Heater 9 GPM					1	N/A	9				
Subtotals		-	21	26			9				
TOTAL							35				

a. Note, Building supply demand (gpm) for fixture units determined by 2018 UPC Appendix A Chart A 103.1(1). Tankless hot water heater demand added on afterwards since this gpm value was determined by manufacturer.

60 psi

3rd Floor Branch

Total Developed Length:	135.633
Pressure Available for Friciton Loss (psi):	35.54
Avg. Permissible Friction Loss per 100 ft. Length of Pipe:	26.20299828
ADDED ALLOWANCE FOR FIRST FLOOR EXISTING:	135.633
TOTAL DEVELOPED LENGTH:	271.267
Avg. Permissible Friction Loss per 100 ft. Length of Pipe:	13.10 psi per 100-ft length

Figure P-2. Domestic supply piping

Y|A|M

A 104.0 PERMISSIBLE FRICTION LOSS

A 104.1 Residual Pressure. Minimum residual pressure:

15 psi PRESSURE REQUIRED FOR FLUSHOMETER VALVES PER 2018 UPC APPENDIX A 104.1 RESIDUAL PRESSURE.

A 104.2 Elevation.			
Criteria	Elevation	Elevation Difference	Loss of Static Pressure (psi) ^
Elevation of highest fixture or fixture group:	16 ft.		
Elevation of Water main from Basement Slab:	2 ft.	22 ft.	9 psi
Distance Basement Slab to Level 1	-8 ft.		

^ Elevation difference multiplied by 0.43 per 2018 Uniform Plumbing Code Appendix A, Section A 104.2 Elevation.

A 104.3 Available Pressure. Pressure Available for Friction Loss in Supply Pipes where no water meter is used = Average Minimum Daily Service Pressure - (Static Pressure - Residual Pressure)

Pressure Available for Friction Loss in Supply Pipes:

36 psi THIS VALUE APPLIES FOR ENTIRE BUILDING.

A 104.4 Developed Length.

Supply Riser		
Supply Main Allowance for	routing off of existing	

11.25 ft. 61.00 ft. ASSUMPTION: WORST-CASE SCENARIO, ROUTE LINES FROM LEVEL 1 BATHROOM NEAR ELEV SHAFT

3rd Floor Main

Sru Floor Main							
		Domestic Water S	upply Critical Par	th - Pipe Schedule			
System Name	Schedule/Type	Length	Invert Elevatio		Comments	DEVELOPED LENGTH	
Domestic Cold Water 2	К	15' - 4 1/2"	25' - 9 3/4"	1"ø	DOMESTIC SUPPLY - CRITICAL PATCH	25.375	
Domestic Cold Water 2 Domestic Cold Water 2	K K	15' - 4 1/2" 9' - 5 1/4"	25' - 9 3/4" 25' - 9 3/4"	1"ø	DOMESTIC SUPPLY - CRITICAL PATCH DOMESTIC SUPPLY - CRITICAL PATCH	25.375 3.438	
Domestic Cold Water 2 Domestic Cold Water 2	ĸ	2' - 9 3/8"	25' - 9 3/4"	1'0	DOMESTIC SUPPLY - CRITICAL PATCH	2.281	
Domestic Cold Water 2 Domestic Cold Water 2	ĸ	2 - 9 5/8 16' - 10 1/4"	25' - 9 3/4"	1'0	DOMESTIC SUPPLY - CRITICAL PATCH	16.854	
Domestic Cold Water 2 Domestic Cold Water 2	K	1' - 10 7/8"	25' - 9 3/4"	1'0	DOMESTIC SUPPLY - CRITICAL PATCH	10.834	
Domestic Cold Water 2	ĸ	1' - 1 1/4"	13' - 11 1/2"	1"ø	DOMESTIC SUPPLY - CRITICAL PATCH	1.104	
Domestic Cold Water 2 Domestic Cold Water 2	ĸ	4' - 5 5/8"	25' - 9 3/4"	1'0	DOMESTIC SUPPLY - CRITICAL PATCH	4.469	
Domestic Cold Water 2 Domestic Cold Water 2	ĸ	4 - 5 5/8 22' - 10 1/8"	25' - 9 3/4"	1'0	DOMESTIC SUPPLY - CRITICAL PATCH	22.844	
Domestic Cold Water 2 Domestic Cold Water 2	ĸ	1' - 4 7/8"	23 - 9 3/4 17' - 5 1/2"	1'0	DOMESTIC SUPPLY - CRITICAL PATCH	1.406	
Domestic Cold Water 2 Domestic Cold Water 2	ĸ	0' - 11 3/4"	25' - 10"	1'0	DOMESTIC SUPPLY - CRITICAL PATCH	0.979	
Domestic Cold Water 2 Domestic Cold Water 2	ĸ	8' - 3 1/4"	23 - 10 17' - 6 3/8"	1'0	DOMESTIC SUPPLY - CRITICAL PATCH	8.271	
Domestic Cold Water 2 Domestic Cold Water 2	K	4' - 4 7/8"	25' - 10"	1'0	DOMESTIC SUPPLY - CRITICAL PATCH	4,406	
Domestic Cold water 2	ĸ	4 - 4 //8	25 - 10	1.0	DOMESTIC SUPPLY - CRITICAL PATCH	4.406	
					LINEAR PIPE DEVELOPED LENGTH	I: 93.333	
		Domestic Water St	muly Critical Patl	h - Fitting Schedule			
System Name	Family and Type	Elevation from		Comments		EQUIVALENT DEVELOPED LENGTH	
						-2	
							FROM 2018 UPC APPENDIX A TABLE A 104.4(2) "9
Domestic Cold Water 2	Tee - Welded - Generic: Standard	11' - 3"	1"ø-1"ø-1"ø	DOMESTIC SUPPL	Y - CRITICAL PATCH	5.3	DEGREE STANDARD TEE"
Domestic Cold Water 2	Elbow - Welded - Generic: Standard	11' - 3"	1"ø-1"ø	DOMESTIC SUPPL	Y - CRITICAL PATCH	2.6	
Domestic Cold Water 2	Elbow - Generic: Standard	11' - 3"	1"ø-1"ø	DOMESTIC SUPPL	Y - CRITICAL PATCH	2.6	
Domestic Cold Water 2	Tee - Welded - Generic: Standard	11' - 3"	1"ø-1"ø-1"ø	DOMESTIC SUPPL	Y - CRITICAL PATCH	5.3	
Domestic Cold Water 2	Tee - Welded - Generic: Standard	11' - 3"	1"ø-1"ø-1"ø	DOMESTIC SUPPL	Y - CRITICAL PATCH	5.3	
Domestic Cold Water 2	Tee - Welded - Generic: Standard	25' - 10 1/4"	1"ø-1"ø-1"ø	DOMESTIC SUPPL	Y - CRITICAL PATCH	5.3	
Domestic Cold Water 2	Elbow - Welded - Generic: Standard	14' - 0"	1"ø-1"ø	DOMESTIC SUPPL	Y - CRITICAL PATCH	2.6	
Domestic Cold Water 2	Elbow - Welded - Generic: Standard	14' - 0"	1"ø-1"ø	DOMESTIC SUPPL	Y - CRITICAL PATCH	2.6	
Domestic Cold Water 2	Elbow - Welded - Generic: Standard	2' - 10 1/2"	1"ø-1"ø	DOMESTIC SUPPL	Y - CRITICAL PATCH	2.6	
Domestic Cold Water 2	Elbow - Welded - Generic: Standard	11' - 3"	1"ø-1"ø	DOMESTIC SUPPL	Y - CRITICAL PATCH	2.6	
							FROM 2018 UPC APPENDIX A TABLE A 104.4(2) "9
Domestic Cold Water 2	Elbow - Welded - Generic: Standard	11' - 3"	1"ø-1"ø	DOMESTIC SUPPL	Y - CRITICAL PATCH	2.6	DEGREE ELBOW"
							FROM 2018 UPC APPENDIX A TABLE A 104.4(2)
Domestic Cold Water 2	Transition - Welded - Generic: Standard	11' - 3"	1"ø-1"ø	DOMESTIC SUPPL	Y - CRITICAL PATCH	1.7	"COUPLING OR STRAIGHT RUN OF TEE"
					TOTAL EQUIVALENT DEVELOPED LENGT	H: 41.1	
	_						
				 Accessory Schedule 		DOUBLA DATE DELETA OPEN A DATE	
System Name	Type	Size	Comments		Elevation from Level	EQUIVALENT DEVELOPED LENGTH	
Domestic Cold Water 2	1"	1"ø-1"ø	DOMESTIC S	UPPLY - CRITICAL PA	V 11' - 3"	0.6	FROM 2018 UPC APPENDIX A TABLE A 104.4(1)
Domestic Cold Water 2	1/2"	1"ø-1"ø		UPPLY - CRITICAL PA		0.6	
					TOTAL EQUIVALENT DEVELOPED LENGT	H: 1.2	
					TOTAL EQUIVALENT DEVELOPED LENGT	n: 1.2	
					CRAND TOTAL	127.02.5	
					GRAND TOTAL:	135.63 ft.	

Figure P-3. Friction losses

A 105.0 SIZE OF BUILDING SUPPLY

A 105.1 Diameter.

Obtained from Chart A 105.1(1), Chart A 105.1(2), Chart A 105.1(3), Chart A 105.1(4), Chart A 105.1(5), Chart A 105.1(6), or Chart A 105.1(7), whichever is applicable. Assumption: Building demand for first floor is identical to third floor. This is an over approximation.

Total Building Demand:

69 gpm

PIPE TYPE	REFERENCED CHART	OBTAINED VALUE
Copper Type L	2018 UPC Chart A 105.1(1)	1.5 in. (Diameter)
Ferrous Pipe Fairly Smooth	2018 UPC Chart A 105.1(2)	1.5 in. (Diameter)
Sched. 40 IPS Plastic Pipe Very Smooth C=150	2018 UPC Chart A 105.1(6)	1 in. (Diameter)

Figure P-4. Size of building supply

A 106.0 SIZE OF PRINCIPAL BRANCHES AND RISERS

A 106.1 Size.

The required size of branches and risers shall be permitted to be obtained in the same manner as the building supply, by obtaining the demand load on each branch or riser and using the permissible friction loss computed in Section A 104.0

		PIPE SIZING				SELECTION BASED OFF MIN	5 GPM CHART VALUE	MODIFICAT	IONS TO LINES WITH LESS THAN 5 GPM *
D	PIPING LINE	HWFU	CWFU	HW GPM	CW GPM	DHW PIPE SIZE	DCW PIPE SIZE	DHW PIPE SIZE	DCW PIPE SIZE
	DHW MAIN	8.75		7.00		3/4" TYPE M		3/4" TYPE M	
1	DCW MAIN		17.00		12.00		3/4" TYPE M		3/4" TYPE M
	DHW UTILITY/BATHROOM BRANCH	3.25		5.00		1/2" TYPE M		1/2" Type K	
2	DCW UTILITY/BATHROOM BRANCH		13.25		13.00		3/4" TYPE M		3/4" TYPE M
	DHW BRANCH TO WORK SINK LINE	2.25		5.00		1/2" TYPE M		3/8" Type K	
	DCW BRANCH TO WORK SINK LINE		2.25		5.00		1/2" TYPE M		3/8" Type K
	DHW BATHROOM BRANCH	1.00		5.00		1/2" TYPE M		3/8" Type K	
	DCW BATHROOM BRANCH	1.00	11.00	3.00	9.00		3/4" TYPE K	ло турск	3/4" TYPE K
	DHW BRANCH TO LAVATORY LINE DROP	1.00		5.00		1/2" TYPE M	JAY THER	3/8" Type K	
	DOW BRANCH TO LAVATORY LINE DROP	1.00	1.00	5.00	5.00		1/2" TYPE M	3/8" Type K	
3	DHW LINE DROP TO LAVATORY	0.50		5.00		1/2" TYPE M		3/8" Type K	
	DCW LINE DROP TO LAVATORY		0.50		5.00		1/2" TYPE M		3/8" Type K
	DCW BRANCH TO WC. DCW BRANCH		10.00		10.00		3/4" TYPE K		3/4" TYPE K
	WC DCW BRANCH TO WATER CLOSET LINE	5.00		5.00		1/2" TYPE M		1/2" TYPE M	
	DHW REDUCED MAIN 1	5.50		5.00		1/2" TYPE M		1/2" TYPE M	
4	DCW REDUCED MAIN 1		6.00		5.25		1/2" TYPE M		1/2" TYPE M
	DHW BRANCH TO DISHWASHER	1.50		5.00		1/2" TYPE M		3/8" Type K	
	DCW BRANCH TO DISHWASHER		1.50		5.00		1/2" TYPE M		3/8" Type K
	DHW REDUCED MAIN 2	4.00		5.00		1/2" TYPE M		1/2" TYPE M	
5	DCW REDUCED MAIN 2 DHW BRANCH TO KITCHEN SINK	1.00	4.50	5 00	5.00	1/2" TYPE M	1/2" TYPE M	2/05 m V	1/2" TYPE M
	DRW BRANCH TO KITCHEN SINK DCW BRANCH TO KITCHEN	1.00	1.00	5.00	5.00		1/2" TYPE M	3/8" Type K	2/08 Terrs V
	DUW BRANCH IU KITCHEN		1.00		5.00		1/2" TYPE M		3/8" Type K
	DHW REDUCED MAIN 3	3.00		5.00		1/2" TYPE M		1/2" Type K	
6	DOW REDUCED MAIN 3	3.00	3.50	5.00	5.00		1/2" TYPE M	1/2 Type K	1/2" Type K
0	DCW REDUCED MAIN 5 DCW BRANCH TO REFRIGERATOR		0.50		5.00		1/2" TYPE M		3/8" Type K
	A GK		0.50		5.00				
	DHW REDUCED MAIN 4 (SAME AS 3)	3.00		5.00		1/2" TYPE M		1/2" Type K	
-	DCW REDUCED MAIN 4		3.00		5.00		1/2" TYPE M		1/2" Type K
7	DHW BRANCH TO CAFE SINK	3.00		5.00		1/2" TYPE M		1/2" Type K	
	DCW BRANCH TO CAFÉ SINK		3.00		5.00		1/2" TYPE M		1/2" Type K
Note,	for pipe loads of 5 Fixture Units or less, the demand is rather linear (no valu	es are specified on Chart A 103.1 for demands less th	an 5 gpm). Assum	tion: fixture units	= demand (in gpm) fo	r pipes with less than 5 FU's			

DHW AND DCW PIPE SIZES WERE FOUND IN 2018 UPC APPENDIX A CHART A 105.1(1)

Figure P-5. Size of principal branches and risers

	DRAINAGE FIXTURE UNITS AND ESTIMATED DEMANDS										
BUILDING DRAINAGE DEMAND											
KIND OF FIXTURES	MINIMUM SIZE TRAP AND TRAP ARM (inches)	NUMBER OF FIXTURES	FIXTURE UNIT DEMAND	TOTAL UNITS							
Food Waste Disposer, commercial	2	0	3.0	0							
Floor Drain	2	4	3.0	12							
Lavatory	1 1/4	2	1.0	2							
Water Closets - 1.6 gpf Flushometer Val	3	2	4.0	8							
Urinal, integral trap 1.0 GPF^2	2	1	2.0	2							
Receptor, indirect waste *	2	1	1.0	1							
Service Sinks	2	1	3.0	3							
Kitchen Sinks	1 1/2	1	2.0	2							
Standard Sink (Special Purpose)	2	1	3.0	3							
Total		-	-	33							

Table P-1. Sanitary waste and vent piping schedule

	DRAINAGE BRANCH PIPING									
	DRAINAGE BRANCH DEMAND						MAXIMUM DRAINAGE BRANCH LOADING AND LENGTH			
BRANCH NUMBER	BRANCH LOCATION	FIXTURES ON BRANCH	FIXTURE UNIT DEMAND	TOTAL FIXTURE UNIT DEMAND	SIZE OF PIPE *	MAXIMUM UNITS (Vert / Horiz)	MAXIMUM LENGTH (VERTICAL) *	MAXIMUM LENGTH (HORIZONTAL) *		
01	Cafe Counter	Standard Sink	3.0	6.0	3.0 in.	48/35	212.0	Unlimited		
01	Care Counter	Floor Drain	3.0	0.0	3.0 m.	40/33	212.0	Oninnited		
		Food waste Disposer, Commercial	3.0							
02	Cafe Workroom	Kitchen Sink	2.0	11.0	3.0 in.	48/35	212.0	Unlimited		
02	Cale workfooli	Floor Drain	3.0	11.0		40/33	212.0	Ommitted		
		Dishwasher	3.0							
03	Utility Room	Mop Sink	3.0	4.0	2.0 in.	16/8	85.0	Unlimited		
03	Cunity Room	W.H. Condensate Drain (Continuous Flow) ^	1.0	4.0	2.0 m.	107.8	85.0	Oninnited		
04	Utility Room	Floor Drain	3.0	4.0	2.0 in.	16/8	85.0	Unlimited		
04	Culity Rooli	E.C. Condensate Drain (Continuous Flow) ^	1.0	4.0	2.0 m.	107.8	85.0	Chillinged		
05	Restrooms	Water Closet - 1.6 GPF Flushometer Valve	4.0	8.0	3.0 in.	48/35	212.0	Unlimited		
05	Resubolits	Water Closet - 1.6 GPF Flushometer Valve	4.0	0.0	5.0 m.	407.55	212.0	Chilinated		
06	North Restroom	Lavatory	1.0	4.0	2.0 in.	16/8	85.0	Unlimited		
	root in Restroom	Floor Drain	3.0	4.0	2.5 m.	10/8	33.0	Chindled		
07	South Restroom	Lavatory	1.0	4.0	2.0 in.	16/8	85.0	Unlimited		
	Jouri Restroom	Floor Drain	3.0	4.0	2.0 m. 10 / 8	10/0	00.0	Childled		

* Per 2018 Uniform Plumbing Code Section 700 Sanitary Drainage, Table 703.2 Maximum unit Loading and Maximum Length of Drainage and Vent Piping

* 2018 Uniform Plumbing Code Section 702.3 allows condensate drains to be tied into drainage systems downstream of traps. Condensate drain has 2 paris; primary condensate line with trap installed (to stop airflow from being sucked in, but water to be pushed out), line from p trap connects to emergency drain pan. Emergency drain pan discharge has a trap connected. The remaining drain line ties into drainage system downstream of trap a sufficient distance by wye vent fitting. Preferably connected in a line typically used as a vent.

	DRAIN SUB-MAIN PIPING										
	DRAINAGE BI	RANCH DEMAND				LENGTH					
				MAXIMUM	MAXIMUM	MAXIMUM					
SUB-MAIN NUMBER	BRANCHES CONNECTED	CONNECTED BRANCHES LOADING	TOTAL FIXTURE UNIT DEMAND	SIZE OF PIPE *	UNITS (Vert /	LENGTH	LENGTH				
					Horiz)	(VERTICAL) *	(HORIZONTAL) *				
01	BRANCH 01 /BRANCH 02		17.0	3.0 in.	48/35	212.0	Unlimited				
		17.0									
02	BRANCH 04 / BRANCH 05 / BRANCH 06 / BRANCH 07		16.0	3.0 in.							
		16.0			48/35	212.0	Unlimited				
03	SUB-MAIN 02 / BRANCH 03		20.0	3.0 in.	407.55	212.0	Chininged				
		20.0									
04	SUB-MAIN 01 / SUB-MAIN 03		37.0	4.0 in.	256 / 216	300.0	Unlimited				
		37.0									
* D 2010 U.S. DI 1. C 1.C.	tion 700 Senitem Deciment Table 703 2 Meximum with a dime and N	L I I CD I IV D									

* Per 2018 Uniform Plumbing Code Section 700 Sanitary Drainage, Table 703.2 Maximum unit Loading and Maximum Length of Drainage and Vent Piping

	VENT PIPE SIZING									
DRAINAGE BRANCH DEMAND MAXIMUM UNIT LOADING AND LENGTH OF VENT PI										
BRANCH BRANCH NUMBER LOCATION		FIXTURES ON BRANCH	FIXTURE UNIT DEMAND	TOTAL FIXTURE UNIT DEMAND	SIZE OF PIPE *	MAXIMUM UNITS	MAXIMUM LENGTH (HORIZONTAL & VERTICAL) *			
		Floor Drain	1							
01	Café Counter	Floor Drain	1.0	5.0	2 in.	8.0 FU	60.0 ft.			
01	Cale Couliei	Special Purpose Sink	3.00							
02	Café Workroom	Kitchen Sink	2.0	5.0	1.5 in.	8.0 FU	60.0 ft.			
02	Cale WORKIOOIII	Food waste Disposer, Commercial	3.0	5.0	1.5 III.	8.010	00.0 It.			
03	Utility Room	Mop Sink	3.0	4.0	1.5 in.	8.0 FU	60.0 ft.			
05	Ounty Room	W.H. Condensate Drain (Continuous Flow) ^	1.0	4.0	1.5 III.	8.010	00.0 It.			
04	Utility Room	Floor Drain	3.0	4.0	1.5 in.	8.0 FU	60.0 ft.			
04	Ounty Room	E.C. Condensate Drain (Continuous Flow) ^	1.0	4.0	1.5 III.	8.010	00.0 It.			
		Water Closet - 1.6 GPF Flushometer Valve	4.0							
05	Restrooms	Water Closet - 1.6 GPF Flushometer Valve	4.0	10.0	2.0 in.	24.0 FU	120.0 ft.			
		Urinal, integral trap 1.0 GPF	2.0	1						
06	North Restroom	Lavatory	1.0	4.0	1.5 in.	8.0 FU	60.0 ft.			
06	North Restroom	Floor Drain	3.0	4.0	1.5 in.	8.0 FU	60.0 IL			
07	South Restroom	Lavatory	1.0	4.0	1.5 in.	8.0 FU	60.0 ft			
07	South Restroom	Floor Drain	3.0	4.0	1.5 in.	8.0 FU	60.0 ft.			

Table P-2. Sanitary vent piping schedule

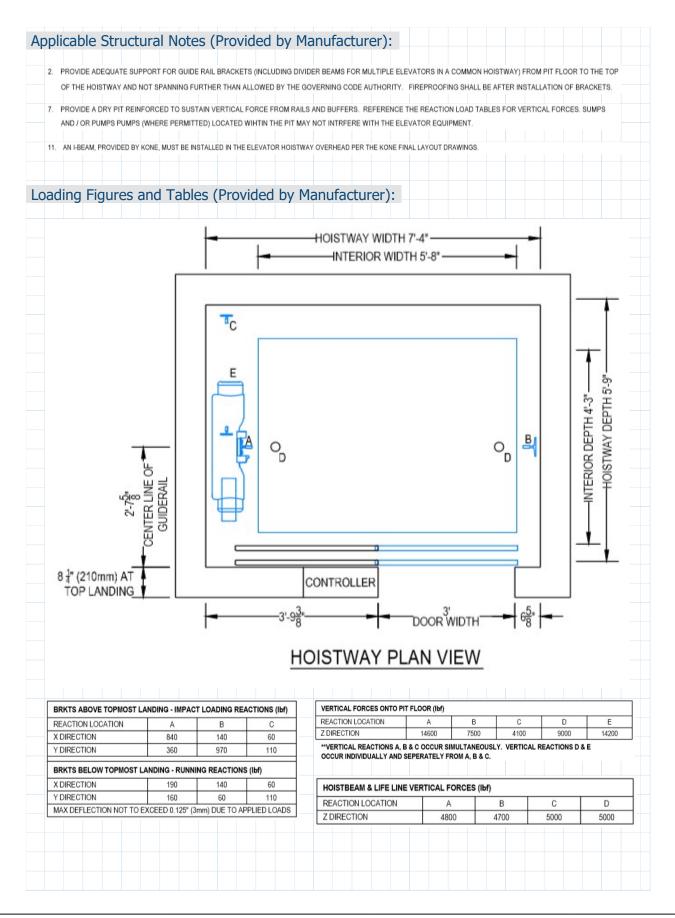
* Per 2018 Uniform Plumbing Code Section 700 Sanitary Drainage, Table 703.2 Maximum unit Loading and Maximum Length of Drainage and Vent Piping

** Note, this sizing is for dry venting only. Wet venting is limited to vertical drainage pipiong receiving the discharge from the trap arm of one and two fixture unit fixtures that also serve as a vent not exceeding four fixtures. Wet-vented vfixtures shall be within the same story; provided, further, that fixtures with a continuous vent discharging into a wet vent shall be within the same story as the wet-vented for the vertical piping between two consecutive inlet levels shall be considered a wet-vented section. Each wet-vented section shall be not less than one pipe size exceeding the required minimum pipe size for the sum of the fixture units served by such wet-vented section, whichever is larger, but in no case less than 2 inches.

	VENT PIPE SIZING											
		VENT SUB-MAIN DEMAND	MUM UNIT I	LOADING AND LI	ENGTH OF VENT PI							
SUB- MAIN NUMBER	BRANCHES CONNECTED	CONNECTED BRANCHES LOADING		SIZE OF PIPE *	MAXIMUM UNITS (Vert / Horiz)	MAXIMUM LENGTH (HORIZONTAL & VERTICAL) *						
01	BRANCH 01 & BRANCH 02	10.0	10.0	2.0 in.	24.0 FU	120.0 ft.						
02	BRANCH 05, 06 & 07	18.0	18.0	3.0 in.	84.0 FU	212.0 ft.						
03	BRANCH 03 & 04	8.0	8.0	1.5 in.	8.0 FU	60.0 ft.						

Table P-3. Plumbing fixture schedule

	PLUMBING FIXTURE SCHEDULE									
Tag	Type and Description	Elevation	WFU	HWFU	CWFU					
L1	Lavatory - Wall Mounted: 19"x14" - Private	2' - 9"	1	0.5	0.5					
FD	Floor Drain - Round: 5" Strainer - 2" Drain	0' - 0"	2	0	0					
FD	Floor Drain - Round: 5" Strainer - 2" Drain	0' - 0"	2	0	0					
FD	Floor Drain - Round: 5" Strainer - 2" Drain	0' - 0"	2	0	0					
WC	Water Closet - Flush Valve - Wall Mounted: Public - Flushing 1.6 gpf Flushometer	0' - 0''	6	0	5					
L1	Lavatory - Wall Mounted: 19"x14" - Private	2' - 9"	1	0.5	0.5					
WC	Water Closet - Flush Valve - Wall Mounted: Public - Flushing 1.6 gpf Flushometer	0' - 0''	6	0	5					
S2	Sink - Kitchen - Double: 42"x21" - Private	0' - 0''	2	1	1					
FD	Floor Drain - Round: 5" Strainer - 4" Drain	0' - 0''	4	0	0					
FD	Floor Drain - Round: 5" Strainer - 4" Drain	0' - 0''	4	0	0					
S1	Sink - Island - Single: 18"x18" - Public ***	0' - 0''	2	3	3					
S3	Sink - Work: 20"x18"	0' - 0"	2	2.25	2.25					
DW	Dishwasher - Commercial 36" wide**	0'-0"	2	1.5	1.5					
RF-1	Refrigerator ^			0	0.5					


** Dishwasher waste and domestic demand final determination is based on dishwasher manufacturer's requirements. WFU's, HWFU's and CWFU's were selected based on 2018 UPC Table A 103.1 (Appendix A) Dishwasher, domestic FU's. A safety factor was added in case a commercial grade dishwasher should be selected that would result in higher water demand. (2018 UPC FU's 1.5, Safety Factor 1.0) ^ No identified FU's per 2018 UPC.

*** Café counter sink is slightly oversized for anticipation of more connections to water line in future, and to account for peak demand times of café traffic.

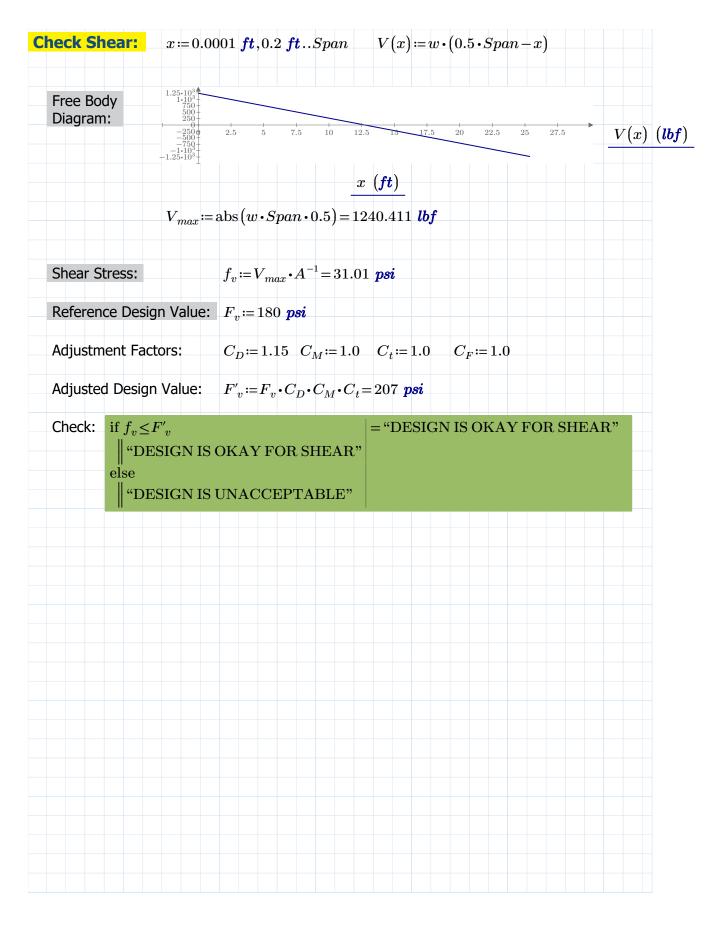
General Note: Floor and wall Cleanouts have been specified in design, but are not included in schedule due to no impact of FU values.

APPENDIX S - ELEVATOR CALCULATIONS

APPENDIX S - ELEVATOR CALCULATIONS

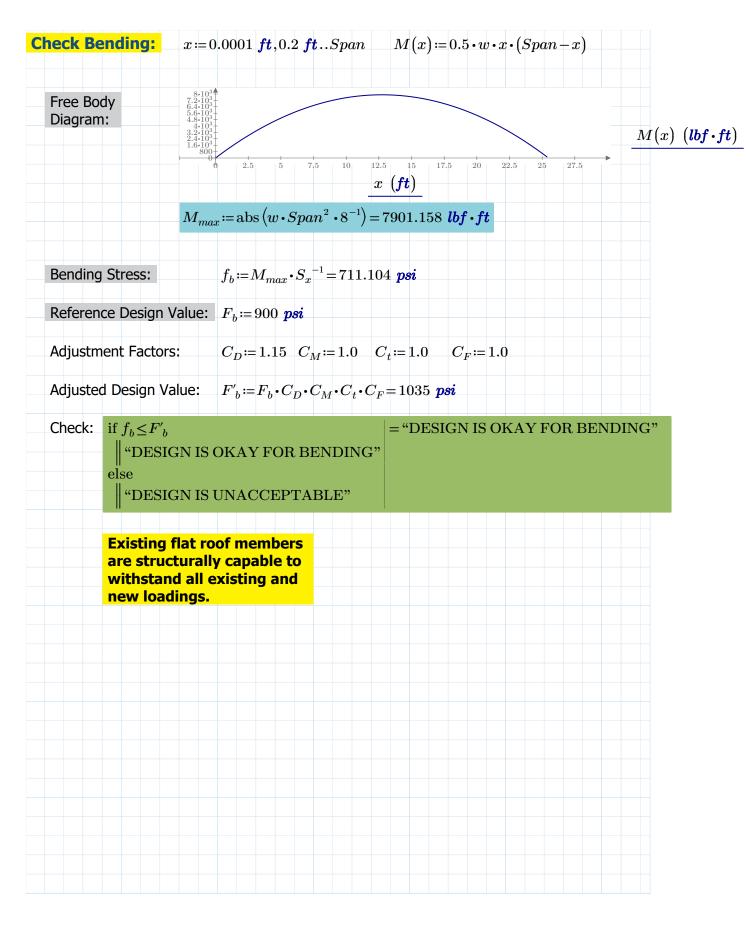
Y|A|M

Define Variables:	Applied Loads:	$P_{4} = 4800$	lbf $P_B \coloneqq$	4700 lbf P	$P_{C} = 5000 \ lb$
	Block Parameters				
At Point A:					
Define Variables		@ A:			
	Area of Bearin	g: $A_b \coloneqq$	64 in^2		
	Compressive S	Strength: $f'_m \coloneqq$	$0.45 \cdot 1000$	p <i>si</i> = 450 <i>psi</i>	
Check: C_{max} :=	$=P_A \cdot A_b^{-1} = 75 \ psi$	$C_{max} \leq f'_m$ =	=1		
At Point B:					
Define Variables					
		g: $A_b \coloneqq$			
	Compressive S	Strength: $f'_m :=$	$0.45 \cdot 1000$	psi = 450 psi	
Check: C_{max} :=	$=P_B \cdot A_b^{-1} = 73.438$	psi $C_{max} \leq f$	$m'_m = 1$		
At Point C:					
Define Variables	s: Applied Load	@ C:			
		g: $A_b \coloneqq$			
	Compressive S	Strength: $f'_m \coloneqq$	$0.45 \cdot 1000$	p <i>si</i> = 450 <i>psi</i>	
Check: C_{max} :=	$=P_C \cdot A_b^{-1} = 78.125$	psi $C_{max} \leq f$	$m'_m = 1$		
Existing eleva	tor shaft is				
structurally ca	able to				
handle the de for this elevat					
	or model.				

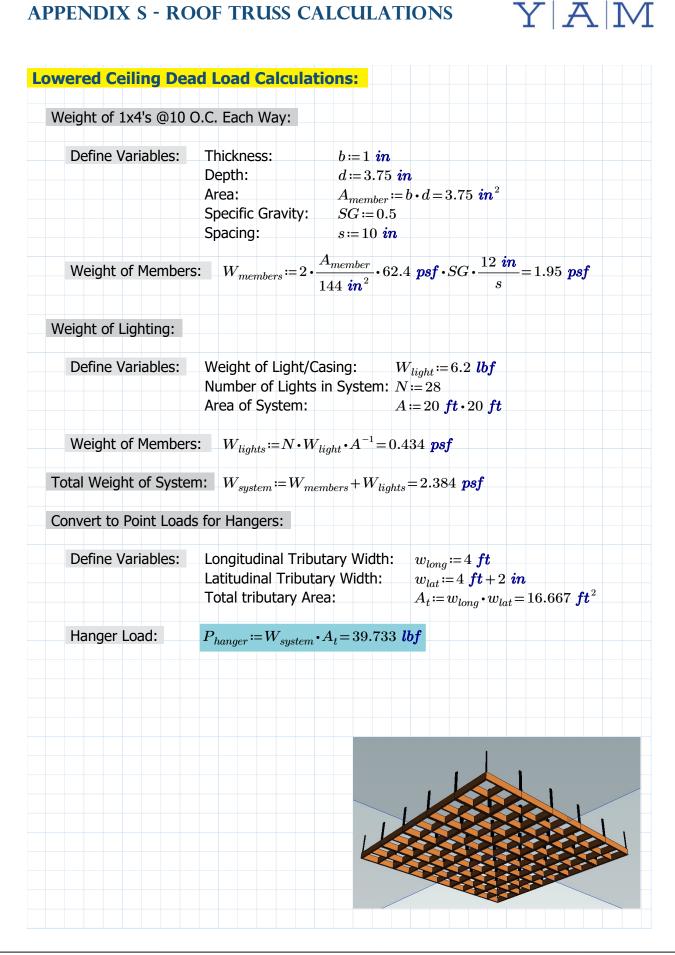

APPENDIX S - FLAT ROOF CALCULATIONS

Y|A|M

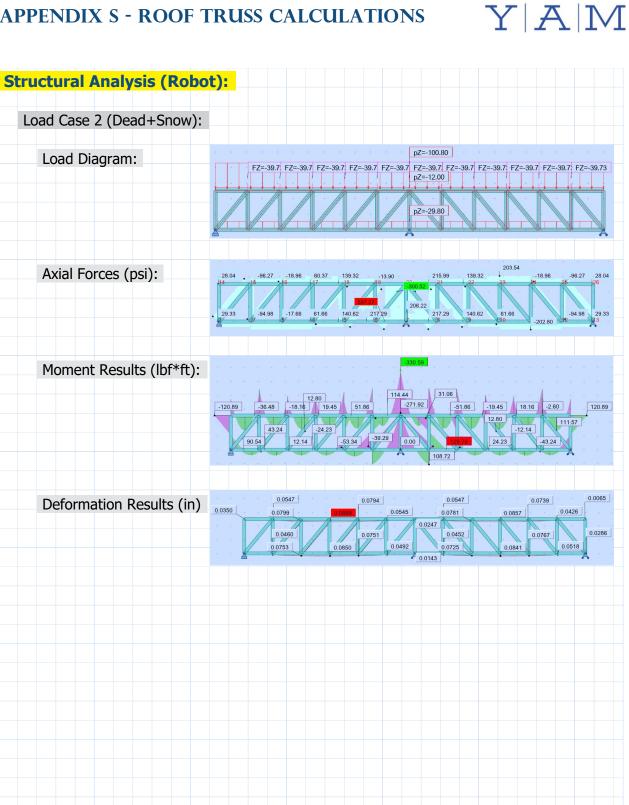
Gei	neral Notes and Assun	notions:		
	ASCE 7-16 and NDS 2018		sian	
	Flat roof section members			
	Assume members are Do	iglas Fir-Larch 2x20's	$w_t = 2 Jt$	1. 00 im
	(Assuming undressed s	sizes for an old building)	$ t \coloneqq 2 $ <i>in a</i>	l = 20 n
•	Maximum span is 25'-5 3/	/4"	$A \coloneqq t \cdot d \qquad S_x \coloneqq$	$= t \cdot d^{-} \cdot 6^{-} = 133.333 $ in
•	 Roof system components 	(Top to bottom)	$\sim Span \approx 25 ft + 1$	5.75 <i>in</i>
	Roor system components			
	Roof Covering - EPI	OM (smooth)		
	 5/8" OSB Sheathing 			
	3" Closed-Cell Spray	Foam Insulation		
•	Assume Risk Category II	(ASCE 7-16, Table 1.5-2)		
Dea	ad Load Calculations:			
	Upper Roof Dead Load:	$Covering := 1 \ psf$ She	eathing := 2 psf	
		$D_{upper} \coloneqq Covering + Sh$	eathing=3 psf	
		$w_{d.up} \coloneqq D_{upper} \cdot w_t = 6 pl$		
	Lower Roof Dead Load:	Insulation := $3 \cdot 0.15 \text{ ps}$	f Gypsum := 3	psf MEP≔4 psf
		$D_{lower} \coloneqq Insulation + G$	· · · ·	
		$w_{d,low} \coloneqq D_{lower} \cdot w_t = 14.9$		1.0
	Self Weight of Members:	SC-05 Framina-	62.4 met	$12 in_{-4,333}$ net
	Sell Weight of Fiembers.	50 ·= 0.5 1 runting ·=	144 <i>in</i> ²	w_t
		$w_{sw} \coloneqq Framing \cdot w_t = 8.$	667 plf	
		$w_{sw} = r r a ming \cdot w_t = 0.$		
Po	of Live Load Calculatio	I = 20 mof (Fro	m ASCE 7 16 Live Load T	ablac)
NU		$L_r = 20 \ psj (FI0)$	III ASCE 7-16 LIVE LOAU 16	ables)
		au T au - 40		
		$w_l \coloneqq L_r \cdot w_t = 40$) pij	
<u>Sn</u>	ow Load Calculations:	Location: Clinton TA		
5110	Jw Loau Calculations.		20	
		Ground Snow Load:	$p_g \coloneqq 30 psf$	
		Exposure Factor:	$C_e \coloneqq 1.0$	
		Thermal Factor:	$C_t \coloneqq 1.2$	
		Importance Factor:	$I_s \coloneqq 1.0$	
		Flat Snow Load:	$p_f \coloneqq 0.7 \boldsymbol{\cdot} C_e \boldsymbol{\cdot} C_t$	$\cdot I_s \cdot p_g = 25.2 \ psf$
			$w_s \coloneqq p_f \cdot w_t = 50$.4 plf
Tot	cal Loading: $w\!\coloneqq\!w_{d.up}$ -	$+ w_{d.low} + w_{sw} + 0.75 \cdot w_l +$	$0.75 \cdot w_s = 97.367$	<i>plf</i>

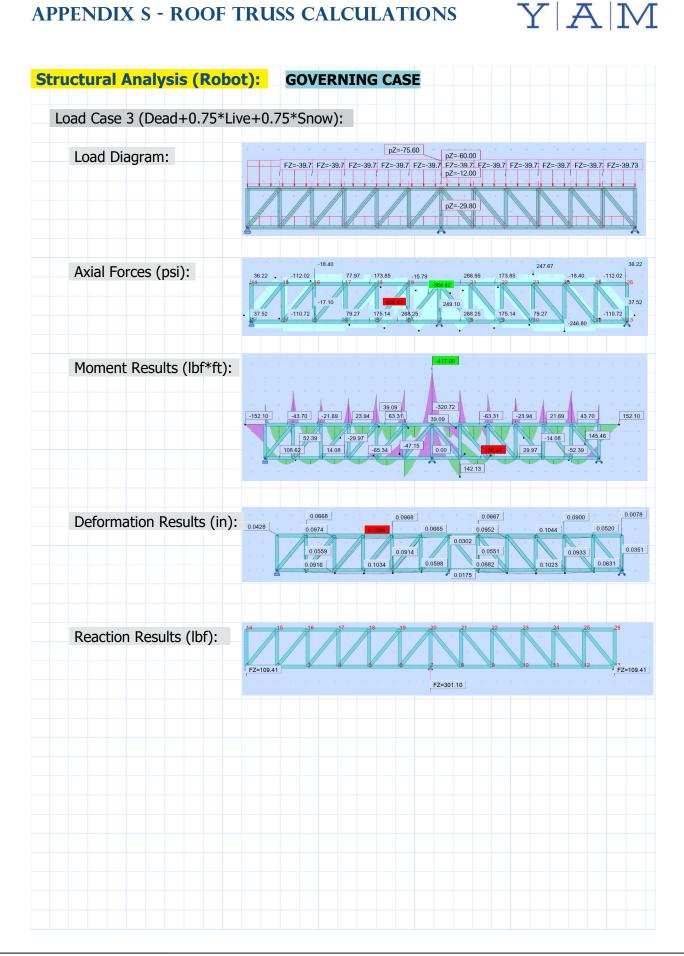

APPENDIX S - FLAT ROOF CALCULATIONS

$\mathbf{Y}|\mathbf{A}|\mathbf{M}$


APPENDIX S - FLAT ROOF CALCULATIONS

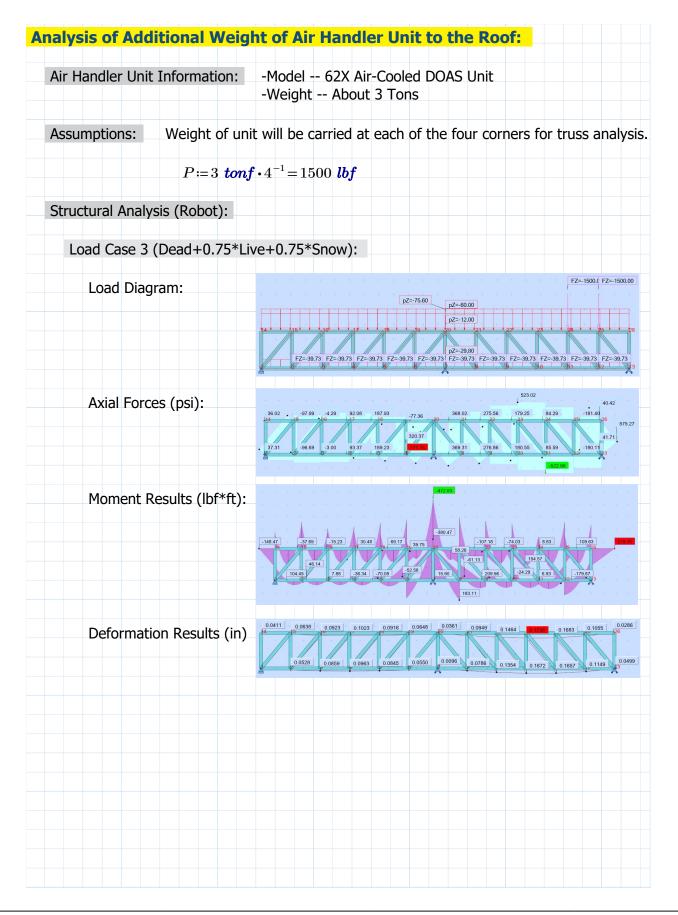
 $\mathbf{Y}|\mathbf{A}|\mathbf{M}$


Y|A|M


	ptions:	
• ASCE 7-16 and NDS 2018		sian.
Roof trusses are spaced a		
Roof system components		
Roof Covering - EPI	DM (smooth)	
 5/8" OSB Sheathing 		
 3" Closed-Cell Spray 	Foam Insulation	
Accume Diels Catagons II		
Assume Risk Category II (ASCE 7-10, TADIE 1.3-2)	
Dead Load Calculations:		
Upper Roof Dead Load:	Covering = 1 psf She	eathing:=2 psf
	$D_{upper} \coloneqq Covering + She$	
	2 upper cocci ang i and	
	$w_{d.up} \coloneqq D_{upper} \cdot w_t = 12 p$	
	au up = upper au = r	
Lower Roof Dead Load:	Insulation := $3 \cdot 0.15$ ps	$f \qquad Gypsum := 3 \ psf \qquad MEP := 4 \ psf$
		$ypsum + MEP = 7.45 \ psf$
	2 lower 2 no accord 1 of	
	$w_{d,low} \coloneqq D_{lower} \cdot w_t = 29.8$	S plf
Roof Live Load Calculatio	ns: $L_{\pi} \coloneqq 20 \ psf$ (From	m ASCE 7-16 Live Load Tables)
	$w_l \coloneqq L_r \cdot w_t = 80$	
Snow Load Calculations:	Location: Clinton, IA) plf
Snow Load Calculations:		
Snow Load Calculations:	Location: Clinton, IA) plf
Snow Load Calculations:	Location: Clinton, IA Ground Snow Load:) plf p _g :=30 psf
Snow Load Calculations:	Location: Clinton, IA Ground Snow Load: Exposure Factor:	$p_g \coloneqq 30 \ psf$ $C_e \coloneqq 1.0$
Snow Load Calculations:	Location: Clinton, IA Ground Snow Load: Exposure Factor: Thermal Factor:	$p_{g} := 30 \ psf$ $C_{e} := 1.0$ $C_{t} := 1.2$
Snow Load Calculations:	Location: Clinton, IA Ground Snow Load: Exposure Factor: Thermal Factor: Importance Factor:	$p_{g} := 30 \ psf$ $C_{e} := 1.0$ $C_{t} := 1.2$ $I_{s} := 1.0$ $p_{f} := 0.7 \cdot C_{e} \cdot C_{t} \cdot I_{s} \cdot p_{g} = 25.2 \ psf$
Snow Load Calculations:	Location: Clinton, IA Ground Snow Load: Exposure Factor: Thermal Factor: Importance Factor:	$p_{g} := 30 \ psf$ $C_{e} := 1.0$ $C_{t} := 1.2$ $I_{s} := 1.0$
Snow Load Calculations:	Location: Clinton, IA Ground Snow Load: Exposure Factor: Thermal Factor: Importance Factor:	$p_{g} := 30 \ psf$ $C_{e} := 1.0$ $C_{t} := 1.2$ $I_{s} := 1.0$ $p_{f} := 0.7 \cdot C_{e} \cdot C_{t} \cdot I_{s} \cdot p_{g} = 25.2 \ psf$
Snow Load Calculations:	Location: Clinton, IA Ground Snow Load: Exposure Factor: Thermal Factor: Importance Factor:	$p_{g} := 30 \ psf$ $C_{e} := 1.0$ $C_{t} := 1.2$ $I_{s} := 1.0$ $p_{f} := 0.7 \cdot C_{e} \cdot C_{t} \cdot I_{s} \cdot p_{g} = 25.2 \ psf$
Snow Load Calculations:	Location: Clinton, IA Ground Snow Load: Exposure Factor: Thermal Factor: Importance Factor:	$p_{g} := 30 \ psf$ $C_{e} := 1.0$ $C_{t} := 1.2$ $I_{s} := 1.0$ $p_{f} := 0.7 \cdot C_{e} \cdot C_{t} \cdot I_{s} \cdot p_{g} = 25.2 \ psf$
Snow Load Calculations:	Location: Clinton, IA Ground Snow Load: Exposure Factor: Thermal Factor: Importance Factor:	$p_{g} := 30 \ psf$ $C_{e} := 1.0$ $C_{t} := 1.2$ $I_{s} := 1.0$ $p_{f} := 0.7 \cdot C_{e} \cdot C_{t} \cdot I_{s} \cdot p_{g} = 25.2 \ psf$
Snow Load Calculations:	Location: Clinton, IA Ground Snow Load: Exposure Factor: Thermal Factor: Importance Factor:	$p_{g} := 30 \ psf$ $C_{e} := 1.0$ $C_{t} := 1.2$ $I_{s} := 1.0$ $p_{f} := 0.7 \cdot C_{e} \cdot C_{t} \cdot I_{s} \cdot p_{g} = 25.2 \ psf$
Snow Load Calculations:	Location: Clinton, IA Ground Snow Load: Exposure Factor: Thermal Factor: Importance Factor:	$p_{g} := 30 \ psf$ $C_{e} := 1.0$ $C_{t} := 1.2$ $I_{s} := 1.0$ $p_{f} := 0.7 \cdot C_{e} \cdot C_{t} \cdot I_{s} \cdot p_{g} = 25.2 \ psf$
Snow Load Calculations:	Location: Clinton, IA Ground Snow Load: Exposure Factor: Thermal Factor: Importance Factor:	$p_{g} := 30 \ psf$ $C_{e} := 1.0$ $C_{t} := 1.2$ $I_{s} := 1.0$ $p_{f} := 0.7 \cdot C_{e} \cdot C_{t} \cdot I_{s} \cdot p_{g} = 25.2 \ psf$
Snow Load Calculations: Snow Load Calculation: Snow Load Calculation:	Location: Clinton, IA Ground Snow Load: Exposure Factor: Thermal Factor: Importance Factor:	$p_{g} := 30 \ psf$ $C_{e} := 1.0$ $C_{t} := 1.2$ $I_{s} := 1.0$ $p_{f} := 0.7 \cdot C_{e} \cdot C_{t} \cdot I_{s} \cdot p_{g} = 25.2 \ psf$

Structural Analysis (Robot): Load Case 1 (Dead+Live): pZ=-80.00 Load Diagram: pZ=-12.00 FZ=-39.7 FZ FZ=-39.7 FZ=-39.7 FZ= FZ=-39.7 FZ=-39.7 FZ=-39.7 FZ=-39.7 FZ=-39.7 FZ=-39.73 pZ=-29.80 464 76 Axial Forces (psi): 177.16 118.69 -12.77 185.53 118.69 19.29 -86.86 23.15 -86.86 19.29 49.84 23.15 <u> 33</u> 180.59 -176.51 -85.57 24.44 -85.57 24.44 -17.99 51.14 119.98 186.83 119.98 51.14 186. 78.94 Moment Results (lbf*ft): 91.32 99.56 26.26 -102.23 -32.17 -16.05 16.77 45.02 -45.02 -16.77 16.05 -242.76 11.47 37.77 -10.99 -46.17 -34.59 0.00 20.80 10.99 -37.77 79.73 88.75 0.0057 0.0475 0.0690 0.0475 0.0643 Deformation Results (in) 0.0304 0.0695 0.0473 0.0679 0.0370 0.0745 0.0214 0.0248 0.0654 0.0400 0.0394 0.0668 0.0656 0.0740 0.0428 0.0631 0.0451 0.0732 0.0124

YAM



Define Variables:	Area of Members: $A \coloneqq 1.5 \ in \cdot 5.5 \ in$ (Assume No. 2 Douglas Fir-Larch)
	Max Compression: $f_c \coloneqq 656.42 \ psi$
	Max Tension: $f_t = 364.42 \ psi$
Reference Design V	Values: $F_c := 1350 \ psi$ $F_t := 575 \ psi$ (Assume No. 2 Douglas Fir-Larch)
Adjustment Factors	S: $C_D := 1.15$ $C_M := 1.0$ $C_t := 1.0$ $C_F := 1.0$
Adjusted Design Va	alues: $\begin{aligned} F'_c &\coloneqq F_c \cdot C_D \cdot C_M \cdot C_t \cdot C_F = \left(1.553 \cdot 10^3\right) \ \textbf{psi} \\ F'_t &\coloneqq F_t \cdot C_D \cdot C_M \cdot C_t \cdot C_F = 661.25 \ \textbf{psi} \end{aligned}$
Check:	
else	= "DESIGN IS OKAY FOR COMPRESSION" UNACCEPTABLE"
else	= "DESIGN IS OKAY FOR TENSION" UNACCEPTABLE"
ecking Bending	(Load Case 3): $M_{max} = 417 \ lbf \cdot ft$ $S_x = 7.56 \ in^3$
Bending Stress:	$f_b := M_{max} \cdot S_x^{-1} = 661.905 \ psi$
Reference Design V	/alue: $F_b \coloneqq 900 \ psi$ (Assume No. 2 Douglas Fir-Larch)
Adjustment Factors	S: $C_D := 1.15$ $C_M := 1.0$ $C_t := 1.0$ $C_F := 1.0$
Adjusted Design Va Check:	alue: $F'_b \coloneqq F_b \cdot C_D \cdot C_M \cdot C_t \cdot C_F = (1.035 \cdot 10^3) psi$
if $f_b \leq F'_b$	= "DESIGN IS OKAY FOR BENDING"

Y|A|M

		s: $A := 1.5 \text{ in } \cdot 5.5 \text{ in}$	(Assume No. 2 Douglas Fir-Larch)
		n: $f_c = 771.74 \ psi$	
	Max Tension:	$f_t \coloneqq 522.98 \ psi$	
Reference Design V	alues: $F_c \coloneqq 13$	50 <i>psi</i> $F_t \coloneqq 575$ <i>psi</i>	(Assume No. 2 Douglas Fir-Larch)
Adjustment Factors:	: $C_D := 1.15$	$C_M := 1.0$ $C_t := 1.0$	$C_F := 1.0$
Adjusted Design Val		$C_D \cdot C_M \cdot C_t \cdot C_F = (1.553)$ $C_D \cdot C_M \cdot C_t \cdot C_F = 661.25$	· · ·
Check:			
else	OKAY FOR CON UNACCEPTABI	MPRESSION"	SIGN IS OKAY FOR COMPRESSIO
else	OKAY FOR TEN UNACCEPTABI	ISION"	S OKAY FOR TENSION"
ecking Bending	(Load Case 3)	: M _{max} :=472 lbf · f	$t \qquad S_x := 7.56 \ in^3$
	$f_b \coloneqq M_{max}$	$\cdot S_x^{-1} = 749.206 \ psi$	
Bending Stress:	, i i i i i i i i i i i i i i i i i i i		
		Assume No. 2 Dougl	as Fir-Larch)
Reference Design V	alue: $F_b \coloneqq 900 \ p$	$C_M \coloneqq 1.0$ (Assume No. 2 Dougl $C_M \coloneqq 1.0$ $C_t \coloneqq 1.0$	
Bending Stress: Reference Design V Adjustment Factors: Adjusted Design Val Check:	Falue: $F_b := 900 \ p$: $C_D := 1.15$		$C_F := 1.0$

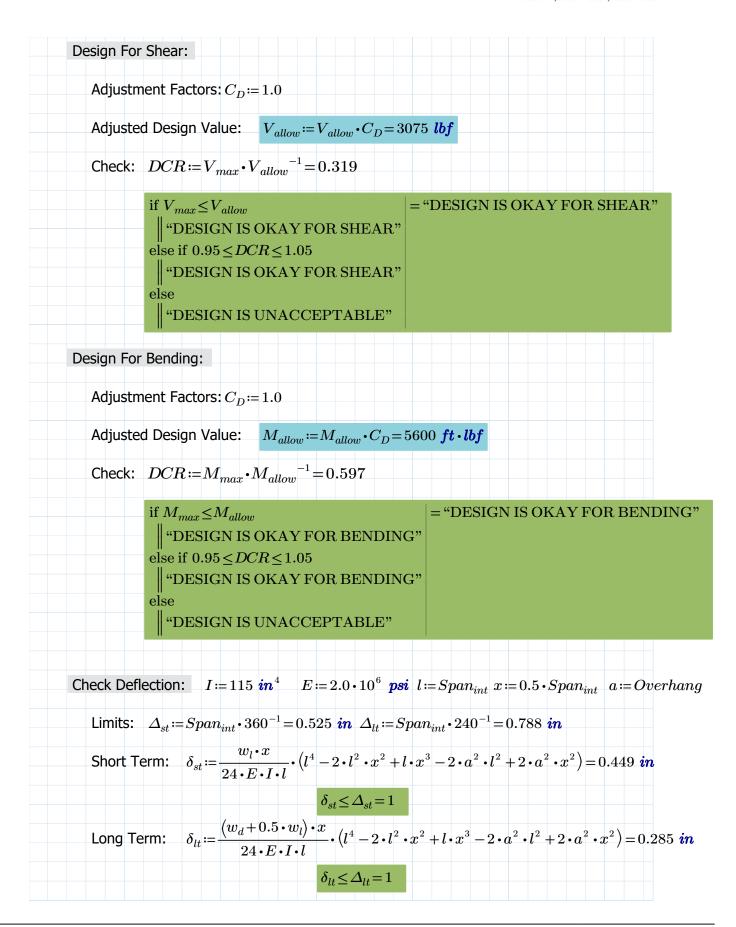
Y|A|M

Deflection Limits:	$\Delta_{st} := L \cdot 360^{-1} = 0.833$ in	$\delta_{tot} \! \leq \! \Delta_{st} \! = \! 1$
	$\Delta_{lt} := L \cdot 240^{-1} = 1.25 \ in$	$\delta_{tot}\!\leq\! \Delta_{lt}\!=\!1$
	$\Delta_{tot} \! \coloneqq \! L \! \cdot \! 240^{-1} \! = \! 1.25 \; in$	$\delta_{tot} \leq \Delta_{tot} = 1$
	Existing roof trusses are structurally capable to handle all new loadings.	

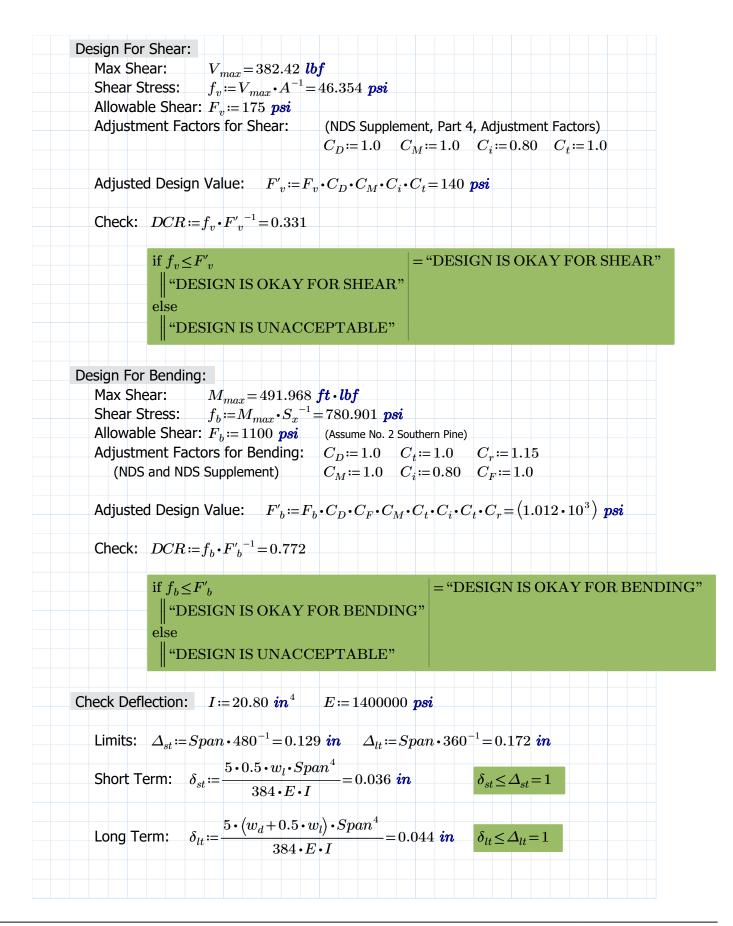
General Notes and Assum	intions:	
• ASCE 7-16 and NDS 2018		sian.
Floor system components		
	wood flooring, with 1" sh	loes
 Subfloor: 3/4" OSB s Floor framing: TBD 		
	iberglass batt insulation	
Assume Risk Category II (ASCE 7-16, Table 1.5-2)	
Live Load Assignments:	Kitchen Live Load:	$Kitchen \coloneqq 150 \ psf$
(From ASCE 7-16 Live Load Tables)	Cafe Live Load:	$Cafe \coloneqq 100 \ psf$
	Retail Live Load:	$Retail \coloneqq 75 \ psf$
	Restroom Live Load:	$Restroom \coloneqq 60 \ psf$
Snow Load Calculations:	Location: Clinton, IA	
Show Load Calculations.	Ground Snow Load:	$p_q \coloneqq 30 \ psf$
	Ground Show Lodd.	$p_g = 50$ psj
	Exposure Factor:	$C_e \coloneqq 1.0$
	Thermal Factor:	$C_t := 1.2$
	Importance Factor:	$I_s := 1.0$
	Flat Snow Load:	$p_f \coloneqq 0.7 \boldsymbol{\cdot} C_e \boldsymbol{\cdot} C_t \boldsymbol{\cdot} I_s \boldsymbol{\cdot} p_g \!=\! 25.2 \operatorname{\textit{psf}}$

Try 1.75" x 18" Mic LVL Joist By Weyer		M_{allow} :=	= 1937	5 lbf -	ft	V_{al}	:low :=	598	5 lbf			
Define Variables:	Tributary	Width: w	t [;] =16	in								
Calculate Dead Load:	1" Finisher Wood Und 3/4" Shea 6" Batt In Self Weigh Dead Load Distributed	lerlaymen thing: sulation: ht: 1:	t:	Unde Shea Insu w _{sw} : Dead	sh := 4 er := 3 thing lation = 9.2 $fd := FinDead$	psf := 2 := 1 olf nish	psf psf +Ur				ng + Ins	sulat
Joists Spanning Fro	om Grid 4 to	Grid 5:	Span	n := 25	ft + 5	.75	in					
Max Live Loa	id in Span:	Live := 1	-									
Distributed L		$w_l \coloneqq Liv$	v									
Total Distribu	uted Load:	$w \coloneqq -w$	$d - w_l$	= -22	2.533	plf						
$\begin{array}{c} 2& 4& 3& 1& 0\\ 2& 4& 3& 1& 0\\ 3& 5& 2& 3& 1\\ 1& 6& 5& 1& 0\\ 3& 1& 6& 5& 0\\ -& 1& 6& 5& 0\\ -& 1& 5& 5& 0\\ -& 1& 5& 5& 0\\ -& 1& 5& 5& 0\\ -& 1& 5& 5& 0\\ -& 2& 4& 5& 1\\ -& 2& 4& 1\\ -& 2& 4& 5& 1\\ -& 2& 4& 1& 1\\ -&$			(ft)	17.5	20 2	22.5	25	27.5		V(x)	(<i>lbf</i>)	
$V_{max} \coloneqq ab$	$os(w \cdot Span \cdot$	(0.5) = 283	34.982	lbf								
Adjustment F	Factors: C_D :	=1.0										
Adjusted Des	sign Value:	V_{allow} :=	V_{allow}	$\cdot C_D =$	= 5985	lbf						
Check: DC	$R \coloneqq V_{max} \cdot V$	$V_{allow}^{-1} =$	0.474	1								
else	$T_{max} \le V_{allow}$ DESIGN IS if $0.95 \le DC$ DESIGN IS	$CR \le 1.05$			2"	DES	SIGN	IS	OKA ⁻	Y FOF	R SHEA	AR"

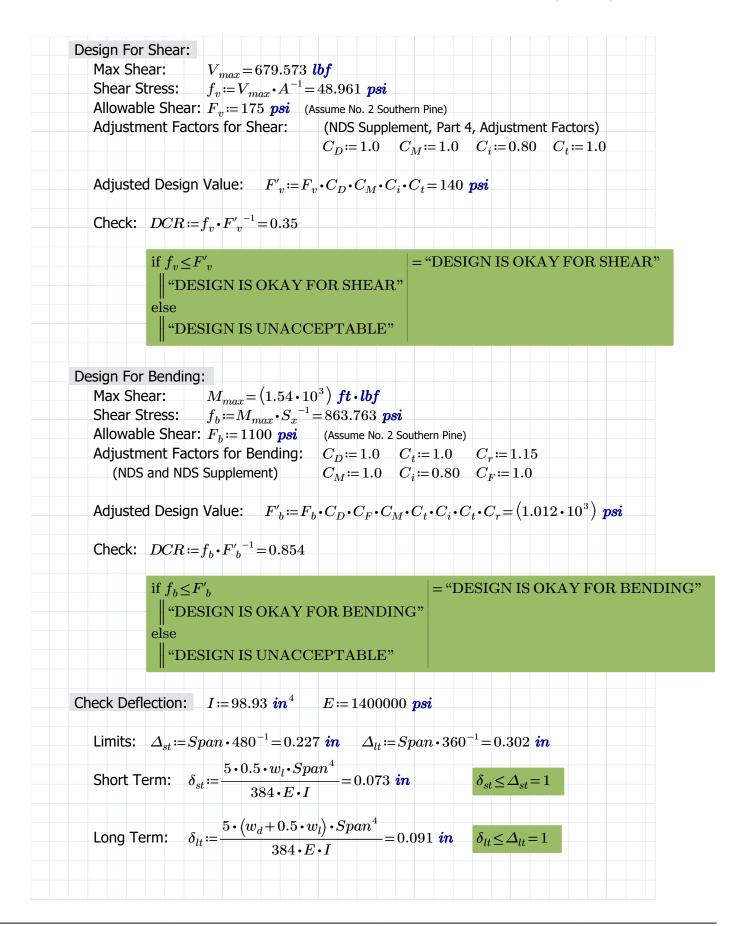
	$\begin{array}{r} 1.5 \cdot 10^{3} \\ -500 \\ -2.5 \cdot 10^{3} \\ -4.5 \cdot 10^{3} \\ -6.5 \cdot 10^{3} \\ -8.5 \cdot 10^{3} \\ 1.05 \cdot 10^{4} \\ \end{array}$								25 27.5			
	$-1.05 \cdot 10^{-0}$ $-1.25 \cdot 10^{4}$ $-1.45 \cdot 10^{4}$ $-1.65 \cdot 10^{4}$ $-1.85 \cdot 10^{4}$	2.5	2	7.5	10	12.5 15	17.5	20 22.5	25 27.5		M(x)	$(lbf \cdot ft)$
						x (ft)						
	M_{max}	:=ab	$s(w \cdot S)$	$Span^2$	• 8^{-1}	= 1805	_	$f \cdot ft$				
	Adjustm	ent Fa	actors	C_{D} :=	= 1.0							
	-			~		$_{ow}$:= M_a	$_{llow}$ • C_D	=19375 f	t · lbf			
	Check:	DCF	i = M	max^{\bullet}	M_{allow}	$w^{-1} = 0.9$	932					
		$ ext{if } M_{r}$	$max \leq N$	M_{allow}				="I	DESIGN	IS OKA	YFO	R BENDIN
						Y FOR	BENDI	NG"				
			if 0.95	_				NON				
		∥"L else	ESIG	NIS	OKA	Y FOR	BENDI	NG"				
			DESIG	NIS	UNA	CCEPT	ABLE"					
C	heck Defle	ection	: I:	=851	in^4	$E \coloneqq 2.$	$0 \cdot 10^{6}$	osi				
	Limits:	Δ_{st} :=	Span	•360	$^{-1} = 0$.849 <i>in</i>	Δ_{lt} :=	$Span \cdot 24$	$0^{-1} = 1.27$	74 in		
	Chart Ta		c .	5•0.5	$5 \cdot w_l \cdot$	$Span^4$	0 557	•	5 - 1	- 1		
	Short Te	erm:	$o_{st} :=$	3	$84 \cdot E$	· I	=0.557	in	$\delta_{st} \leq \Delta$	$s_{st} = 1$		
				$5 \cdot (w$	$_{d} + 0.5$	$(5 \cdot w_l) \cdot S$	$Span^4$					
	Long Te	rm:	$\delta_{lt} := 0$	X	38 4	$\mathbf{I} \cdot E \cdot I$	=	0.683 <i>in</i>	$\delta_{lt} \leq \Delta$	$_{lt}=1$		
	IGN SUM	IMAR	Y:					sts by Wey See appe				
DES				value	e is a	bit low.	Instead	of using a	a 20" TJI	360, ar	ו 18" T	
DES								ent ceiling duct, they				ution
DES				wich				יטטכנ, נווכן				
DES				wish requ		use ano		, ,	y must su		Subsul	delott
DES						use ano			y muse su		Substit	

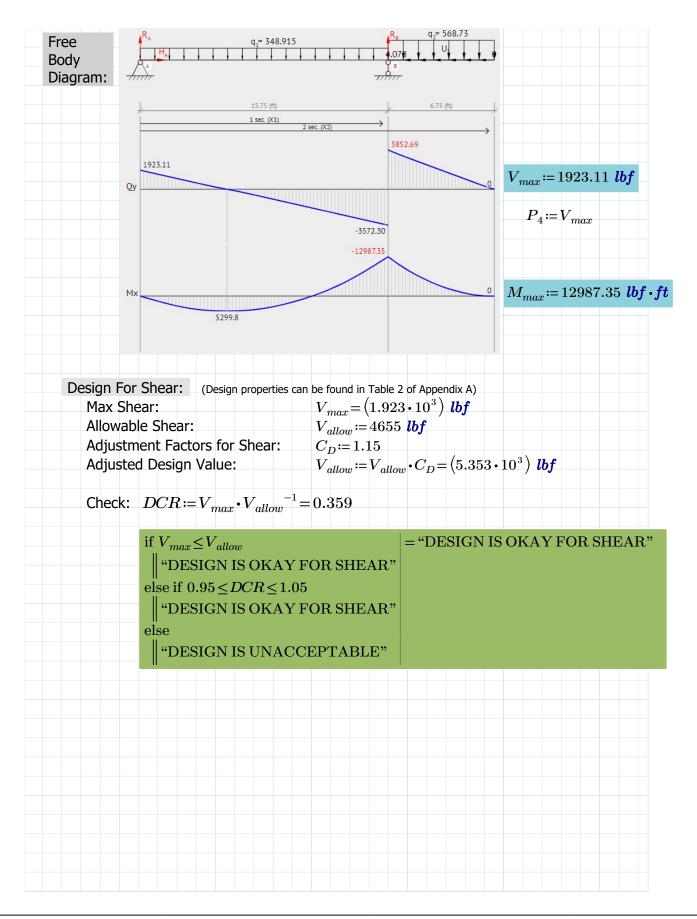

Try 1.75" x 14" Mic LVL Joist By Weyer	unou	$130 \ lbf \cdot ft \qquad V_{allow} \coloneqq 4655$	5 lbf
Define Variables:	Tributary Width: $w_t := 1$	6 <i>in</i>	
Calculate Dead Load:	1" Finished Hardwood: Wood Underlayment: 3/4" Sheathing: 6" Batt Insulation: Self Weight: Dead Load: Distributed Dead Load:	$Finish := 4 psf$ $Under := 3 psf$ $Sheathing := 2 psf$ $Insulation := 1 psf$ $w_{sw} := 7.1 plf$ $Dead := Finish + Under$ $w_{d} := Dead \cdot w_{t} + w_{sw} = 20$	-
Joists Spanning Fro Max Live Loa Distributed Li Total Distribu	ive Load: $w_l \coloneqq Live \cdot v$		
Design For Shea	ar: $x \coloneqq 0.0001 \ ft, 0.2 \ ft$	$V(x) \coloneqq w \cdot (0)$	$0.5 \cdot Span - x)$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 5 7.5 10 12.5 1	5 17.5 20 22.5 25 27.5	V(x) (lbf)
$V_{max} \coloneqq \mathrm{ab}$	$\operatorname{os}(w \cdot Span \cdot 0.5) = 1958.9$		¢
Adjustment F Adjusted Des	Factors: $C_D \coloneqq 1.0$ sign Value: $V_{allow} \coloneqq V_{al}$	$c_{ow} \cdot C_D = 4655 \ lbf$	
Check: DC	$R \coloneqq V_{max} \cdot V_{allow}^{-1} = 0.4$	21	
"] else "] else	$T_{max} \le V_{allow}$ DESIGN IS OKAY FOR if $0.95 \le DCR \le 1.05$ DESIGN IS OKAY FOR DESIGN IS UNACCEPT	SHEAR" SHEAR"	OKAY FOR SHEAR"

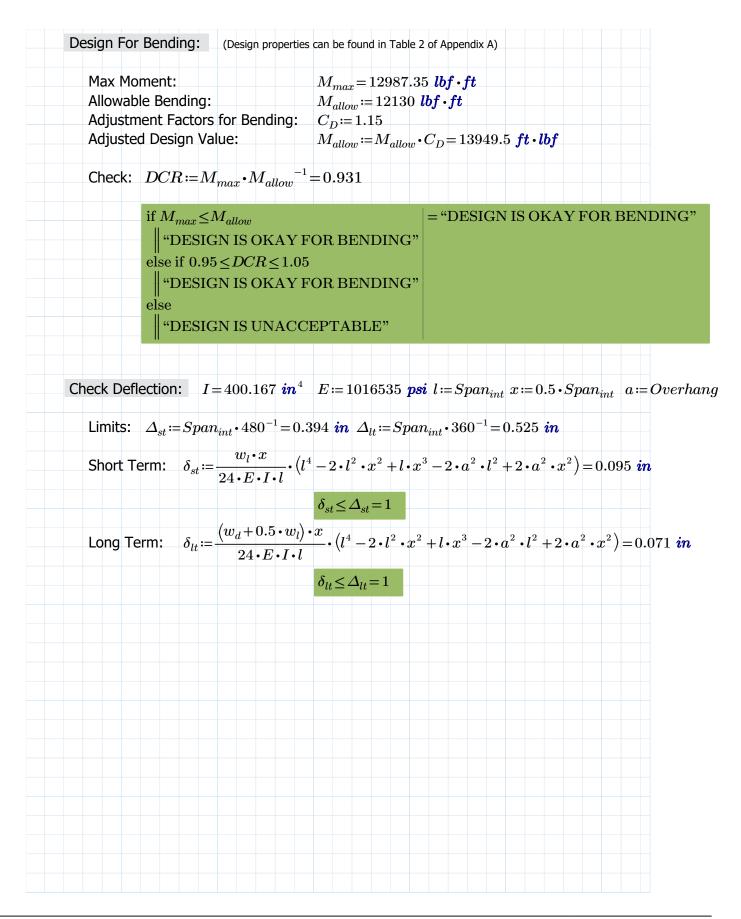
Design For Bending:	$x \coloneqq 0.0001 \ ft, 0.2 \ ftSpan \qquad M(x) \coloneqq 0.5 \cdot w \cdot x \cdot (Span - x)$
$\begin{array}{c} -2.5 \times 10^{3} \\ -2.5 \times 10^{3} \\ -4.5 \times 10^{3} \\ -6.5 \times 10^{3} \\ -8.5 \times 10^{3} \\ -1.05 \times 10^{4} \\ -1.25 \times 10^{4} \\ -1.45 \times 10^{4} \\ -1.85 \times 10^{4} \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$M_{max} \coloneqq \mathrm{abs}\left(w \cdot x\right)$	$\frac{x (ft)}{Span^2 \cdot 8^{-1}} = 12477.933 \ lbf \cdot ft$
Adjustment Factors Adjusted Design Va	$C_D \coloneqq 1.0$ $M_{allow} \coloneqq M_{allow} \cdot C_D = 12130 \ ft \cdot lbf$
Check: $DCR \coloneqq M$	$M_{max} \cdot M_{allow}^{-1} = 1.029$
else if 0.99 "DESIC else	M_{allow} = "DESIGN IS OKAY FOR BENDING"GN IS OKAY FOR BENDING" $5 \le DCR \le 1.05$ GN IS OKAY FOR BENDING"GN IS UNACCEPTABLE"
Check Deflection: E	$I := 2.0 \cdot 10^6 \ psi$ $I := 400 \ in^4$
	$n \cdot 360^{-1} = 0.849 \ \textit{in}$ $\Delta_{lt} := Span \cdot 240^{-1} = 1.274 \ \textit{in}$
Short Term: δ_{st} :=	$\frac{5 \cdot 0.5 \cdot w_l \cdot Span^4}{384 \cdot E \cdot I} = 0.79 \text{ in} \qquad \qquad \delta_{st} \leq \Delta_{st} = 1$
Long Term: $\delta_{lt} :=$	$\frac{5 \cdot (w_d + 0.5 \cdot w_l) \cdot Span^4}{384 \cdot E \cdot I} = 1.032 \text{ in } \qquad \delta_{lt} \leq \Delta_{lt} = 1$
DESIGN SUMMARY:	Use 18" Deep TJI 360 Joists by Weyerheauser @ 12" O.C. for floor joists tagged as 'J2'. See appendix for indication. If contractor wishes to use another product, they must submit a substitution request.


	icrollam LVL By Weyerha	$\textbf{aeuser:} M_{allow} \coloneqq 8070 \ \textit{lbf} \cdot \textit{ft} \qquad V_{allow} \coloneqq 3740$
Define Variables:	Tributary Width: $w_t \coloneqq$	12 <i>in</i>
Calculate Dead	1" Finished Hardwood:	: Finish:=4 psf
Load:	Wood Underlayment:	$Under \coloneqq 3 \ psf$
	3/4" Sheathing:	Sheathing := 2 psf
	6" Batt Insulation:	Insulation := 1 psf
	Self Weight:	$w_{sw} \coloneqq 5.7 \ \boldsymbol{plf}$
	Dead Load: Distributed Dead Load:	Dead := Finish + Under + Sheathing + Insula
	DISTIDUTED DEau LOau.	$: w_d := Dead \cdot w_t + w_{sw} = 15.7 \ plf$
Joists Spanning Fro	om Grid 4 to Grid 5: S_{I}	$pan \coloneqq 25 \ ft + 5.75 \ in$
Max Live Loa		
Distributed L	ive Load: $w_l \coloneqq Live \cdot$	$w_t = 75 \ \hat{plf}$
Total Distribu	uted Load: $w \coloneqq -w_d - w_d$	$w_l \!=\! -90.7 plf$
Design For She	ar: $x \coloneqq 0.0001 \ ft, 0.2 \ f$	$ftSpan \qquad V(x) \coloneqq w \cdot (0.5 \cdot Span - x)$
$V_{max} := ab$	5	
	actore C 10	
	$actors. C_D \approx 1.0$	
Adjustment F		$C_{\rm P} = 3740 \ lbf$
		$llow \cdot C_D = 3740 \ lbf$
Adjustment F Adjusted Des		
Adjustment F Adjusted Des Check: DC	sign Value: $V_{allow} \coloneqq V_a$ $R \coloneqq V_{max} \cdot V_{allow}^{-1} = 0.3$	309
Adjustment F Adjusted Des Check: DC	sign Value: $V_{allow} \coloneqq V_{a}$ $R \coloneqq V_{max} \cdot V_{allow}^{-1} = 0.3$ $m_{max} \le V_{allow}$	309 = "DESIGN IS OKAY FOR SHEAR"
Adjustment F Adjusted Des Check: DC if V	sign Value: $V_{allow} := V_{allow}$ $R := V_{max} \cdot V_{allow}^{-1} = 0.3$ $m_{max} \le V_{allow}$ DESIGN IS OKAY FOR	309 = "DESIGN IS OKAY FOR SHEAR"
Adjustment F Adjusted Des Check: DC	sign Value: $V_{allow} \coloneqq V_{a}$ $R \coloneqq V_{max} \cdot V_{allow}^{-1} \equiv 0.3$ $m_{max} \le V_{allow}$ DESIGN IS OKAY FOR if $0.95 \le DCR \le 1.05$	309 * SHEAR" = "DESIGN IS OKAY FOR SHEAR"
Adjustment F Adjusted Des Check: DC	sign Value: $V_{allow} \coloneqq V_{a}$ $R \coloneqq V_{max} \cdot V_{allow}^{-1} \equiv 0.3$ $m_{max} \le V_{allow}$ DESIGN IS OKAY FOR if 0.95 $\le DCR \le 1.05$ DESIGN IS OKAY FOR	309 * SHEAR" = "DESIGN IS OKAY FOR SHEAR"

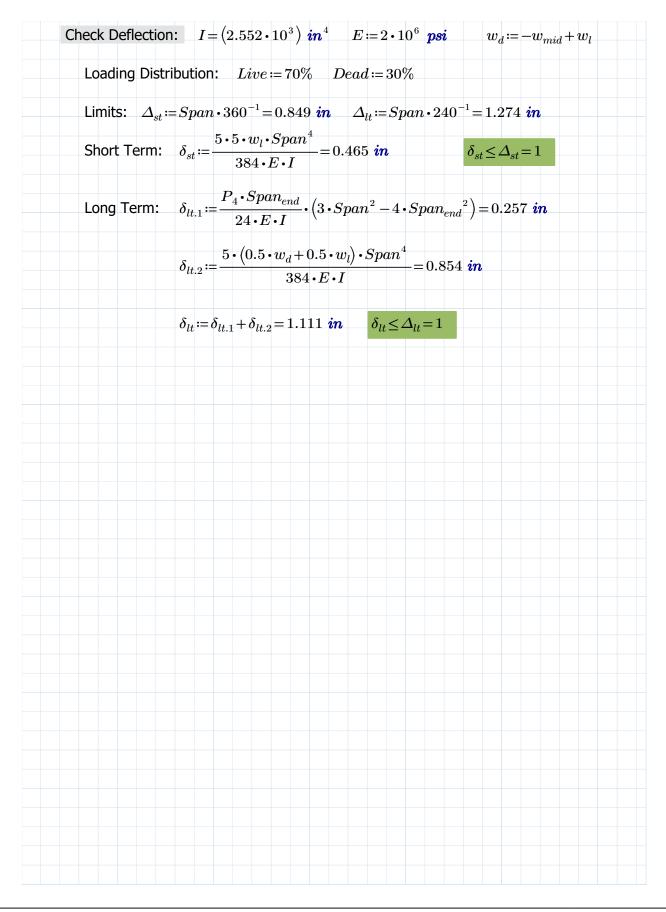
-4.5.1	000 0 2.5 03 - 03 - 03 - 03 - 03 - 03 -	5	7.5 10	12.5 15	5 17.5 20	22.5 25	27.5		
	03 + 03 + 03 + 03 + 00							M(x)	$(lbf \cdot ft)$
=1:25:1	₿⁴ <u>Ţ</u>			m (£4)					
			9	x (ft)	-				
M_{n}	$aax \coloneqq abs$	$\operatorname{s} \langle w ullet S \rangle$	$pan^2 \cdot 8^-$	$(1^{-1}) = 7360$.168 lbf • ft				
			$C_D \coloneqq 1.0$						
Adjust	ed Desi	gn Valı	ue: M	$M_{allow} \coloneqq M_a$	$llow \cdot C_D = 807$	0 ft · lbf			
Check	: DCF	$R := M_r$	$_{max} ullet M_{all}$	$d_{ow}^{-1} = 0.9$	912				
	$\operatorname{if} M_{i}$	$max \leq N$	I_{allow}			= "DESIC	GN IS OF	KAY FOR	BENDIN
		DESIG	N IS OK.	AYFOR	BENDING"				
			$\leq DCR \leq$						
	else	DESIG	N IS OK.	AY FOR	BENDING"				
	11	ESIG	N IS UN	ACCEPT	ABLE"				
Chaols Dr	floation	. т	20 2 i 4	E O	$0 \cdot 10^6 {\it psi}$				
	INECTION	. 1:-	-208 111	<i>L</i> := 2.	0•10 <i>psi</i>				
Limito									
LITTICS	: Δ_{st} :=	Span	• $360^{-1} =$	0.849 <i>in</i>	$\Delta_{lt} \coloneqq Spar$	$n \cdot 240^{-1} =$	1.274 <i>in</i>		
							1.274 in $\leq \Delta_{st} = 0$		
		$\delta_{st} \coloneqq$	$5 \cdot 0.5 \cdot w$ $384 \cdot$	$\frac{1 \cdot Span^4}{E \cdot I}$:	=0.855 <i>in</i>				
	Term:	$\delta_{st} := -$	$5 \cdot 0.5 \cdot w$ $384 \cdot $ $5 \cdot (w_4 + 0)$	$\frac{1 \cdot Span^4}{E \cdot I}$	=0.855 in	δ_{st}	$\leq \Delta_{st} = 0$		
Short	Term:	$\delta_{st} := -$	$5 \cdot 0.5 \cdot w$ $384 \cdot $ $5 \cdot (w_4 + 0)$	$\frac{1 \cdot Span^4}{E \cdot I}$	=0.855 <i>in</i>	δ_{st}			
Short	Term: Term:	$\delta_{st} := \delta_{lt} := -$	$5 \cdot 0.5 \cdot w$ $384 \cdot $ $5 \cdot (w_d + 0)$ 38	$\frac{\mathbf{e} \cdot Span^{4}}{E \cdot I}$ $0.5 \cdot w_{l} \cdot S$ $84 \cdot E \cdot I$	=0.855 in	δ_{st} 3 in δ_{lt}	$\leq \Delta_{st} = 0$ $\leq \Delta_{lt} = 1$	/eyerheau	Iser
Short Long	Term: Term:	$\delta_{st} := \delta_{lt} := -$	$5 \cdot 0.5 \cdot w$ $384 \cdot 6 \cdot (w_d + 0)$ $5 \cdot (w_d + 0)$ 38 Use 11.2 @ 12" 0	$(\cdot Span^4)$ $E \cdot I$ $(0.5 \cdot w_l) \cdot S$ $(0.5 \cdot e^2)$ $(0.5 \cdot e^2)$ (0.	= 0.855 in $= 1.213$ Grade 2.0E M or joists tagg	δ_{st} 3 <i>in</i> δ_{lt} icrollam LV ed as 'J3'.	$\leq \Delta_{st} = 0$ $\leq \Delta_{lt} = 1$ /L's by W See appe	endix for	
Short Long	Term: Term:	$\delta_{st} := \delta_{lt} := -$	$5 \cdot 0.5 \cdot w$ $384 \cdot 6 \cdot (w_d + 0)$ $5 \cdot (w_d + 0)$ 38 Use 11.2 @ 12" 0 indicatio	$\frac{ \cdot Span^4 }{E \cdot I}$ $\frac{ \cdot Span^4 }{ \cdot S }$ $\frac{ \cdot S \cdot w_l \cdot S}{ \cdot S }$ $\frac{ \cdot S \cdot w_l }{ \cdot S }$ $\frac{ \cdot S \cdot w_l }{ \cdot S }$	$= 0.855 in$ $\frac{5pan^4}{2} = 1.213$ Grade 2.0E M	δ_{st} 3 <i>in</i> δ_{lt} icrollam LV ed as 'J3'. to use and	$\leq \Delta_{st} = 0$ $\leq \Delta_{lt} = 1$ /L's by W See appe	endix for	
Short Long	Term: Term:	$\delta_{st} := \delta_{lt} := -$	$5 \cdot 0.5 \cdot w$ $384 \cdot 6 \cdot (w_d + 0)$ $5 \cdot (w_d + 0)$ 38 Use 11.2 @ 12" 0 indicatio	$\frac{ \cdot Span^4 }{E \cdot I}$ $\frac{ \cdot Span^4 }{ \cdot S }$ $\frac{ \cdot S \cdot w_l \cdot S}{ \cdot S }$ $\frac{ \cdot S \cdot w_l }{ \cdot S }$ $\frac{ \cdot S \cdot w_l }{ \cdot S }$	= 0.855 in $= 1.213$ Grade 2.0E M or joists tagg ractor wishes	δ_{st} 3 <i>in</i> δ_{lt} icrollam LV ed as 'J3'. to use and	$\leq \Delta_{st} = 0$ $\leq \Delta_{lt} = 1$ /L's by W See appe	endix for	
Short Long	Term: Term:	$\delta_{st} := \delta_{lt} := -$	$5 \cdot 0.5 \cdot w$ $384 \cdot 6 \cdot (w_d + 0)$ $5 \cdot (w_d + 0)$ 38 Use 11.2 @ 12" 0 indicatio	$\frac{ \cdot Span^4 }{E \cdot I}$ $\frac{ \cdot Span^4 }{ \cdot S }$ $\frac{ \cdot S \cdot w_l \cdot S}{ \cdot S }$ $\frac{ \cdot S \cdot w_l }{ \cdot S }$ $\frac{ \cdot S \cdot w_l }{ \cdot S }$	= 0.855 in $= 1.213$ Grade 2.0E M or joists tagg ractor wishes	δ_{st} 3 <i>in</i> δ_{lt} icrollam LV ed as 'J3'. to use and	$\leq \Delta_{st} = 0$ $\leq \Delta_{lt} = 1$ /L's by W See appe	endix for	
Short Long	Term: Term:	$\delta_{st} := \delta_{lt} := -$	$5 \cdot 0.5 \cdot w$ $384 \cdot 6 \cdot (w_d + 0)$ $5 \cdot (w_d + 0)$ 38 Use 11.2 @ 12" 0 indicatio	$\frac{ \cdot Span^4 }{E \cdot I}$ $\frac{ \cdot Span^4 }{ \cdot S }$ $\frac{ \cdot S \cdot w_l \cdot S}{ \cdot S }$ $\frac{ \cdot S \cdot w_l }{ \cdot S }$ $\frac{ \cdot S \cdot w_l }{ \cdot S }$	= 0.855 in $= 1.213$ Grade 2.0E M or joists tagg ractor wishes	δ_{st} 3 <i>in</i> δ_{lt} icrollam LV ed as 'J3'. to use and	$\leq \Delta_{st} = 0$ $\leq \Delta_{lt} = 1$ /L's by W See appe	endix for	

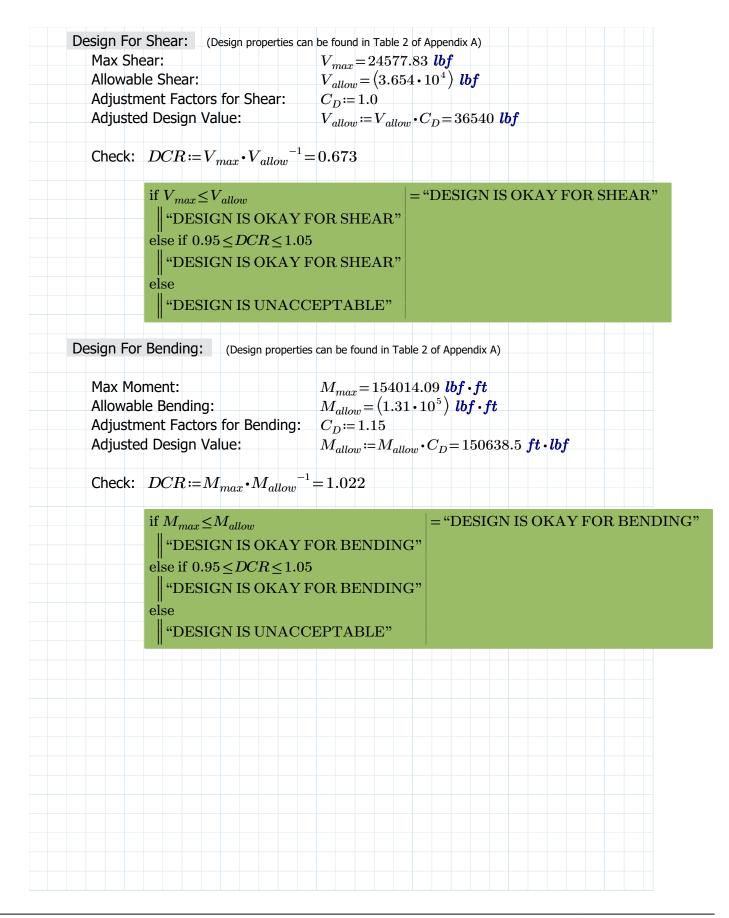

Try 1.75" x 9.25" N	Aicrollam LVL's: $M_{allow} = 5600 \ lbf \cdot ft$ $V_{allow} = 3075 \ lbf$	
Define Variables:	Tributary Width: $w_t \coloneqq 16 \ in \qquad \gamma_{snow} \coloneqq 20 \ pcf$	
Calculate Dead Load:	1" Finished Hardwood:Finish:=4 psfWood Underlayment:Under:=3 psf3/4"Sheathing:Sheathing:=2 psf6" Batt Insulation:Insulation:=1 psf	
	Self Weight: $w_{sw} := 4.7 \ plf$	
	$\label{eq:DeadLoad} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	
	Distributed Dead Load: $w_d \coloneqq Dead \cdot w_t + w_{sw} = 18.033 \ plf$	
Flat Snow Lo		
	$\begin{array}{llllllllllllllllllllllllllllllllllll$	ť
Interior Distr	$w_{d.max} \coloneqq 0.75 \cdot h_d \cdot \gamma_{snow} \cdot w_t = 10.874 \ plf$	ť
Interior Distr	$w_{d.max} \coloneqq 0.75 \cdot h_d \cdot \gamma_{snow} \cdot w_t = 10.874 \ plf$	řt
Interior Distr	$w_{d.max} \coloneqq 0.75 \cdot h_d \cdot \gamma_{snow} \cdot w_t = 10.874 \ plf$ ibuted Load: $w_{int} \coloneqq -w_d - w_l = -151.367 \ plf$ ibuted Load: $w_{ext} \coloneqq -w_d - 0.75 \cdot w_l - 0.75 \cdot w_f = -143.233 \ plf$	<i>`t</i>
Interior Distr Exterior Distr	$w_{d.max} \coloneqq 0.75 \cdot h_d \cdot \gamma_{snow} \cdot w_t = 10.874 \ plf$ ibuted Load: $w_{int} \coloneqq -w_d - w_l = -151.367 \ plf$ ibuted Load: $w_{ext} \coloneqq -w_d - 0.75 \cdot w_l - 0.75 \cdot w_f = -143.233 \ plf$	<i>t</i>
Interior Distr Exterior Distr	$w_{d.max} \coloneqq 0.75 \cdot h_d \cdot \gamma_{snow} \cdot w_t = 10.874 \ plf$ ibuted Load: $w_{int} \coloneqq -w_d - w_l = -151.367 \ plf$ ibuted Load: $w_{ext} \coloneqq -w_d - 0.75 \cdot w_l - 0.75 \cdot w_f = -143.233 \ plf$	
Interior Distr Exterior Distr	$w_{d.max} \coloneqq 0.75 \cdot h_d \cdot \gamma_{snow} \cdot w_t = 10.874 \ plf$ ibuted Load: $w_{int} \coloneqq -w_d - w_l = -151.367 \ plf$ ibuted Load: $w_{ext} \coloneqq -w_d - 0.75 \cdot w_l - 0.75 \cdot w_f = -143.233 \ plf$ \vdots	


	neet 5-2.	1 for indic	ation:		
Try 2x6's @ 16" Sp	bacing: A :	$=8.25 in^{2}$	$S_x \coloneqq 7.56 \ in^3$	$SG \coloneqq 0.55$	(Southern Pine)
Define Variables:	Tributary W	Vidth: $w_t \coloneqq 16$	in		
Calculate Dead Load:		-	$Finish := 4 \ psf$ $Under := 3 \ psf$ $Sheathing := 2 \ g$ Insulation := 1		
	Framing:	$Framing := -\frac{1}{1}$	$\frac{A}{44 in^2}$ • 62.4 psf	$\cdot SG \cdot \frac{12 in}{w_t}$	=1.475 psf
	Dead Load:				nsulation + Fram
	Distributed	Dead Load:	$w_d \coloneqq Dead \cdot w_t \equiv$	=15.3 plf	
Calculate Linear Lo Max Live Loa Distributed L Total Distribu	id in Span: ive Load:	$w_l \coloneqq Live \cdot w_t$	= 133.333 <i>plf</i> = -148.633 <i>plf</i>		
Shear FBD: a	$:= 0.0001 \; ft$.0.2 ft Span	$V(x) \coloneqq w \cdot (0)$	$0.5 \cdot Span - x$	
375 300 - 225 -					
	0.5 1 1.5	2 2.5	3 3.5 4	1.5 5	V(x) (lbf)
$\begin{array}{c} 120 - \\ -750 \\ -750 \\ -150 \\ -300 \\ -375 \\ -300 \\ -375 \\ -450 \\ -$			3 3.5 4 4	1.5 5	V(x) (lbf)
		x (ft)	3 3.5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		V(x) (lbf)
	$ps(w \cdot Span \cdot 0)$	x (ft) 0.5)=382.42 <i>l</i>	bf $P_2 \coloneqq V_{max}$		
$V_{max} := ab$ Bending FBD: <i>a</i>	$ps(w \cdot Span \cdot 0)$	x (ft) 0.5)=382.42 <i>l</i>	bf $P_2 \coloneqq V_{max}$ $M(x) \coloneqq 0.5 \cdot$		



TTY 2X105 @ 10 3	Spacing: $A \coloneqq 13.88 \ \textit{in}^2$ $S_x \coloneqq 21.39 \ \textit{in}^3$ $SG \coloneqq 0.55$ (Southern Pine)
Define Variables:	Tributary Width: $w_t \coloneqq 16$ <i>in</i>
Calculate Dead Load:	1" Finished Hardwood:Finish:=4 psfWood Underlayment:Under:=3 psf3/4" Sheathing:Sheathing:=2 psf6" Batt Insulation:Insulation:=1 psf
	Framing: $Framing \coloneqq \frac{A}{144 \text{ in}^2} \cdot 62.4 \text{ psf} \cdot SG \cdot \frac{12 \text{ in}}{w_t} = 2.481 \text{ psf}$
	$\label{eq:Dead} \begin{tabular}{lllllllllllllllllllllllllllllllllll$
	Distributed Dead Load: $w_d \coloneqq Dead \cdot w_t = 16.641 \ plf$
Distributed L Total Distribu	
	$x \coloneqq 0.0001 \ ft, 0.2 \ ftSpan \qquad V(x) \coloneqq w \cdot (0.5 \cdot Span - x)$
750 600 - 450 - 300 - 150 -	$\underbrace{\begin{array}{c} \begin{array}{c} 1 \\ 0.9 \\ 1.8 \\ 2.7 \\ 3.6 \\ 4.5 \\ 5.4 \\ 6.3 \\ 7.2 \\ 8.1 \\ 9 \\ \hline \end{array}}_{i} \underbrace{V(x) (lbf)}_{i}$
$ \begin{array}{c} 750 \\ 600 \\ 450 \\ -300 \\ -150 \\ -300 \\ -300 \\ -300 \\ -300 \\ -750$	
$V_{max} := ab$	$\underbrace{x \ (ft)}_{x \ (ft)}$
$V_{max} := ab$ Bending FBD: x	$\underbrace{x \ (ft)}_{0.9 \ 1.8 \ 2.7 \ 5.6 \ 4.5 \ 5.4 \ 6.3 \ 7.2 \ 8.1 \ 9}_{0.9 \ V(x) \ (lbf)}$


Try 1.75"x14" 2.00 LVL By Weyerhaeu		$t \coloneqq 1.75 \text{ in } d \coloneqq 14 \text{ in } A \coloneqq t \cdot d$ $I \coloneqq t \cdot d^3 \cdot 12^{-1} = 400.167 \text{ in}^4 S_x \coloneqq I \cdot t^{-1} = 228.667 \text{ in}^3$
Define Variables:	Tributary Wi	idth: $w_t := 6 \ in$
Calculate Dead Load:	1" Finished H Wood Under 3/4"Sheathir 6" Batt Insul Self Weight:	rlayment: $Under:=3$ psf ng: $Sheathing:=2$ psf llation: $Insulation:=1$ psf
	Dead Load:	$Dead \coloneqq Finish + Under + Sheathing + Insulation$
	Distributed [Dead Load: $w_d \coloneqq Dead \cdot w_t + w_{sw} = 12.1 \ plf$
Calculate Linear Lo	oad: Span:	$= 22.5 \ ft$ Overhang $= 6.75 \ ft$ Span _{int} $= Span - Overhant$
Distributed I Flat Snow Lo Windward S	bad:	$w_{l} \coloneqq Live \cdot w_{t} = 50 \ plf$ $p_{f} = 25.2 \ psf \implies w_{f} \coloneqq p_{f} \cdot w_{t} = 12.6 \ plf$ $\vdots \ l_{u} \coloneqq Overhang \cdot ft^{-1} = 6.75 \ p_{g} = 30$ $h_{d} \coloneqq \left(0.43 \cdot \sqrt[3]{l_{u}} \cdot \sqrt[4]{p_{g} + 10} - 1.5\right) = 0.544 \ h_{d} \coloneqq h_{d} \cdot ft$
		$w_{d.max} \! \coloneqq \! 0.75 \boldsymbol{\cdot} h_d \boldsymbol{\cdot} \gamma_{snow} \boldsymbol{\cdot} w_t \! = \! 4.078 \hspace{0.1cm} \boldsymbol{plf}$
Interior Dist	ributed Load:	$w_{int} := -w_d - w_l = -62.1 \ plf$
Exterior Dist	ributed Load:	$w_{ext} \coloneqq -w_d - 0.75 \cdot w_l - 0.75 \cdot w_f = -59.05 \ plf$
Point Loads Framing Me	From 'Balc 2' mbers:	$P_{2} = 382.42 \ lbf (@ 20" Spacing) \\ w_{P2} := P_{2} \cdot \left(Span_{int} \cdot (16 \ in)^{-1}\right) \cdot Span_{int}^{-1} = 286.815 \ plf$
Point Loads Framing Me	From 'Balc 3' mbers:	$P_{3} = 679.573 \ lbf (@ 18" Spacing) \\ w_{P3} := P_{3} \cdot (Overhang \cdot (16 \ in)^{-1}) \cdot Overhang^{-1} = 509.68 \ p_{1}$
Total Interio	or Dist Load:	$w_{int} \! \coloneqq \! w_{int} \! - \! w_{P2} \! = \! -348.915 \ plf$



Try 5.25"x18" 2.0 PSL By Weyerhae	
Define Variables:	Tributary Width: $w_t = 6 in$
Calculate Dead Load:	1" Finished Hardwood:Finish:=4 psf Wood Underlayment:Under := 3 psf 3/4" Sheathing:Sheathing:=2 psf 6" Batt Insulation:Insulation := 1 psf Self Weight: w_{sw} := 29.5 plf Dead Load:Dead := Finish + Under + Sheathing + InsulatiDistributed Dead Load: w_d := Dead $\cdot w_t + w_{sw} = 34.5 plf$
Calculate Linear Lo	oad: $Span \coloneqq 25 \ ft + 5.75 \ in$ $Span_{balc1} \coloneqq 16 \ ft$ $Span_{end} \coloneqq 5.15 \ ft$
Point Loads Framing Me	From 'Balc 1' $P_1 = 979.6 \ lbf$ $s := 16 \ in$ (@ 16" Spacing) mbers: $w_{P1} := P_1 \cdot (Span_{balc1} \cdot s^{-1}) \cdot Span_{balc1}^{-1} = 734.7 \ plf$
Point Loads	From 'Balc 4' Framing Members: $P_4 = 1923.11$ <i>lbf</i>
Max Live Los Distributed I	
Total Middle	e Span Distributed Load: w_{mid} := $-w_d - w_l - w_{P1}$ = -819.2 <i>plf</i>
Total Regula	ar Distributed Load: $w_{reg} \coloneqq -w_d - w_l = -84.5 \ plf$
Free Body Diagrar	$P_1 = 1923.11 \qquad P_2 = 1923.1$
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

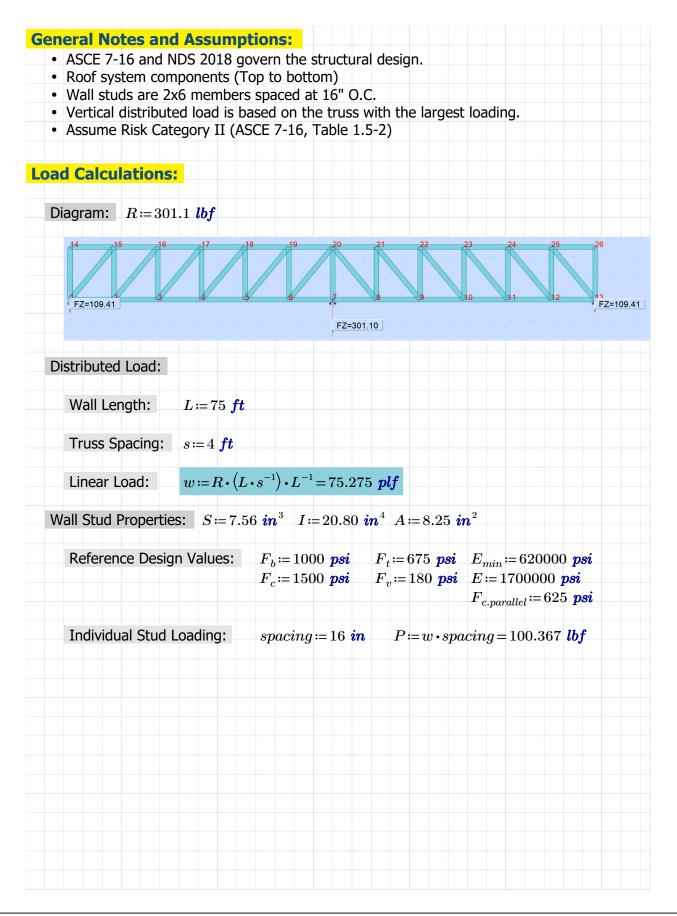
Max She	zai.		$V_{max} = (9.128 \cdot 10^3)$) lbf								
	le Shear:		$V_{allow}^{max} \coloneqq 18270 \ lbf$	/ 0								
Adjustm	nent Factors fo	or Shear:	$C_D \coloneqq 1.15$									
Adjuste	d Design Valu	e:	$V_{allow} \coloneqq V_{allow} \cdot C_D$	=21010.5 <i>lbf</i>								
Check:	$DCR \coloneqq V_{mo}$	$V_{allow}^{-1} =$	=0.434									
	if $V_{max} \leq V_{ab}$	llow	= "D	ESIGN IS OKAY	FOR SHEAR							
	"DESIGN	IS OKAY F	OR SHEAR"									
	else if $0.95 \le$	$\leq DCR \leq 1.05$										
	"DESIGN	IS OKAY F	OR SHEAR"									
	else											
	"DESIGN	IS UNACC	EPTABLE"									
Design For	Bending: (Design properties	can be found in Table 2 of	Appendix A)								
Max Mo	ment:		$M_{max} = 67283.05 \ l$	bf • ft								
			$M_{allow} \coloneqq 65495 \ lbf$									
Allowab	le Benaind:											
	le Bending: nent Factors fo	or Bending:	$C_D \coloneqq 1.15$									
Adjustm	-	-			of							
Adjustm Adjuste	nent Factors fo d Design Valu	e:	$C_D \coloneqq 1.15$ $M_{allow} \coloneqq M_{allow} \bullet C_I$		of							
Adjustm Adjuste	nent Factors fo	e:	$C_D \coloneqq 1.15$ $M_{allow} \coloneqq M_{allow} \bullet C_I$		of							
Adjustm Adjuste	hent Factors for d Design Valu $DCR \coloneqq M_m$	e: $ax \cdot M_{allow}^{-1}$	$C_D \coloneqq 1.15$ $M_{allow} \coloneqq M_{allow} \cdot C_1$ $= 0.893$	∋=75319.25 ft • ll								
Adjustm Adjuste	hent Factors for d Design Valu $DCR \coloneqq M_m$ if $M_{max} \leq M$	e: $_{ax}{ullet}M_{allow}{}^{-1}$ allow	$C_D \coloneqq 1.15$ $M_{allow} \coloneqq M_{allow} \cdot C_I$ $= 0.893$									
Adjustm Adjuste	hent Factors for d Design Valu $DCR \coloneqq M_m$ if $M_{max} \le M$ $\ $ "DESIGN	e: $_{ax} \cdot M_{allow}{}^{-1}$ allow	$C_D \coloneqq 1.15$ $M_{allow} \coloneqq M_{allow} \cdot C_I$ $= 0.893$ $= 0.893$	∋=75319.25 ft • ll								
Adjustm Adjuste	hent Factors for d Design Valu $DCR \coloneqq M_m$ if $M_{max} \le M$ \parallel "DESIGN else if 0.95 \le	e: $ax \cdot M_{allow}^{-1}$ allow I IS OKAY F $\leq DCR \leq 1.05$	$C_D \coloneqq 1.15$ $M_{allow} \coloneqq M_{allow} \cdot C_I$ $= 0.893$ $= 0.893$	∋=75319.25 ft • ll								
Adjustm Adjuste	hent Factors for d Design Valu $DCR \coloneqq M_m$ if $M_{max} \le M$ \parallel "DESIGN else if 0.95 \le \parallel "DESIGN	e: $ax \cdot M_{allow}^{-1}$ allow I IS OKAY F $\leq DCR \leq 1.05$	$C_D \coloneqq 1.15$ $M_{allow} \coloneqq M_{allow} \cdot C_I$ $= 0.893$ $= 0.893$	∋=75319.25 ft • ll								
Adjustm Adjuste	hent Factors for d Design Valu $DCR \coloneqq M_m$ if $M_{max} \le M$ \parallel "DESIGN else if 0.95 \le \parallel "DESIGN else	e: $ax \cdot M_{allow}^{-1}$ allow I IS OKAY F $\leq DCR \leq 1.05$ I IS OKAY F	$C_D \coloneqq 1.15$ $M_{allow} \coloneqq M_{allow} \cdot C_I$ $= 0.893$ $= 0.893$	∋=75319.25 ft • ll								
Adjustm Adjuste	hent Factors for d Design Valu $DCR \coloneqq M_m$ if $M_{max} \le M$ \parallel "DESIGN else if 0.95 \le \parallel "DESIGN else	e: $ax \cdot M_{allow}^{-1}$ allow I IS OKAY F $\leq DCR \leq 1.05$ I IS OKAY F	$C_D \coloneqq 1.15$ $M_{allow} \coloneqq M_{allow} \cdot C_I$ $= 0.893$ $= 0.893$ $= 0.893$ $= 0.893$	∋=75319.25 ft • ll								
Adjustm Adjuste	hent Factors for d Design Valu $DCR \coloneqq M_m$ if $M_{max} \le M$ \parallel "DESIGN else if 0.95 \le \parallel "DESIGN else	e: $ax \cdot M_{allow}^{-1}$ allow I IS OKAY F $\leq DCR \leq 1.05$ I IS OKAY F	$C_D \coloneqq 1.15$ $M_{allow} \coloneqq M_{allow} \cdot C_I$ $= 0.893$ $= 0.893$ $= 0.893$ $= 0.893$	∋=75319.25 ft • ll								
Adjustm Adjuste	hent Factors for d Design Valu $DCR \coloneqq M_m$ if $M_{max} \le M$ \parallel "DESIGN else if 0.95 \le \parallel "DESIGN else	e: $ax \cdot M_{allow}^{-1}$ allow I IS OKAY F $\leq DCR \leq 1.05$ I IS OKAY F	$C_D \coloneqq 1.15$ $M_{allow} \coloneqq M_{allow} \cdot C_I$ $= 0.893$ $= 0.893$ $= 0.893$ $= 0.893$	∋=75319.25 ft • ll								
Adjustm Adjuste	hent Factors for d Design Valu $DCR \coloneqq M_m$ if $M_{max} \le M$ \parallel "DESIGN else if 0.95 \le \parallel "DESIGN else	e: $ax \cdot M_{allow}^{-1}$ allow I IS OKAY F $\leq DCR \leq 1.05$ I IS OKAY F	$C_D \coloneqq 1.15$ $M_{allow} \coloneqq M_{allow} \cdot C_I$ $= 0.893$ $= 0.893$ $= 0.893$ $= 0.893$	∋=75319.25 ft • ll								
Adjustm Adjuste	hent Factors for d Design Valu $DCR \coloneqq M_m$ if $M_{max} \le M$ \parallel "DESIGN else if 0.95 \le \parallel "DESIGN else	e: $ax \cdot M_{allow}^{-1}$ allow I IS OKAY F $\leq DCR \leq 1.05$ I IS OKAY F	$C_D \coloneqq 1.15$ $M_{allow} \coloneqq M_{allow} \cdot C_I$ $= 0.893$ $= 0.893$ $= 0.893$ $= 0.893$	∋=75319.25 ft • ll								
Adjustm Adjuste	hent Factors for d Design Valu $DCR \coloneqq M_m$ if $M_{max} \le M$ \parallel "DESIGN else if 0.95 \le \parallel "DESIGN else	e: $ax \cdot M_{allow}^{-1}$ allow I IS OKAY F $\leq DCR \leq 1.05$ I IS OKAY F	$C_D \coloneqq 1.15$ $M_{allow} \coloneqq M_{allow} \cdot C_I$ $= 0.893$ $= 0.893$ $= 0.893$ $= 0.893$	∋=75319.25 ft • ll								
Adjustm Adjuste	hent Factors for d Design Valu $DCR \coloneqq M_m$ if $M_{max} \le M$ \parallel "DESIGN else if 0.95 \le \parallel "DESIGN else	e: $ax \cdot M_{allow}^{-1}$ allow I IS OKAY F $\leq DCR \leq 1.05$ I IS OKAY F	$C_D \coloneqq 1.15$ $M_{allow} \coloneqq M_{allow} \cdot C_I$ $= 0.893$ $= 0.893$ $= 0.893$ $= 0.893$	∋=75319.25 ft • ll								
Adjustm Adjuste	hent Factors for d Design Valu $DCR \coloneqq M_m$ if $M_{max} \le M$ \parallel "DESIGN else if 0.95 \le \parallel "DESIGN else	e: $ax \cdot M_{allow}^{-1}$ allow I IS OKAY F $\leq DCR \leq 1.05$ I IS OKAY F	$C_D \coloneqq 1.15$ $M_{allow} \coloneqq M_{allow} \cdot C_I$ $= 0.893$ $= 0.893$ $= 0.893$ $= 0.893$	∋=75319.25 ft • ll								
Adjustm Adjuste	hent Factors for d Design Valu $DCR \coloneqq M_m$ if $M_{max} \le M$ \parallel "DESIGN else if 0.95 \le \parallel "DESIGN else	e: $ax \cdot M_{allow}^{-1}$ allow I IS OKAY F $\leq DCR \leq 1.05$ I IS OKAY F	$C_D \coloneqq 1.15$ $M_{allow} \coloneqq M_{allow} \cdot C_I$ $= 0.893$ $= 0.893$ $= 0.893$ $= 0.893$	∋=75319.25 ft • ll								

Try Doubled up 5. Grade PSL's By We	
Define Variables:	Tributary Width: $w_t \coloneqq 6 in$
Calculate Dead Load:	1" Finished Hardwood: $Finish := 4 psf$ Wood Underlayment: $Under := 3 psf$ 3/4" Sheathing: $Sheathing := 2 psf$ 6" Batt Insulation: $Insulation := 1 psf$ Self Weight: $w_{sw} := 39.4 plf$ Dead Load: $Dead := Finish + Under + Sheathing + Insulation$
	Dead Load: $Dead := P thish + O haet + Sheathing + InstantDistributed Dead Load: w_d := Dead \cdot w_t + w_{sw} = 44.4 \ plf$
Calculate Linear Lo	Dad: $Span := 20.5 \ ft \ Span_{balc2} := 8 \ ft + 4.25 \ in \ Span_{J2} := 12 \ ft + 1.5$
Framing Mer	$w_{P2} := P_2 \cdot (Span_{balc2} \cdot s^{-1}) \cdot Span_{balc2}^{-1} = 229.452 \ plf$
Framing Mer	From 'Balc 2' $P_{J2} = (1.959 \cdot 10^3)$ <i>lbf</i> $s := 12$ <i>in</i> (@ 12" Spacing)
Framing Mer	From 'Balc 2' $P_{J2} = (1.959 \cdot 10^3) lbf s := 12 in$ (@ 12" Spacing) mbers: $w_{PJ2} := P_{J2} \cdot (Span_{J2} \cdot s^{-1}) \cdot Span_{J2}^{-1} = 1958.923 plf$ From 'Balc 5' Framing Members: $P_5 := 2 \cdot P_5 = 18256.56 lbf$ n: $q_2 = 1958.923$ $P_1 = 18256.56$
Framing Mer Point Loads	From 'Balc 2' $P_{J2} = (1.959 \cdot 10^3)$ <i>lbf</i> $s := 12$ <i>in</i> (@ 12" Spacing) mbers: $w_{PJ2} := P_{J2} \cdot (Span_{J2} \cdot s^{-1}) \cdot Span_{J2}^{-1} = 1958.923$ <i>plf</i> From 'Balc 5' Framing Members: $P_5 := 2 \cdot P_5 = 18256.56$ <i>lbf</i>
Framing Mer Point Loads	From 'Balc 2' $P_{J2} = (1.959 \cdot 10^3) lbf s := 12 in$ (@ 12" Spacing) mbers: $w_{PJ2} := P_{J2} \cdot (Span_{J2} \cdot s^{-1}) \cdot Span_{J2}^{-1} = 1958.923 plf$ From 'Balc 5' Framing Members: $P_5 := 2 \cdot P_5 = 18256.56 lbf$ n: $q_2 = 1958.923$ $P_1 = 18256.56$
Framing Mer Point Loads	From 'Balc 2' $P_{J2} = (1.959 \cdot 10^3)$ <i>lbf</i> $s := 12$ <i>in</i> (@ 12" Spacing) mbers: $w_{PJ2} := P_{J2} \cdot (Span_{J2} \cdot s^{-1}) \cdot Span_{J2}^{-1} = 1958.923$ <i>plf</i> From 'Balc 5' Framing Members: $P_5 := 2 \cdot P_5 = 18256.56$ <i>lbf</i> n: $q_1 = 1958.923$ $q_2 = 229.452$ $q_3 = 229.452$ $q_3 = 229.452$ $q_3 = 229.452$ $q_3 = 229.452$ $q_3 = 229.452$ $q_4 = 1958.923$ $q_5 = 18256.56$ $q_5 = 18256.56$

ble														
	1:	TJI .	Joist	Desig	in Pro	pert	ies							
			Basic P	roperties				Reaction	eaction Properties					
Depth	TJI®			Maximum Vertical	1¾" End Reaction	31/2" End	3½" Int React	ermediate ion (lbs)	5¼" Intermediate Reaction (Ibs)				+	
		Weight (lbs/ft)	Moment ⁽¹⁾ (ft-lbs)	(in. ² -lbs)	Shear (lbs)	(lbs)	Reaction (lbs)	No Web Stiffeners	With Web Stiffeners ⁽²⁾	No Web Stiffeners	With Web Stiffeners ⁽²⁾			
	110	2.3	2,500	157	1,220	910	1.220	1,935	N.A.	2,350	N.A.			
91/2"	210	2.6	3,000	186	1,330	1,005	1,330	2,145	N.A.	2,565	N.A.			
	230	2.7	3,330	206	1,330	1,060	1,330	2,410	N.A.	2,790	N.A.			
	110	2.5	3,160	267	1,560	910	1,375	1,935	2,295	2,350	2,705			
	210	2.8	3,795	315	1,655	1,005	1,460	2,145	2,505	2,565	2,925			
111/8"	230	3.0	4,215	347	1,655	1,060	1,485	2,410	2,765	2,790	3,150			
	360	3.0	6,180	419	1,705	1,080	1,505	2,460	2,815	3,000	3,360			
	560	4.0	9,500	636	2,050	1,265	1,725	3,000	3,475	3,455	3,930			
	110	2.8	3,740	392	1,860	910	1,375	1,935	2,295	2,350	2,705			
	210	3.1	4,490	462	1,945	1,005	1,460	2,145	2,505	2,565	2,925			
14"	230	3.3	4,990	509	1,945	1,060	1,485	2,410	2,765	2,790	3,150			
	360	3.3	7,335	612	1,955	1,080	1,505	2,460	2,815	3,000	3,360			
	560	4.2	11,275	926	2,390	1,265	1,725	3,000	3,475	3,455	3,930			
	110	3.0	4,280	535	2.145	910	1,375	1,935	2,295	2.350	2,705			
	210	3.3	5,140	629	2,190	1,005	1,460	2,145	2,505	2,565	2,925			
16"	230	3.5	5,710	691	2,190	1,060	1,485	2,410	2,765	2,790	3,150			
	360	3.5	8,405	830	2,190	1,080	1,505	2,460	2,815	3,000	3,360			
	560	4.5	12,925	1,252	2,710	1,265	1,725	3,000	3,475	3,455	3,930			
			Rasic P	roperties				Reactio	n Properties	1				
Depth	ILT	Joist	Maximum Resistive	Joist Only	Maximum Vertical		" End ion (lbs)	3½" In	termediate tion (lbs)		ermediate ion (lbs)			
		Weight (lbs/ft)	Moment ⁽¹⁾ (ft-lbs)	El x 10 ⁶ (lbs-in. ²)	Shear (lbs)	No Web Stiffeners	With Web Stiffeners ⁽²⁾	No Web Stiffeners	With Web Stiffeners ⁽²⁾	No Web Stiffeners	With Web Stiffeners ⁽²⁾			
	360	3.7	9,465	1,085	2,425	1,080	1,440	2,460	2,815	3,000	3,360			
18"	560	4.8	14,550	1,631	3,030	1,265	1,740	3,000	3,475	3,455	3,930			
	560D	5.0	14,785	1,661	3,080	1,400	2,030	3,350	3,980	3,965	4,600			
	360	4.0	10,515	1,376	2,660	1,080	1,440	2,460	2,815	3,000	3,360			
20"	560	5.1	16,165	2,064	3,345	1,265	1,740	3,000	3,475	3,455	3,930			
	560D	5.3	16,435	2,105	3,345	1,400	2,190	3,350	4,140	3,965	4,755			
22"	560D	5.6	18,075	2,606	3,615	NA(3)	2,345	NA(3)	5,090	NA(3)	5,705			
24"	560D	5.8	19,700	3.165	3.400	NA(3)	2.345	NA(3)	5.405	NA(3)	6.020			

Table 2: Microllam LVL Allowable Design Properties

								Dept	th					
Grade	Width	Design Property	43⁄8"	51⁄2"	51⁄2" Plank Orientation	71⁄4"	91⁄4"	91⁄2"	111⁄4"	111/8"	14"	16"	18"	20"
			-		Timber	Strand®	LSL							
		Moment (ft-lbs)	1,735	2,685	1,780	4,550								
1.3E	31/2"	Shear (lbs)	4,340	5,455	1,925	7,190								
1.3E	392	Moment of Inertia (in.4)	24	49	20	111								
		Weight (plf)	4.5	5.6	5.6	7.4								
		Moment (ft-lbs)						5,210		7,975	10,920	14,090		
	13/4"	Shear (lbs)						3,435		4,295	5,065	5,785		
	19/4	Moment of Inertia (in.4)						125		244	400	597		
1.555		Weight (plf)						5.2		6.5	7.7	8.8		
1.55E		Moment (ft-lbs)						10,420		15,955	21,840	28,180		
	31/2"	Shear (lbs)						6,870		8,590	10,125	11,575		
	31/2"	Moment of Inertia (in.4)						250		488	800	1,195		
		Weight (plf)						10.4		13	15.3	17.5		
					Micro	ollam® LV	Ľ							
		Moment (ft-lbs)		2,125		3,555	5,600	5,885	8,070	8,925	12,130	15,555	19,375	23,58
2.0E	13/4"	Shear (lbs)		1,830		2,410	3,075	3,160	3,740	3,950	4,655	5,320	5,985	6,65
2.0E	19/4	Moment of Inertia (in.4)		24		56	115	125	208	244	400	597	851	1,16
		Weight (plf)		2.8		3.7	4.7	4.8	5.7	6.1	7.1	8.2	9.2	10.2
					Para	llam® PS	L							
		Moment (ft-lbs)					12,415	13,055	17,970	19,900	27,160	34,955	43,665	
	31/2"	Shear (lbs)					6,260	6,430	7,615	8,035	9,475	10,825	12,180	
	392	Moment of Inertia (in.4)					231	250	415	488	800	1,195	1,701	
		Weight (plf)					10.1	10.4	12.3	13.0	15.3	17.5	19.7	
		Moment (ft-lbs)					18,625	19,585	26,955	29,855	40,740	52,430	65,495	
2.0E	51⁄4"	Shear (lbs)					9,390	9,645	11,420	12,055	14,210	16,240	18,270	
2.02	31/4	Moment of Inertia (in.4)					346	375	623	733	1,201	1,792	2,552	
		Weight (plf)					15.2	15.6	18.5	19.5	23.0	26.3	29.5	
		Moment (ft-lbs)					24,830	26,115	35,940	39,805	54,325	69,905	87,325	
	7"	Shear (lbs)					12,520	12,855	15,225	16,070	18,945	21,655	24,360	
	1.	Moment of Inertia (in.4)					462	500	831	977	1,601	2,389	3,402	
		Weight (plf)					20.2	20.8	24.6	26.0	30.6	35.0	39.4	


	le	Oriental	tion	Mo of El	hear dulus astici psi)		Modul Elasti (psi	city ⁽²⁾	of Elas	^{min} Isted Iulus Sticity ⁽³⁾ Isi)	F _b Flexural Stress ⁽⁴⁾ (psi)	F _t Tensio Stress ⁽ (psi)	5) Per	Fe⊥ FcII pression pendicular (psi) FcII Compressi Parallel to Grain (psi)		el Shear Parallel in to Grain (psi)			SG Equivalen Specific Gravity ⁽⁷⁾	
1.3	E	Beam/Co			1,250		1.3 x 1			60,750	1,700	1,300		710	1,835		42		0.50(8)	
1.55		Plank Bean			1,250 6,875		1.3 x 1 1.55 x			60,750 87,815	1,900 ⁽⁹⁾ 2,325	1,300	10)	670 900	1,835		15	10(10)	0.50(8)	
2.0	F	Bean	n	12	5,000		2.0 x 1	06	1.01	6,535	Microllam® L 2,600	VL 1,895		750	2,510		2	85	0.50	
							1.8 x 1			4.880	Parallam® P 2,400(11)	SL		545(1))	2,500			90(II)	0.50	
1.8 2.0		Colum Bean			2,500 5,000		2.0 x 1			6,535	2,900	1,995 2,300		625 ⁽¹²⁾	2,500			90	0.50	
ole 4	1: 2×	6 Ha	ang	er (Dpt		s (F		n Si	mps	on Stro	ng-Tie))F/SP Allo	wahle	Loar	10		
Joist Size		Mode No.	el		Ga.	w	н	в	Min. Max		Header	Joi	st	Uplift	Floor	Sno	w	Roof	Cost Inc (ICI)	
						- 276.N.	W H				0.00000000	umber Sizes		(160)	(100)	(11	5)	(125)	(,	
	LU24				20	1%6	31/8	11/2	_	(4)	0.162 x 31/2	(2) 0.14		240	555	63	0	655	Lowes	
014	LUS2				18	1%6	31/8	13⁄4	-) 0.148 x 3	(2) 0.14		435	670	76	-	820	3%	
2X4	U24				16	1%6	31/8	11/2	-	(4)	0.162 x 3½	(2) 0.14	B x 1½	240	575	65	0	705	67%	
	HU26	;			14	1%6	31/16	21/4	-	(4)	0.162 x 3½	(2) 0.14	B x 1½	305	595	67	0	720	295%	
DBI	LUS2	4-2			18	31/8	31/8	2	-	(4)	0.162 x 3½	(2) 0.16	2 x 31⁄2	410	800	90	5	980	Lowes	
DBL 2X4	U24-	2		_	16	31⁄8	3	2	-	(4)	0.162 x 3½	(2) 0.14	18 x 3	240	575	65	-	705	33%	
		-2 / HU(C24-2		14	31/8	31/16	21/2	-		0.162 x 3½	(2) 0.14		380	595	67	-	720	240%	
	LUS2			_	18	1%6	4%	13%	-) 0.148 x 3	(4) 0.14		1,165	865	99	-	1,060	Lowes	
	LU26 U26			_	20	1%6	43/4	11/2	-		0.162 x 3½	(4) 0.14		540	835	95	-	1,030	6% 43%	
2x6	LUC2	67		-	16 18	1%6 1%6	4%	2	-	-	0.162 x 3½ 0.162 x 3½	(4) 0.14		535 730	865 845	98	-	1,055	43%	
1	HU26			-	14	1%6	31/16	21/4	-		0.162 x 3½	(2) 0.14		305	595	67		720	179%	
	HUS2				16	15%	5%	3	-	-	0.162 x 3½	(6) 0.16		1,320	2,735	3,0	-	3,235	276%	

oret	Model No.	Ga.	Dimensions (in.)		: (in.)		Fasteners (in.)		DF/SP Allowable Loads			Installe	
Joist Size			w	H	B Min./	Header	Joist	Uplift (160)	Floor (100)	Snow (115)	Roof (125)	f Cost Inde	
		-					Sawn Lu	mber Sizes					
	LUS28	18	1%6	6%	13/4	-	(6) 0.148 x 3	(4) 0.148 x 3	1,165	1,100	1,260	1,350	Lowe
2x10	LU28	20	1%6	63%	11/2		(8) 0.162 x 31/2	(6) 0.148 x 1 1/2	850	1,110	1,180	1,180	13%
	LUS210	18	1%6	713/16	13/4	-	(8) 0.148 x 3	(4) 0.148 x 3	1,165	1,335	1,530	1,640	15%
	LU210	20	1%6	713/16	11/2	-	(10) 0.162 x 31/2	(6) 0.148 x 1 1/2	850	1,390	1,580	1,615	289
	U210	16	1%6	713/16	2	-	(10) 0.162 x 31/2	(6) 0.148 x 1 1/2	990	1,440	1,565	1,565	769
	LUC210Z	18	1%6	73/4	13/4		(10) 0.162 x 31/2	(6) 0.148 x 1 1/2	985	1,410	1,605	1,735	1809
	HU210	14	1%6	71/8	21/4	-	(8) 0.162 x 31/2	(4) 0.148 x 1 1/2	605	1,190	1,345	1,440	2259
	HUS210	16	15%	9	3	-	(30) 0.162 x 3½	(10) 0.162 x 31/2	2,635	5,450	5,795	5,830	450
	HGUS210	12	1%	91/8	5		(46) 0.162 x 3½	(16) 0.162 x 3½	2,090	9,100	9,100	9,100	
	LUS28-2	18	31/8	7	2		(6) 0.162 x 3½	(4) 0.162 x 31/2	1,060	1,315	1,490	1,610	Lowe
	LUS210-2	18	31/8	9	2	_	(8) 0.162 x 31/2	(6) 0.162 x 3½	1,445	1,830	2,075	2,245	34%
	U210-2	16	31/8	81/2	2	_	(14) 0.162 x 31/2	(6) 0.148 x 3	990	2,015	2,075	2,465	88%
DDI	HUS210-2	14	31/8	93/16	2	-	(8) 0.162 x 3½	(8) 0.162 x 31/2	3,270	2,110	2,200	2,405	2179
DBL 2X10	100210-2	14	31/8	97% 81%2	21/2	Min.	(14) 0.162 x 31/2	(6) 0.162 x 3 ½ (6) 0.148 x 3	1,135	2,085	2,365	2,575	4419
	HU210-2/HUC210-2	14	31/8	819/32	21/2	Max.	(14) 0.162 x 3½ (18) 0.162 x 3½	(0) 0.148 x 3	1,895	2,680	3,020	3,250	4417
	HUCQ210-2-SDS	14	31/4	9	3	Max.	(12) 1/4 x 21/2 SDS	(6) 1/4 x 21/2 SDS	2,345	4,315	4,315	4,315	40/7
	HHUS210-2-505	14	35/16	95/32	3	-	(30) 0.162 x 31/2	(10) 0.162 x 31/2	3,550	5,705	6,435	6,485	
	LUS28-3	18	4%	61/4	2			(4) 0.162 x 3½	1,060		1,490	1,610	
-	LUS210-3	18	4%		2	-	(6) 0.162 x 3½ (8) 0.162 x 3½	(6) 0.162 x 3½	1,445	1,315	2,075	2,245	
		-		83/16	2								
-	U210-3	16	4%	73/4			(14) 0.162 x 3½	(6) 0.148 x 3	990	2,015	2,280	2,465	•
TPL 2X10	HU210-3 / HUC210-3	14	411/16	81/2	21/2	Min.	(14) 0.162 x 3½	(6) 0.148 x 3	1,135	2,085	2,350	2,520	•
LAIU	1000000	14	41/16	81/32	21/2	Max.	(18) 0.162 x 31/2	(10) 0.148 x 3	1,895	2,680	3,020	3,250	•
	HHUS210-3	14	411/16	8%	3	-	(30) 0.162 x 3½	(10) 0.162 x 3½	3,405	5,630	6,375	6,485	•
	HGUS210-3	12	415/16	91%	4	-	(46) 0.162 x 3½	(16) 0.162 x 3½	4,095	9,100	9,100	9,100	•
	HUCQ210-3-SDS	14	45%	9	3	-	(12) 1/4 x 21/2 SDS	(6) 1/4 x 21/2 SDS	2,345	4,315	4,315	4,315	•
	HU210-4 / HUC210-4	14	61/8	8%	21/2	Min.	(14) 0.162 x 3½	(6) 0.162 x 3½	1,345	2,085	2,350	2,520	*
QUAD 2x10	1000010.4	14	61/8	8%	21/2	Max.	(18) 0.162 x 3½	(8) 0.162 x 3½	1,795	2,680	3,020	3,250	•
ZATO	HHUS210-4	14	61/8	8%	3		(30) 0.162 x 3½	(10) 0.162 x 3½	3,405	5,630	6,375	6,485	•
	HGUS210-4	12	6%6	9%	4		(46) 0.162 x 31/2	(16) 0.162 x 31/2	4,095	9,100	9,100	9,100	•
	LUS210	18	1%6	713/16	13/4	-	(8) 0.148 x 3	(4) 0.148 x 3	1,165	1,335	1,530	1,640	Lowes
	LU210	20	1%6	71/16	11/2	-	(10) 0.162 x 3½	(6) 0.148 x 1 1/2	850	1,390	1,580	1,615	11%
2x12	U210	-	1%6		2	-	(10) 0.162 x 31/2	(6) 0.148 x 1 ½	990	1,440	1,565	1,565	53%
	LUC210Z	-	1%6	73/4	13/4		(10) 0.162 x 3½	(6) 0.148 x 1 1/2	985	1,410	1,605	1,735	1809
	HU212	14	1%6	9	21/4	-	(10) 0.162 x 3½	(6) 0.148 x 1 ½	1,135	1,490	1,680	1,800	3479
	HUS210	16	1%	9	3	-	(30) 0.162 x 31/2	(10) 0.162 x 31/2	2,635	5,450	5,795	5,830	3789

APPENDIX S - CANOPY CALCULATIONS

Assume Risk Category II		
 Factor of Safety of 2.0> 	$FS_T \coloneqq 2.0$	
ow Load Calculations:	Location: Clinton, IA	
	Ground Snow Load:	$p_q \coloneqq 30 \ psf$
	Exposure Factor:	$\check{C_e} := 1.0$
	Thermal Factor:	$C_t \coloneqq 1.2$
	Importance Factor: Flat Snow Load:	$I_s \coloneqq 1.0$
	Length of Cross Section:	$\begin{array}{l} p_{f} \coloneqq 0.7 \boldsymbol{\cdot} C_{e} \boldsymbol{\cdot} C_{t} \boldsymbol{\cdot} I_{s} \boldsymbol{\cdot} p_{g} \!=\! 25.2 \\ L \coloneqq 60 \hspace{0.1cm} \textit{in} \end{array}$
	Unit Weight of Snow:	$\gamma_{snow} \coloneqq 20 \ pcf$
	Tributary Width of Supports:	
Windward Snow Drift Loa	d: $l_u := L \cdot ft^{-1} = 5$	$ p_g \coloneqq p_g \cdot p_g \cdot p_g f^{-1} $ $ 0 - 1.5 = 0.349 h_d \coloneqq h_d \cdot ft $
	$h_d \coloneqq (0.43 \cdot \sqrt{l_u} \cdot \sqrt{p_g} + 1)$	$(0-1.5)=0.349$ $h_d \coloneqq h_d \cdot ft$
	$w_{d.max} \coloneqq 0.75 \cdot h_d \cdot \gamma_{snow} \cdot v_{snow}$	$v_t = 41.899 \ plf$
	$w_s \coloneqq p_f \cdot w_t = 201.6 \ plf$	
Maximum Snow Load:	$w_s \coloneqq (p_f \cdot w_t) + w_{d.max} = 24$	13.499 <i>plf</i>
Total Load Per Support:	$T_{support} \coloneqq L \cdot w_s = (1.217 \cdot$	10^3) <i>lbf</i>
	$T_{allow} \coloneqq T_{support} \bullet FS_T = (2)$.435•10 ³) <i>lbf</i>
	Contractor's submitted	i product must
	have tension supports	
	tension strength of 2,4	

APPENDIX S - BEARING WALL CALCULATIONS Y|A|M

APPENDIX S - BEARING WALL CALCULATIONS Y|A|M

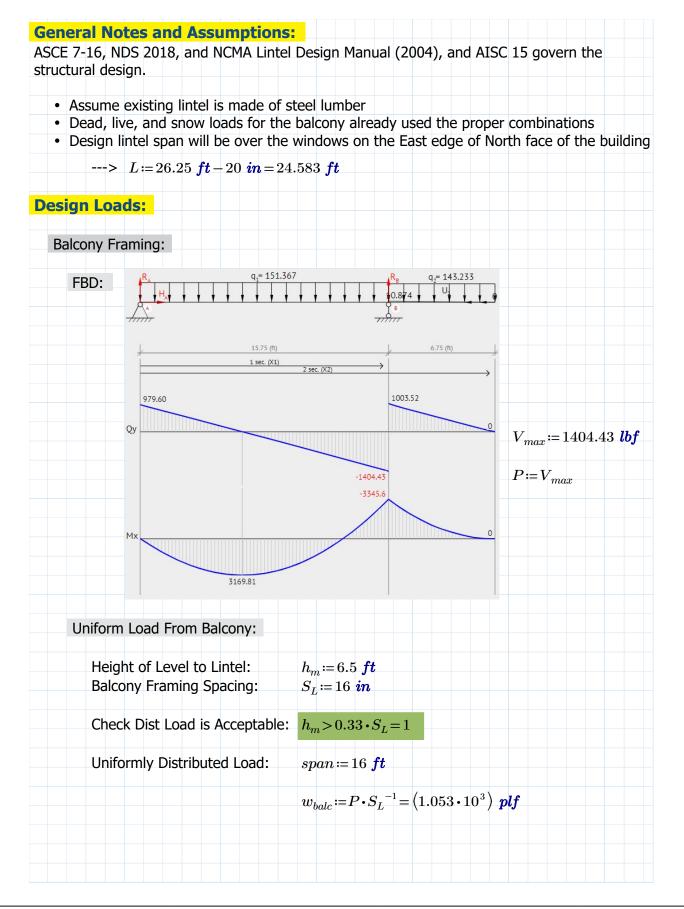
Designing Headers at Openings: $L_{opening} = 9 ft$ Try Standard DF-L 2x8: $S_x = 13.14 \ in^3$ $I = 47.63 \ in^4$ $A = 10.88 \ in^2$ Design For Bending: $M_{max} \coloneqq w \cdot L_{opening}^2 \cdot 8^{-1} = 762.159 \ lbf \cdot ft$ $f_b := M_{max} \cdot S_x^{-1} \cdot 2^{-1} = 348.018 \ psi$ Reference Design Value: $F_b = 575 \ psi$ Adjustment Factors: $C_D = 1.15 \quad C_F = 1.1$ Adjusted Design Value: $F'_b := F_b \cdot C_D \cdot C_F = 727.375 \ psi$ Check: $DCR := f_b \cdot F'_b^{-1} = 0.478$ if $f_b \leq F'_b$ = "DESIGN IS OKAY FOR BENDING" "DESIGN IS OKAY FOR BENDING" else "DESIGN IS UNACCEPTABLE" $V_{max} := abs(w \cdot L \cdot 0.5) = 2822.813 \ lbf$ Design For Shear: $f_v := V_{max} \cdot A^{-1} = 259.45 \ psi$ Reference Design Value: $F_v := 375 \ psi$ Adjustment Factors: $C_D = 1.15$ Adjusted Design Value: $F'_v := F_v \cdot C_D = 431.25 \text{ psi}$ Check: $DCR := f_v \cdot F'_v^{-1} = 0.602$ if $f_v \leq F'_v$ = "DESIGN IS OKAY FOR SHEAR" "DESIGN IS OKAY FOR SHEAR" else "DESIGN IS UNACCEPTABLE" Design For Deflection: E := 1400000 psi Maximum Deflection: $\delta_{max} := 5 \cdot w \cdot L_{opening}^{4} \cdot (384 \cdot E \cdot I)^{-1} = 0.167$ in Allowable Deflection: $\Delta_{all} := L_{opening} \cdot 360^{-1} = 0.3$ in Check: $\delta_{max} \leq \Delta_{all} = 1$

APPENDIX S - BEARING WALL CALCULATIONS Y|A|M

Designing Studs at Header Edges: Try DBL No. 3 Stud Southern Pine 2x6's: $A \coloneqq 2 \cdot 8.25 \ in^2 = 16.5 \ in^2$ Design For Compression: $R \coloneqq V_{max} = (2.823 \cdot 10^3) \ lbf$ $f_c := R \cdot A^{-1} = 171.08 \ psi$ Reference Design Value: $F_c = 565 \ psi$ $C_D = 1.15$ Adjustment Factors: Adjusted Design Value: $F'_c := F_c \cdot C_D = 649.75 \ psi$ Check: $DCR := f_c \cdot F'_c^{-1} = 0.263$ if $f_c \leq F'_c$ = "DESIGN IS OKAY FOR BENDING" "DESIGN IS OKAY FOR BENDING" else "DESIGN IS UNACCEPTABLE"

APPENDIX S - BALCONY RAILING CALCULATIONS

General Notes and Assumptions:


- Railings must be able to sustain a 200 lb point load per the International Building Code
- Railings msut be able to sustain a uniform load of 50 pounds per foot per the
 International Building Code
- Commercial railings are required to be 42" or higher per the International Building Code

SELECT RAILING SYSTEM DESIGN PARAMETERS:

Design Parameters:	$h \coloneqq 4 ft$	(Post Height)
	$E_{alum} \coloneqq 9990 \ ksi$	(Young's Modulus of Elasticity)
	$F_{u.alum} := 42 \ ksi$	(Ultimate Strength of Aluminum)
	$F_{y.alum} = 35 \ ksi$	(Yield Strength of Aluminum)
	b≔3 in	(Post Width)
	<i>l</i> := 3 <i>in</i>	(Post Length)
	$S := b \cdot l^2 \cdot 6^{-1} = 4.5 \ in^3$	(Section Modulus of Post)
	$M_{all.post} \coloneqq S \cdot F_{y.alum}$	(Allowable Moment of Post)
	b≔3 in	(Horizontal Rail Width)
	$d \coloneqq 1$ in	(Horizontal Rail Length)
	$S := b \cdot d^2 \cdot 6^{-1} = 0.5 \ in^3$	(Section Modulus of Horizontal Rail)
	$M_{all.rail}\!\coloneqq\!S\!\cdot\!F_{y.alum}$	(Allowable Moment of Horizontal Rail)

Maximum Parameters Based on All Loadings Conditions:

Concentrated Load on Horizontal Rail:	$P \coloneqq 200 \ lbf$ (Design Concentrated Load)
	$L_{max.rail.p}$:= $M_{all.rail} \cdot P^{-1}$ =7.292 ft
Uniform Load on Horizontal Rail:	$w \coloneqq 50 \ plf$ (Design Uniform Load) $K \coloneqq 9.5$ (Live Load Coefficient)
	$L_{max.rail.w} \coloneqq \sqrt{M_{all.rail} \cdot w^{-1}} = 5.401 \ \textbf{ft}$
Uniform Load on Interior Post:	$w \coloneqq 50 \ plf \qquad \text{(Design Uniform Load)} \\ h = 4 \ ft \qquad \text{(Height of Railing Posts)}$
	$L_{max.post.w} \coloneqq M_{all.post} \cdot (w \cdot h)^{-1} = 65.625 \ ft$
MAXIMUM LENGTH BETWEEN POSTS:	$L_{max} \coloneqq \min \left(L_{max.rail.p}, L_{max.rail.w}, L_{max.post.w} \right)$
	L _{max} =5.401 ft > USE 4' SPACING

Wall Loads:		
Wall Weights: (From	m Boise Cascade and NCMA TEK)	
8" CMU, Medium We @ 8", Full Mortar Be		
4" Clay Brick: MEP:	$egin{aligned} q_{brick} &\coloneqq 39 \ psf \ q_{MEP} &\coloneqq 1.5 \ psf \end{aligned}$	
Spray Insulation: 1/2" Gypsum Board:	$q_{insulation} \coloneqq 4 \cdot 0.15 \ psf = 0.6 \ psf$	
Total:	$\begin{array}{l} q_{tot} \coloneqq q_{CMU} + q_{brick} + q_{MEP} + q_{insulation} + q_{gyp} \\ q_{tot} = 124.3 ~ \textit{psf} \end{array}$	
Design Loads:		
Total Uniform Load:	$w_{tot} := w_{balc} + q_{tot} \cdot h_m = 1861.273 \ plf$	
Maximum Shear:	$V_{max} := 0.5 \cdot w_{tot} \cdot L = 22.878 \ kip$	
tructural Design:		
Check Flexure:		
Choose Member Size:	Try HSS9x9x5/8> M_{all} := 149 $kip \cdot ft$ (From table 3-13 in AISC 15) w_{sw} := 67.82 plf	
Maximum Moment:	$M_{max} \coloneqq (w_{tot} + w_{sw}) \cdot L^2 \cdot 8^{-1} = 145.729 \ kip \cdot ft$	
Check: if $M_{max} \leq M$ "DESIG else		UR.
Check: if $M_{max} \leq M$ "DESIG else	M_{all} = "DESIGN IS OKAY FOR FLEX GN IS OKAY FOR FLEXURE"	UR:
Check: if $M_{max} \leq M$ "DESIG else	M_{all} = "DESIGN IS OKAY FOR FLEX GN IS OKAY FOR FLEXURE"	UR.
Check: if $M_{max} \leq M$ "DESIG else	M_{all} = "DESIGN IS OKAY FOR FLEX GN IS OKAY FOR FLEXURE"	UR.
Check: if $M_{max} \leq M$ "DESIG else	M_{all} = "DESIGN IS OKAY FOR FLEX GN IS OKAY FOR FLEXURE"	UUR.
Check: if $M_{max} \leq M$ "DESIG else	M_{all} = "DESIGN IS OKAY FOR FLEX GN IS OKAY FOR FLEXURE"	CUR.

Define Variables:	
Unbraced Length:	$L_b := L = 24.583 \ ft$
Moment Gradient F	
Yield Strength:	$F_y \coloneqq 50 \; ksi$ (ASTM A500 Grade C)
Modulus of Elasticit	
Thickness:	t := 0.625 in
Width:	$B := 9 \ in$ $b := B - 3 \cdot t = 7.125 \ in$
Depth:	$H := 9 \ in$ $h := H - 3 \cdot t = 7.125 \ in$
Area:	$A \coloneqq 18.7 \ in^2$
Plastic Section Mod	dulus: $Z_x = 58.1 \ in^3$
Section Modulus:	$S_x^{"} = 47.9 \ in^3$
Moment of Inertia:	
Plastic Moment:	$M_p := Z_x \cdot F_y = 242.083 \ kip \cdot ft$
Web Local Buckling:	$\lambda_{pw} \coloneqq 2.42 \cdot \left(E \cdot F_{y}^{-1}\right)^{0.5} = 58.281 \qquad \lambda_{rw} \coloneqq 5.70 \cdot \left(E \cdot F_{y}^{-1}\right)^{0.5} = 137.274$
	$\lambda_w \! \coloneqq \! h \! \cdot \! t^{-1} \! = \! 11.4$
	$\lambda_w \leq \lambda_{pw} = 1$ >Web is compact. No WLB.
Flange Local Buckling:	: $\lambda_{pf} \coloneqq 1.12 \cdot \left(E \cdot F_{y}^{-1}\right)^{0.5} = 26.973 \qquad \lambda_{rf} \coloneqq 1.4 \cdot \left(E \cdot F_{y}^{-1}\right)^{0.5} = 33.716$
	$\lambda_f := b \cdot t^{-1} = 11.4$
	$\lambda_w \leq \lambda_{pf} = 1$ >Flange is compact. No FLB.
Allowable Moment:	No WLB> No FLB> M_{all} := M_{all} =149 $kip \cdot ft$
Check: if $M_{max} \leq$	= "DESIGN IS OKAY FOR FLEXUE
	GN IS OKAY FOR FLEXURE"
else	
	GN IS UNACCEPTABLE"
Check Yielding: $f_v \coloneqq V_v$	$_{max} \cdot A^{-1} = 1.223 \ ksi$ $V_{all} := 0.6 \cdot F_y = 30 \ ksi$
Check: if $f_v \leq V_{all}$	
"DESIG	GN IS OKAY FOR YIELDING"

Bearing Pla	Reaction: ompression Stre		$R_u := V_{max} = 22.878 \ kip$
Bearing Co Bearing Pla	ompression Stre		
Bearing Co Bearing Pla	ompression Stre		
	ate Width:		$f_c' := 1000 \; {\it psi}$ (Assume weak compressive strength to be conservat
Bearing Pla			<i>N</i> :=6 <i>in</i>
	ate Length:		$B \coloneqq 12 in$
Bearing Pla	ate Area:		$A_1 \coloneqq N \cdot B = 72 \ in^2$
Distance to	o Support Edge:		$e \coloneqq 2 in$
Bearing Plate	Support Area:	$A_2 \coloneqq$	$= (N+2 \cdot e) \cdot (B+2 \cdot e) = 160 \ in^2$
Thickness of I	Bearing Plate:	$k_1 := 0$	$0.5 \cdot 9 \ in - 0.625 \ in = 3.875 \ in$ $l \coloneqq 0.5 \cdot B - k_1 = 2.125 \ in$
		$t_p \coloneqq$	$\sqrt{\frac{2 \cdot R_u \cdot l^2}{0.9 \cdot B \cdot N \cdot F_u}} = 0.253 \text{ in}$
			-> Use 1/2" Thickness> $t_p = 0.5$ in
			$v_p := 0.5 \text{ m}$
Check Reaction			
Reaction P	ressure:	$f_p \coloneqq I$	$R_u \cdot (N \cdot B)^{-1} = 317.752 \ psi$
Check:		$f_p \leq f$	f'_c = 1