Lake View Community Center Design Report

Submitted to
Mr. Scott Peterson
City Administrator, City of Lake View, IA

Prepared by:
Kevin Carpenter, Beau Kramer, Caleb Shudak, James Wood
Kevin Carpenter, Beau Kramer. Caleb Shudak. Dames Woad

Executive Summary

This is IWFD Engineering's final report for the design of the new Lake View Community Center. IWFD Engineering is composed of team of high-level senior Civil Engineering students from the University of Iowa. The team is composed of members with expertise in Hydrology, Structural design and analysis, Architecture, and Management. IWFD Engineering has designed a Community Center that suits all the needs of the Lake View community. The Community Center will host a variety of entertainments and celebrations that will allow residents to attend events locally and stimulate the local economy.

The location of the site is to be south of Highway 175 and just north of the Cobblestone Inn \& Suites. The wood-framed structure is 13,250 square feet with a main room of 8,000 square feet and includes a serving room, kitchen area with bar, fitness space, storage, and bathrooms. The exterior architecture includes native stone and the Lake View Blue in the design. The exterior also includes a fountain for picture purposes.

The parking lot is sized based on the capacity and contains 210 oversized spaces and is recommended to be paved in Hot Mix Asphalt (HMA) rather than brick pavers, gravel, or concrete as it provides the best strength and longevity relative to its cost and the cost of the other possibilities.

With the site being in close proximity to Black Hawk Lake, it was concluded that the stormwater management plan to contain and treat the runoff from the site. The solution includes green infrastructure to manage the stormwater to preserve and maintain the beauty of the lake area. A 530-foot bioswale designed to handle runoff from the site and future developed commercial land north of the project site is used. South of the parking lot, a 20,000 cubic-foot infiltration basin is used to handle the remaining runoff.

Following the analysis and design, IWFD Engineering performed a cost estimate. The estimate for the final design, including an HMA parking lot, is $\$ 1.9$ million. Cost estimates for other parking lot surfaces and a detailed cost estimate can be viewed in the Cost Estimate Section of the report.

Table of Contents

QUALIFICATIONS \& EXPERIENCE 4
Organization Name. 4
Contact Information 4
Organization \& Team Descriptions 4
DESIGN SERVICES 5
Project Scope 5
Work Plan 6
CONSTRAINTS, CHALLENGES \& IMPACTS 6
Constraints 6
Challenges 6
Societal Impacts. 7
FINAL DESIGN DETAILS 8
Site Plan 8
Green Infrastructure 9
Community Center Design 10
Truss. 12
Wall 12
Foundation 13
ENGINEER'S COST ESTIMATE 14
APPENDICES 16
Appendix A - Design Loads 16
Appendix B - Shear Wall \& Truss Calculations 16
Appendix C-Foundation Calculations 16
Appendix D - Runoff Calculations. 16
Appendix E - Bioswale \& Infiltration Basin Calculations 16
Appendix F - Detailed Cost Estimate 16
Appendix G - Gantt Chart 16
Appendix H - References 16

Qualifications \& Experience

Organization Name
IWFD Engineering
Contact Information

James Wood
External Project Manager
Email: james-wood@uiowa.edu
Caleb Shudak
Internal Project Manager
Email: caleb-shudak@uiowa.edu
\section*{Kevin Carpenter}
Word Editor
Email: kevin-carpenter@uiowa.edu
Beau Kramer
Technology Service
Email: beau-kramer@uiowa.edu

Organization \& Team Descriptions

James Wood served as the External Project Manager for this project. His responsibilities included the organization and facilitation of client meetings, site visits, being the point of contact for the client, presentations and graphics, and client deliverables deadlines. During the design phase of the project he worked on the site plan, floor plan, 3D Model, Cost estimate, and the Poster/Presentation generation.

Caleb Shudak served as the Internal Project Manager for this project. The responsibilities associated with this role are the organization and facilitation of team meetings, meetings with our faculty advisor, preparation and distribution of meeting agendas, and organization and facilitation of team assignments. He oversaw the design and development of the green infrastructure, site plan, grading plan, foundations, and the plan set generation.

Kevin Carpenter served as the Report Production coordinator for this project. This role focuses on the coordination of all reports and preparation of graphics used within the report. This position had final editing decisions and choses style and format of the reports. He also oversaw and lead the design loading determination, report generation, and the shear and load-bearing wall design.

Beau Kramer served as the Technology Service coordinator for this project. The responsibilities associated with this role are to oversee and organize the group in the technological aspect, such as file organization and creation. Beau's responsibilities also included much of the architectural aspects of the project, such as the interior and exterior aesthetics. Beau lead the rendering generation, the design loading determination, the truss design, and assisted in the development of the final project items.

Design Services

Project Scope

IWFD Engineering is providing the preliminary design for a large venue used by the community to host large events and parties. The venue will be 13,250 square feet in order to host events for 450 persons. Of that total square footage, 8,000 square feet will be dedicated to a large main room to host larger events. The remaining will be dedicated to a serving room, storage, a kitchen area, and a recreational space. Included with our design of the community center is a parking lot that has 210 parking spaces. We also included green infrastructure to help manage stormwater while also helping to mitigate flooding issues that currently exist. This green infrastructure includes bioswales on the north and west edge of the site that accommodates the North portion of rainfall on the site as well as the future commercial lots and a infiltration basin on the south edge of the site that handles the water from a majority of the parking lot. Aesthetically, native stone or a similar material and the Lake View Blue will be incorporated into the design. The site includes a fountain on the east side of the building for photographic purposes.

Project Deliverables:

- Design of indoor venue for large group gatherings
- Design of parking lot design with possible permeable paving
- Design of an improved and green water runoff system

Work Plan

We have developed a plan to keep the project moving forward and to track progress of the project. We split the project into five phases: Design Proposal, Design and Concept Development, Design Analysis, Design Draft, and Final Design. Phase one includes the development of multiple solutions, drafting and finalizing our Proposal. Phase two includes narrowing design to one possibility and narrowing down the site layout, and structural and hydraulic possibilities. Phase three in composed of performing engineering analysis of chosen design option. Phase four includes beginning final design details and drafts of plan sets, renderings, reports and presentations. Phase five is producing final design details for faculty and clients. A visual timeline for the phases and tasks can be viewed in Appendix G under Gantt Chart.

Constraints, Challenges \& Impacts

Constraints

The Community Center design was constrained by multiple factors. Beginning with the site, the lot size constrained the layout of the structure, parking lot and green space. The location of the parking lot is constrained by the hotel gravel lot south of the proposed site. The need for green infrastructure design presented a unique constraint on the possible ways IWFD Engineering was able to collect and drain the stormwater. The design of the structure itself was constrained by the given size requirements, wind loading, the interior layout, and the multi-use function of the interior. The aesthetic design was constrained by what materials and colors can be used to finish the structure as well as the cost of the structure.

Challenges

The design of the Community Center also had several engineering and design challenges for IWFD Engineering. The site location was a few hundred feet north of Black Hawk Lake and the area already has a drainage issue with runoff flowing over the road and directly into the lake. It is important to not increase this runoff amount with the increase of impermeable surfaces from our site development. With the current site elevations draining towards the lake, the stormwater
management presented the largest challenge. Incorporation a floor plan that could serve the correct purpose for the new Community Center also presented a challenge. Presenting the Lake View community with an aesthetically pleasing Community Center design at a low cost was another challenge.

Societal Impacts

The Community Center will impact the city of Lake View in many positive ways. It will create a large venue in place of the old Lakewood Ballroom for members of the community to have gatherings for many important events. The building will also be a place to hold smaller gatherings and meetings for the community. The green infrastructure put in place reduces the runoff overflow and filters potential pollutants from the site runoff that enters Black Hawk Lake. The aesthetics of the building, the monuments outside, and green infrastructure create a beautiful breath of fresh air to Black Hawk Lake and the surrounding area that the community can utilize and be proud of.

Alternative Solutions That Were Considered

In the development of the final Community Center design, IWFD Engineering priced and considered three possible solutions based on the parking lot, which was viewed as the largest non-essential portion to price. The three possible solutions are a gravel parking lot, a lot composed entirely of permeable brick pavers, and a lot composed of asphalt (HMA).

The decision to have a gravel parking lot would result in the lowest overall cost for the project of $\$ 100,000$. This is a common solution in rural areas that want low runoff from rainfall events. Due to the size needed for this parking lot the material choice has a large impact on the price of the project. A major downside of gravel is the finished surface, rough and loose, which makes walking more difficult depending on the time of year as well as troubles with snow removal in the winter pushing material around. A parking lot that still provides decreased runoff while giving a rigid surface is permeable pavers.

A permeable paver parking lot would result in the highest overall cost for the project of $\$ 700,000$. This is a common solution in urban areas that want low runoff from rainfall events. Like the gravel in permeability, pavers are a high-end finish to a parking lot that substantially
decreases the volume of water runoff. A solid finish like that of pavers without the decreased runoff is HMA.

The final parking lot type would be an HMA lot which would result in a mid-range cost for the project of $\$ 300,000$. This is a common solution almost everywhere that is a cost-effective way to pave large areas but does not have any runoff upside. HMA allows for one solid service for travel like the finish of permeable pavers which allows for lower maintenance due to snow removal.

After considering all three parking lot surfaces IWFD Engineering decided to choose an HMA parking lot for the final design. This gave a mediocre dollar value for the cost estimate as well as designing for the worst case for runoff. As stated earlier the negative to this design is the increased runoff. With that in mind the infiltration basin and the bioswales were designed as if the entire parking lot and building were completely impervious. Therefore, any changes to the HMA parking lot to add infiltration are not necessary in order to have the green infrastructure function as intended.

Other alternative options considered were different floor plans and building layouts. After careful consideration by the Lake View community they decided to move forward with their original floor plan design. It was clear to IWFD Engineering that the Hometown pride committee had been discussing and reiterating this floor plan for a while, so the design was only ever changed minimally.

Final Design Details

Site Plan

In designing the site plan, the Community Center was placed in the Northeast corner of the site location to avoid rerouting runoff as shown in Figure 1 as the gold area. Placing the structure in the Northeast corner of the site allows for room for the placement of infiltration basins and bioswales to decrease the runoff heading to Black Hawk Lake due to the site. This also will ensure the structure will not be affected by water damage that water could cause. This provided IWFD Engineering with a large area to design and create a parking lot that can accommodate 450 people the Center is designed for which gave a minimum of 180 spaces needed, however the lot was over designed and 210 oversized spaces are shown.

Figure 1. Post Construction Site Arrangement

Green Infrastructure

Following the design and layout of the site, a green and self-containing stormwater management solution was devised. The client had specifically requested the stormwater solution to contain green solutions in order to enhance the water quality before entering Blackhawk Lake. The self-containing solution was deemed important by IWFD Engineering in that it would reduce the runoff overflow onto Boulder Drive that came from the undeveloped site. This can be viewed in the pre-site analysis in Appendix D. The total flow was calculated using the Rational Method, outline in SUDAS Chapter 2B-4 and was 26.45 cfs before the site and 14.56 cfs postdevelopment. This resulted in a 45% decrease in overflow runoff across Boulder Drive.

The green solution included a Bioswale and an Infiltration Basin. The Bioswale was design in accordance with the Iowa Department of Natural Resources Stormwater Management

Manual Chapter 5 - Section 5 (Bioswales) and Chapter 9 - Section 2 (Grass Swales). A Water Quality Volume (WQv) was the emphasis for both the Swale and Basin designs and is defined as the amount that includes in about 90% of storms for a given year. The calculations are outlined in Appendix E. The Swale is designed to accommodate a portion of the parking lot, the Center, and the post-development of the future commercial lots north of the Community Center site. The Infiltration Basin was design in accordance with the DNR Manual Chapter 5 - Section 3 (Infiltration Basins). The Bioswale pollutant removal capabilities can be viewed in Table 1 below.

Table 1. Pollutant removal capabilities of Bioswale

Pollutant removal efficiencies (\%)								
Design	Solids	Nutrients		Metals			Other	
	TSS	TN	TP	Zn	Pb	Cu	FOG	COD**
200-ft swale	83	25^{*}	29	63	67	46	75	25
100-ft swale	60	$*$	45	16	15	2	49	25

*Some swales (100-ft systems) show negligible or negative removal for TN **Limited data

Sources: Barret et al., 1993; Schueler et al, 1991; Yu, 1993; and Yousef et al., 1985
With the Swale being over 500 feet in length, the pollutant removal capabilities are expected to exceed the expectations outlined above. The Infiltration basin pollutant removal capabilities can be seen in Table 2 below. It has also been designed to drain in under 24-hours in accordance with DNR requirements in order to be able to handle rainy seasons.

Table 2. Pollutant removal capabilities of Infiltration Basin

Pollutant	Removal rate $\%$
Sediment	90%
Total P	$60-70 \%$
Total N	$55-60 \%$
Metals	$85-90 \%$
Bacteria	90%

Source: US EPA, 1983; Stahre and Urbonas, 1990; ASCE, 2001

Community Center Design

The Lake View Community Center was designed to be a large 100 ft by 120 ft event space for the Lake View community. The community center has a large main room for the events, restrooms, a possible wellness room, a serving room, a kitchen and bar, a garage, and a
space for a temporary stage. The structure was designed to be typical wood truss construction due to the lumberyard in town. The entire design was created with the idea to keep costs as low as possible for the community which is what led to minimal exterior windows and simple room shapes and overall building design. The view of the exterior of the building is shown below for a reference in Figure 2. Another view of the large main room is shown below in Figure 3 as well for a reference of the size of the room.

Figure 2. Exterior rendering of the southeast corner of the building

Figure 3. Interior rendering of the main room as if entered through the main entrance

Truss

The beginning of the Community Center structural analysis began by determining the wind, snow, and dead load the structure would be designed for. The loads were determined in accordance with ASCE 7-10. The live loads were from chapter 7, the dead loads were calculated using a dead load calculator on excel and the wind loads were from chapter 28. For the design loading calculations, we used the ASCE7-10 manual. Chapter 7 was used in determining the snow load on the truss (i.e. live load). The dead load was determined by the weight of materials used in constructing the trusses and the envelope method. Chapter 28 was used for determining the lateral and uplift loading caused by wind.

In designing the roof truss system, we decided to span the building with three trusses. Upon analysis we found that one large truss spanning the entire 100 feet was not feasible. Therefore, we chose to put one large Howe truss spanning 66 feet across the center of the main building and added mono trusses on each side of the Howe trusses to span 17 feet across the exterior rooms. The details and calculations of the trusses we decided to use can be viewed in Appendix B. The members of the Howe truss had to be enlarged from normal residential size. The top and bottom chord are to be constructed with 2 x 8 dimensional lumber while the interior members are to be made from 2×6 dimensional lumber. We were able to use normal residential sized mono trusses for the exterior rooms which are made of 2×6 dimensional lumber on the top and bottom chords and 2×4 dimensional lumber for the interior members.

Wall

For the design of the shear walls we used Design of Wood Structures ASD. Chapter 10 on shear walls was used to determine the lateral forces acting on the exterior walls of the building. The Wood Frame Construction Manual was used to determine the vertical forces the bearing and exterior walls can withstand. Shear walls are different than other load bearing or interior walls in that they have braced panels to withstand horizontal wind and seismic forces. The self-weight of the walls was calculated based on material weights and then included in the vertical force acting downward.

In the design of the exterior walls we used 2×8 lumber due to the large length each wall would be spanning, as well as the large vertical and lateral forces the wall would undergo. These
exterior walls will have sheathing plywood paneling designed to withstand the horizontal wind loads. Using these resources, and the designated lumber size, every wall was calculated to be able to withstand the vertical loads acting on it. However, the south facing wall with the garage door in the original design could not handle the lateral load acting on it. This caused us to move that wall flush with the original South wall of the building and move the garage door to the West side of the garage. In the design of the interior load bearing walls 2×6 lumber was used because these walls only experience vertical forces they did not need to be as thick. Support beams were also designed to span the remainder of the building that the interior load bearing walls do not extend to. Based on the resources used the two bearing walls and beams were found to be adequate to support the vertical loads acting on them. The wall drawings can be viewed within the project plan set and the corresponding calculations can be found in Appendix B. Other interior walls were sized either using 2×6 or 2×4 lumber depending on the lengths they span.

Figure 4. Floor Plan showing highlighted exterior shear walls

Foundation

Following the determination of loads and the visible structure design, the foundation was analyzed and designed. The foundations were designed in accordance with Foundation Analysis
and Design by Joseph E. Bowles, P.E., S.E., the 2015 International Building Code (IBC), and ACI 318. A crucial piece to safe and effective design is accurate soil properties. The soil properties were determined from a Soil Survey of Sac County, Iowa done by the Unites States Department of Agriculture Soil Conservation Services in 1979 and from current Iowa DNR Geospatial Data for the site location. The results of these finding can be viewed in Appendix C. The foundation results were as follows. In accordance with the IBC Chapter 18, Figure 1809-2, the frost penetration for the region is about 60 inches. The foundations are to be placed at 72 inches to avoid the freeze-thaw effects of frost. Following the analysis, which can be viewed in Appendix C, the exterior foundation dimensions is a 6'-6" eccentrically loaded strip footing, except for the west and north portion of the west garage. The north strip footing is a $3^{\prime}-6$ "' eccentrically loaded footing and the west strip footing is a $4^{\prime}-0$ " eccentrically loaded footing. An eccentric footing means the stem is offset of the center to combat the rotational effects of the wind. The interior strip footings are 2 ' -0 " wide. For structural integrity, one \#5 rebar is required every 12 inches with no shear reinforcements. Further detailing can be viewed in the project plan set.

Engineer's Cost Estimate

The final design cost estimate of the Lake View Community Center was roughly 1.8 million dollars. The breakdown of this cost is shown in Table 2 below and was found using RSMeans data. This value is consistent with the square footage area estimate that RSMeans also provides. For the estimates a nearby town was given to the online calculator as a reference point for costs in northwest Iowa. In understanding that construction in a small community works differently compared to a large city the costs were broken down in a way that will allow Lake View to better estimate their true building cost.

In addition to the final design cost estimate the different parking lot cost estimates are also shown in Table 4. This table shows where the weight of the different costs can come from and how the final number was reached. With that being said the final project cost could range anywhere from 1.7 million to 2.3 million depending on the parking lot and finishes.

Table 3 and 4. The Final Design Cost Estimate and the Alternative Costs

Final Design Cost Estimate Summary			
Item	Material	Installation	Total
Concrete	$\$ 160,500$	$\$ 164,700$	$\$ 325,300$
Wood Framing and Structure	$\$ 246,600$	$\$ 215,300$	$\$ 461,800$
Mechanical	$\$ 186,600$	$\$ 104,500$	$\$ 247,500$
Plumbing \& Electrical	$\$ 98,000$	$\$ 110,000$	$\$ 207,900$
Finishes	$\$ 55,500$	$\$ 49,600$	$\$ 105,000$
Parking Lot	$\$ 220,000$	$\$ 80,000$	$\$ 300,000$
Green Design	$\$ 42,200$	$\$ 24,800$	$\$ 67,000$
Subtotal	$\$ 1,009,000$	$\$ 749,000$	$\$ 1,715,000$
Engineering (2.5\%)			$\$ 43,000$
Contingency (10\%)			$\$ 172,000$
Total			$\$ 1,900,000$

Parking Lot Options			
Item	Material	Installation	Total
Gravel Lot	$\$ 80,000$	$\$ 20,000$	$\$ 100,000$
HMA	$\$ 220,000$	$\$ 80,000$	$\$ 300,000$
Permeable Pavers	$\$ 350,000$	$\$ 350,000$	$\$ 700,000$

Overall, this project came in at a reasonable final dollar value, a more detailed cost estimate showing how we got to the final number is shown in Appendix F. In that table there are two sets of values, the first set is the raw data from the RSMeans online website, the second is the adjusted values for 2020 using a time value of money (TVM) analysis. These values were found using the average rate of inflation for construction costs over the past ten years which was about 3%.

APPENDICES

Appendix A - Design Loads

Appendix B - Shear Wall \& Truss Calculations

Appendix C - Foundation Calculations
Appendix D - Runoff Calculations
Appendix E - Bioswale \& Infiltration Basin Calculations
Appendix F - Detailed Cost Estimate
Appendix G-Gantt Chart
Appendix H - References

Appendix A - Design Loads

MWFRS Wind Load for Longitudinal			
	p		
	GCpf	$(\mathrm{w} /+\mathrm{GCpi})$	$(\mathrm{w} /-\mathrm{GCpi})$
Zone 1	0.40	5.73	15.10
Zone 2	-0.69	-22.65	-13.28
Zone 3	-0.37	-14.32	-4.95
Zone 4	-0.29	-12.24	-2.86
Zone 5	-0.45	-16.41	-7.03
Zone 6	-0.45	-16.41	-7.03
Zone 1E	0.61	11.20	20.57
Zone 2E	-1.07	-32.55	-23.18
Zone 3E	-0.53	-18.49	-9.11
Zone 4E	-0.43	-15.88	-6.51

MWFRS Wind Load for Transverse, Torsional Case			
	$(\mathrm{w} /-\mathrm{GCpi})$	p	
	$(\mathrm{w} /-\mathrm{GCpi})$		
Zone 1T	1.43	3.77	
Zone 2T	-5.66	-3.32	
Zone 3T	-3.58	-1.24	
Zone 3T	-3.06	-0.71	

Notes:

1. Plus and minus signs signify pressures acting toward and away from the surfaces, respectively.
2. For values of θ other than those shown, linear interpolation is permitted.
3. The building must be designed for all wind directions using the 8 loading patterns shown. The load patterns are applied to each building corner in turn as the Windward Corner.
4. Combinations of external and internal pressures (see Table 26.11-1) shall be evaluated as required to obtain the most severe loadings.
5. For the torsional load cases shown below, the pressures in zones designated with a " T " $(1 \mathrm{~T}, 2 \mathrm{~T}$, $3 \mathrm{~T}, 4 \mathrm{~T}, 5 \mathrm{~T}, 6 \mathrm{~T}$) shall be 25% of the full design wind pressures (zones $1,2,3,4,5,6$).

Exception: One story buildings with h less than or equal to $30 \mathrm{ft}(9.1 \mathrm{~m})$, buildings two stories or less framed with light frame construction, and buildings two stories or less designed with flexible diaphragms need not be designed for the torsional load cases.
Torsional loading shall apply to all eight basic load patterns using the figures below applied at each Windward Corner.
6. For purposes of designing a building's MWFRS, the total horizontal shear shall not be less than that determined by neglecting the wind forces on the roof.

Exception: This provision does not apply to buildings using moment frames for the MWRFS.
7. For flat roofs, use $\theta=0^{\circ}$ and locate the zone $2 / 3$ and zone $2 \mathrm{E} / 3 \mathrm{E}$ boundary at the mid-width of the building.
8. For Load Case A, the roof pressure coefficient $\left(G C_{p f}\right)$, when negative in Zone 2 and 2 E , shall be applied in Zone $2 / 2 \mathrm{E}$ for a distance from the edge of roof equal to 0.5 times the horizontal dimension of the building measured perpendicular to the ridge line or 2.5 times the eave height at the windward wall, whichever is less; the remainder of Zone $2 / 2 \mathrm{E}$ extending to the ridge line shall use the pressure coefficient ($G C_{p f}$) for Zone 3/3E.
9. Notation:
a: 10 percent of least horizontal dimension or 0.4 h , whichever is smaller, but not less than either 4% of least horizontal dimension or $3 \mathrm{ft}(0.9 \mathrm{~m})$.
h : Mean roof height, in feet (meters), except that eave height shall be used for $\theta \leq 10^{\circ}$.
θ : Angle of plane of roof from horizontal, in degrees.

Transverse Direction

Torsional Load Cases

Appendix B - Shear Wall \& Truss Calculations

Live := 100 psf

$$
C t:=1 \quad C e:=1 \quad I s:=1.1 \quad P g:=35 p s f \quad C s:=1
$$

$$
P f:=0.7 \cdot C e \cdot C t \cdot I s \cdot P g=26.95 p s f
$$

$$
P s:=C s \cdot P f=26.95 p s f
$$

$$
\begin{aligned}
L u & :=33 \quad P g:=35 \quad y:=18.55 p c f \\
h d & :=\sqrt{I s} \cdot((0.43 \cdot \sqrt[3]{L u} \cdot \sqrt[4]{P g+10})-1.5)=2.173 \quad h d:=2.173 \mathrm{ft} \\
& :=2
\end{aligned}
$$

UnbalancedSnowLoad $:=P s+\frac{h d \cdot y}{\sqrt{s}}=55.453 \mathrm{psf}$

BalancedSnowLoad:=Ps=26.95 psf

Deadtotal := 8.05 psf

DeadHorizontal:=9 psf

Insert item \# for each material in the highlighted cells Total dead load will be displayed in cell C2		Total Dead Load (psf)		Total Horizontal Dead Load (psf)
		8.05		9.00
		Roof Rise	6	13.41640786
		Roof Run	12	
Item \#	Roof Rafters	Dead Load Value	Item Number	Dead Load (psf)
1	2×4 @ 12" O.C.	1.65	5	1.9
2	2×4 @ 16" O.C.	1.3		
3	2x4@ 24" O.C	0.82		
4	2×6 @ 12" O.C.	2.54		
5	2×6 @ 16" O.C.	1.9		
6	2x6@ 24" O.C	1.27		
7	2x8@12" O.C.	3.39		
8	2x8@16" O.C.	2.54		
9	2x8@ 24" O.C	1.7		
10	2×10 @ 12" O.C.	4.29		
11	2×10 @ 16" O.C.	3.21		
12	2×10 @ $24^{\prime \prime}$ O.C	2.15		
13	Wood Trusses (2×4 T \& B Chords) @ 24" O.C.	2.5		
14	None	0		

Wind Loads

```
Live := 100 psf
\(C t:=1 \quad C e:=1 \quad I s:=1.1 \quad P g:=35 p s f \quad C s:=1\)
\(P f:=0.7 \cdot C e \cdot C t \cdot I s \cdot P g=26.95 p s f\)
\(P s:=C s \cdot P f=26.95 p s f\)
\(L u:=17 \quad P g:=35 \quad y:=18.55 p c f\)
\(h d:=\sqrt{I s} \cdot((0.43 \cdot \sqrt[3]{L u} \cdot \sqrt[4]{P g+10})-1.5)=1.43 \quad h d:=1.43 \mathrm{ft}\)
    \(s:=2\)
```

UnbalancedSnowLoad $:=P s+\frac{h d \cdot y}{\sqrt{s}}=45.707$ psf

BalancedSnowLoad $:=$ Ps $=26.95$ psf

Wind Loads

Perforated Shear Wall Design
$q:=23.18 \mathrm{psf} \quad h:=12 \mathrm{ft} \quad L 1:=100 \mathrm{ft} \quad L 2:=120 \mathrm{ft}$
$W u:=q \cdot h=278.16$ plf $\quad R b 1:=W u \cdot L 1 \cdot \frac{1}{2}=13.908$ kip $\quad R a 1:=R b 1$
$V s 1:=\frac{R a 1}{L 1}=139.08 p l f$

$$
R b 2:=W u \cdot L 2 \cdot \frac{1}{2}=16.69 \mathrm{kip} \quad R a 2:=R b 2
$$

$V s 2:=\frac{R a 2}{L 2}=139.08 p l f$

Nail spacing 3 inches with 8 diameter nail size

$$
v:=490 \text { plf }
$$

South Wall

\[

\]

Based on Co table

$$
C o:=0.88
$$

Vperforated $1:=C o \cdot v \cdot b f h=44.198$ kip \quad Vperforated $1>F=1$
Vertical load

$$
\begin{aligned}
& \text { Truss }:=55.76 \text { psf SWtruss }:=1.1 \text { kip }+\frac{15}{2} \text { kip } \quad \text { Beam }:=663.5 \text { plf } \\
& \text { Roof }:=\frac{(\text { Truss } \cdot b \cdot(8 \text { in }))}{2}=2.333 \text { kip } \quad \text { Cvertical }:=\text { Beam } \cdot b=83.269 \text { kip }
\end{aligned}
$$

$$
R t:=\text { Roof }+ \text { SWtruss }=10.933 \text { kip } \quad \text { Cvertical }>R t=1
$$

Total force into foundation

$$
S w:=5.12763 \text { kip } \quad T F:=R t+S w=16.06 \text { kip }
$$

Perforated Shear Wall Design
$q:=23.18 \mathrm{psf} \quad h:=12 \mathrm{ft} \quad L 1:=100 \mathrm{ft} \quad L 2:=120 \mathrm{ft}$
$W u:=q \cdot h=278.16$ plf $\quad R b 1:=W u \cdot L 1 \cdot \frac{1}{2}=13.908$ kip $\quad R a 1:=R b 1$
$V s 1:=\frac{R a 1}{L 1}=139.08 p l f$

$$
R b 2:=W u \cdot L 2 \cdot \frac{1}{2}=16.69 \mathrm{kip} \quad R a 2:=R b 2
$$

$V s 2:=\frac{R a 2}{L 2}=139.08 p l f$

Nail spacing 3 inches with 8 diameter nail size

$$
v:=490 \text { plf }
$$

South Wall

\[

\]

Based on Co table

$$
C o:=0.88
$$

Vperforated $1:=C o \cdot v \cdot b f h=44.198$ kip \quad Vperforated $1>F=1$
Vertical load

$$
\begin{aligned}
& \text { Truss }:=55.76 \text { psf SWtruss }:=1.1 \text { kip }+\frac{15}{2} \text { kip } \quad \text { Beam }:=663.5 \text { plf } \\
& \text { Roof }:=\frac{(\text { Truss } \cdot b \cdot(8 \text { in }))}{2}=2.333 \text { kip } \quad \text { Cvertical }:=\text { Beam } \cdot b=83.269 \text { kip }
\end{aligned}
$$

$$
R t:=\text { Roof }+ \text { SWtruss }=10.933 \text { kip } \quad \text { Cvertical }>R t=1
$$

Total force into foundation

$$
S w:=5.12763 \text { kip } \quad T F:=R t+S w=16.06 \text { kip }
$$

East Wall

Based on Co table

$$
C o:=0.84
$$

Vperforated $2:=C o \cdot v \cdot b f h=40.543 \mathrm{kip}$
Vperforated $2>F=1$
Vertical load
Truss $:=55.76$ psf SWtruss $:=\frac{15}{2}$ kip Beam $:=663.5$ plf
Roof $:=\frac{(\text { Truss } \cdot b \cdot(17 \mathrm{ft}+6 \mathrm{in}))}{2}=58.548 \mathrm{kip} \quad$ Cvertical $:=$ Beam $\cdot b=79.62 \mathrm{kip}$

$$
R t:=\text { Roof }+ \text { SWtruss }=66.048 \text { kip } \quad \text { Cvertical }>R t=1
$$

Total force into foundation
$S w:=4.901 \mathrm{kip}$
$T F:=R t+S w=70.949 \mathrm{kip}$

North Wall

$$
\begin{gathered}
s q:=(100 \mathrm{ft} \cdot 12 \mathrm{ft})+400 \mathrm{ft}^{2}=\left(1.6 \cdot 10^{3}\right) \mathrm{ft} \mathrm{t}^{2} h:=12 \mathrm{ft} \text { ho:=0 ft bo:=0 ft b:=100 ft} \\
F:=s q \cdot q=37.088 \mathrm{kip} \quad \frac{h o}{h}=0 \quad b f h:=b-b o=100 \mathrm{ft} \quad \frac{b f h}{b}=1
\end{gathered}
$$

Based on Co table

$$
C o:=1
$$

$$
\text { Vperforated } 3:=C o \cdot v \cdot b f h=49 \mathrm{kip} \quad \text { Vperforated } 3>F=1
$$

Vertical load

$$
\begin{array}{ll}
\text { Truss }:=55.76 \text { psf SWtruss }:=1.1 \text { kip } & \text { Beam }:=663.5 \text { plf } \\
\text { Roof }:=\frac{(\text { Truss } \cdot b \cdot(8 \text { in }))}{2}=1.859 \text { kip } & \text { Cvertical }:=\text { Beam } \cdot b=66.35 \mathrm{kip}
\end{array}
$$

$$
R t:=\text { Roof }+ \text { SWtruss }=2.959 \text { kip } \quad \text { Cvertical }>R t=1
$$

Total force into foundation
$S w:=4.58 \mathrm{kip}$

$$
T F:=R t+S w=7.539 \mathrm{kip}
$$

$$
\begin{aligned}
& h:=12 \mathrm{ft} \text { ho:=8 ft bo:=20 ft+18 in b:=120 ft } \\
& s q:=120 \mathrm{ft} \cdot 12 \mathrm{ft}=\left(1.44 \cdot 10^{3}\right) \mathrm{ft} t^{2} \\
& F:=s q \cdot q=33.379 \mathrm{kip} \\
& \frac{h o}{h}=0.667 \quad b f h:=b-b o=98.5 f t \quad \frac{b f h}{b}=0.821
\end{aligned}
$$

Back West Wall

$s q:=69.5 \mathrm{ft} \cdot 12 \mathrm{ft}=834 \mathrm{ft}^{2} \quad h:=12 \mathrm{ft} \quad h o:=10 \mathrm{ft}$ bo: $=13 \mathrm{ft}+8$ in $\quad b:=69 \mathrm{ft}+6 \mathrm{in}$ $F:=s q \cdot q=19.332 \mathrm{kip} \quad \frac{h o}{h}=0.833 \quad b f h:=b-b o=55.833 \mathrm{ft} \quad \frac{b f h}{b}=0.803$

Based on Co table

$$
C o:=0.75
$$

Vperforated $4:=C o \cdot v \cdot b f h=20.519$ kip \quad Vperforated $4>F=1$
Vertical load

$$
\begin{aligned}
& \text { Truss }:=55.76 \text { psf } \quad \text { SWtruss }:=\frac{15}{2} \text { kip } \quad \text { Beam }:=663.5 \text { plf } \\
& \text { Roof }:=\frac{(\text { Truss } \cdot b \cdot(17 \text { ft }+6 \mathrm{in}))}{2}=33.909 \text { kip } \quad \text { Cvertical }:=\text { Beam } \cdot b=46.113 \text { kip } \\
& \text { Rt }:=\text { Roof }+ \text { SWtruss }=41.409 \mathrm{kip} \quad \text { Cvertical }>\text { Rt }=1
\end{aligned}
$$

Total force into foundation

$$
S w:=2.458 \text { kip } \quad T F:=R t+S w=43.867 \text { kip }
$$

Inner West Wall

$$
\begin{gathered}
s q:=(50 \mathrm{ft}+6 \mathrm{in}) \cdot 12 \mathrm{ft}=606 \mathrm{ft}^{2} \quad h:=12 \mathrm{ft} \\
F:=s q \cdot q=14.047 \mathrm{kip} \quad \frac{h o}{h}=0.667 \quad b f h:=b-b o=43.167 \mathrm{ft} \quad \frac{b \mathrm{fh}}{b}=0.855
\end{gathered}
$$

Based on Co table

$$
C o:=0.87
$$

$$
\text { Vperforated } 5:=C o \cdot v \cdot b f h=18.402 \text { kip } \quad \text { Vperforated } 5>F=1
$$

Vertical load

$$
\begin{aligned}
& \text { Truss }:=55.76 \text { psf } \quad \text { SWtruss }:=\frac{15}{2} \text { kip } \quad \text { Beam }:=663.5 \text { plf } \\
& \text { Roof }:=\frac{(\text { Truss } \cdot b \cdot(17 \text { ft }+6 \text { in }))}{2}=24.639 \text { kip } \quad \text { Cvertical }:=\text { Beam } \cdot b=33.507 \text { kip } \\
& \text { Rt }:=\text { Roof }+ \text { SWtruss }=32.139 \mathrm{kip} \quad \text { Cvertical }>\text { Rt }=1
\end{aligned}
$$

Total force into foundation

$$
S w:=2.12285 \mathrm{kip}
$$

$$
T F:=R t+S w=34.262 \mathrm{kip}
$$

Side West Wall

$$
C o:=0.77
$$

Vperforated $6:=C o \cdot v \cdot b f h=15.281$ kip \quad Vperforated $6>F=1$
Vertical load

$$
\begin{array}{l|l}
\text { Truss }:=55.76 \text { psf } \quad \text { SWtruss }:=\frac{15}{2} \text { kip } \quad \text { Beam }:=663.5 \text { plf } \\
\text { Roof }:=\frac{(\text { Truss } \cdot b \cdot(17 \mathrm{ft}+6 \mathrm{in}))}{2}=24.639 \mathrm{kip} & \text { Cvertical }:=\text { Beam } \cdot b=33.507 \mathrm{kip}
\end{array}
$$

$$
R t:=\text { Roof }+ \text { SWtruss }=32.139 \text { kip } \quad \text { Cvertical }>\text { Rt }=1
$$

Total force into foundation

$$
S w:=1.7226 \text { kip } \quad T F:=R t+S w=33.862 \text { kip }
$$

Side North Wall

$$
\begin{gathered}
s q:=(25 \mathrm{ft}+6 \mathrm{in}) \cdot 12 \mathrm{ft}=306 \mathrm{ft}^{2} \quad h:=12 \mathrm{ft} \quad \text { ho }:=8 \mathrm{ft} \quad b o:=7 \mathrm{ft}+4 \mathrm{in} \quad b:=25 \mathrm{ft}+6 \mathrm{in} \\
F:=s q \cdot q=7.093 \mathrm{kip} \quad \frac{h o}{h}=0.667 \quad b f h:=b-b o=18.167 \mathrm{ft} \quad \frac{b f h}{b}=0.712
\end{gathered}
$$

Based on Co table

$$
C o:=1
$$

$$
\text { Vperforated } 8:=C o \cdot v \cdot b f h=8.902 \text { kip } \quad \text { Vperforated } 8>F=1
$$

Vertical load

$$
\begin{array}{ll}
\text { Truss }:=55.76 \text { psf } \quad \text { SWtruss }:=\frac{15}{2} \text { kip } & \text { Beam }:=663.5 \text { plf } \\
\text { Roof }:=\frac{(\text { Truss } \cdot b \cdot(12 \text { ft) })}{2}=8.531 \mathrm{kip} & \text { Cvertical }:=\text { Beam } \cdot b=16.919 \mathrm{kip}
\end{array}
$$

$$
R t:=\text { Roof }+ \text { SWtruss }=16.031 \text { kip } \quad \text { Cvertical }>R t=1
$$

Total force into foundation

$$
S w:=0.988625 \mathrm{kip}
$$

$$
T F:=R t+S w=17.02 \mathrm{kip}
$$

Bearing Wall Design

Left bearing wall

$$
b:=54 f t+1 \text { in } \quad l:=(44 f t+8 i n)+(19 f t+2 i n)
$$

Vertical load

$$
\begin{aligned}
& \text { Truss }:=55.76 \text { psf } \quad \text { SWtruss }:=\frac{15}{2} \text { kip }+\frac{34.8}{2} \text { kip } \quad \text { Beam }:=2075 \text { plf } \\
& \text { Roof }:=\frac{(\text { Truss } \cdot 120 \mathrm{ft} \cdot 65 \mathrm{ft})}{2}=217.464 \mathrm{kip} \text { CverticalW }:=\text { Beam } \cdot b=112.223 \mathrm{kip} \\
& R t:=\text { Roof }+ \text { SWtruss }=242.364 \mathrm{kip} \text { CverticalB }:=\text { Beam } \cdot l=132.454 \mathrm{kip}
\end{aligned}
$$

$$
\text { CverticalT }:=\text { CverticalB }+ \text { CverticalW }=244.677 \text { kip } \quad \text { CverticalT }>R t=1
$$

Total force into foundation

$$
S w:=2.54554 \mathrm{kip} \quad T F:=R t+S w=244.91 \mathrm{kip}
$$

Right bearing wall

$$
b:=60 \mathrm{ft}+6 \mathrm{in} \quad l:=(31 \mathrm{ft}+8 \mathrm{in})+(25 \mathrm{ft}+8 \mathrm{in})
$$

Vertical load
Truss $:=55.76$ psf SWtruss $:=\frac{15}{2}$ kip $+\frac{34.8}{2}$ kip Beam $:=2075$ plf
Roof $:=\frac{(\text { Truss } \cdot 120 \mathrm{ft} \cdot 65 \mathrm{ft})}{2}=217.464 \mathrm{kip} \quad$ CverticalW $:=$ Beam $\cdot b=125.538 \mathrm{kip}$
$R t:=$ Roof + SWtruss $=242.364$ kip \quad CverticalB $:=$ Beam $\cdot l=118.967$ kip
CverticalT $:=$ CverticalB + Cvertical $W=244.504$ kip \quad CverticalT $>R t=1$

Total force into foundation

$$
S w:=2.6796 \text { kip } \quad T F:=R t+S w=245.044 \text { kip }
$$

Hurricane Region

$\stackrel{\stackrel{\rightharpoonup}{i}}{\text { i }}$
$\stackrel{ᄃ}{\sigma}$

Appendix C - Foundation Calculations

Soil/Foundation Information:

Frost Penetration Depth:

Figure 1809-2 Frost penetration depths.

Soil Data: (From U.S. Department of Aariculture Soil Conservation Services)

USCS Soil-class	Description	Cohesion (kPa)	Friction angle (${ }^{\circ}$)
GW	well-graded gravel, fine to coarse gravel	0	40
GP	poorly graded gravel	0	38
GM	silty gravel	0	36
GC	clayey gravel	0	34
GM-GL	silty gravel	0	35
GC-CL	clayey gravel with many fines	3	29
SW	well-graded sand, fine to coarse sand	0	38
SP	poorly graded sand	0	36
SM	silty sand	0	34
SC	clayey sand	0	32
SM-SL	silty sand with many fines	0	34
SC-CL	clayey sand with many fines	5	28
ML	silt	0	33
CL	clay of low plasticity, lean clay	20	27
CH	clay of high plasticity, fat clay	25	22
OL	organic silt, organic clay	10	25
OH	organic clay, organic silt	10	22
MH	silt of high plasticity, elastic silt	5	24

Unified Soil Classification System (USCS)

Foundation Design

Lake View Community Center

Exterior Continuous Footing:

Loads:

$$
P_{1}:=71 \mathrm{kip} \quad V_{1}:=44.2 \mathrm{kip} \quad M_{1}:=V_{1} \cdot(4 \mathrm{ft})=176.8 \mathrm{kip} \cdot \mathrm{ft}
$$

Soil Parameters:

$$
L L_{i m p}:=100 p s f
$$

$c^{\prime}:=0$ psf $\quad c_{u}:=10 \mathrm{kPa}=1.45 \mathrm{psi} \phi^{\prime}:=30 \mathrm{deg} \quad E_{s}:=50 \mathrm{MPa}=\left(1.044 \cdot 10^{6}\right) \mathrm{psf}$

$$
\gamma_{s o i l}:=130 \text { pcf } \quad \gamma_{s a t}:=135 p c f \quad \gamma_{\text {fill }}:=120 \text { pcf } \quad \gamma_{w}:=62.4 \text { pcf } \quad \mu_{s}:=0.45
$$

Concrete Parameters:
$G W T:=14 \mathrm{ft}$

$$
\gamma_{c}:=150 p c f
$$

Footing Parameters:
Footing Depth:

$$
D_{\text {min }}:=60 \text { in }=5 \mathrm{ft} \quad D_{f}:=5 \mathrm{ft}+6 \mathrm{in}
$$

Footing Thickness:

$$
t_{f}:=12 \text { in }
$$

Fill Depth:

$$
D_{\text {fill }}:=D_{f}-t_{f}=4.5 \mathrm{ft}
$$

Slab Thickness:

$$
t_{\text {slab }}:=8 \text { in }
$$

Factors of Safety:

$$
F S_{q}:=3 \quad F S_{v}:=2 \quad F S_{T}:=2
$$

Foundation Design

Lake View Community Center

Bearing Capacity Analysis: (Vesic's Equations) - Exterior Footings

$$
\begin{array}{cc}
B:=6 \mathrm{ft}+6 \mathrm{in} & L:=120 \mathrm{ft} \\
A_{f}:=B \cdot L=780 \mathrm{ft}^{2} & \\
\hline e:=\frac{w_{f}:=t_{f} \cdot B \cdot \gamma_{c}=0.975 \frac{\mathrm{kip}}{\mathrm{ft}}}{} \begin{array}{l|l}
P_{1}-\left(P_{1} \cdot 1.5 \mathrm{ft}\right) \\
P_{1} & =0.99 \mathrm{ft}
\end{array} \leq \square & \frac{B}{6}=1.083 \mathrm{ft}
\end{array}
$$

Surcharge Load:

$$
q_{s}:=D_{f} \cdot \gamma_{f i l l}+\gamma_{c} \cdot 6 \text { in }+100 p s f=835 p s f
$$

Groundwater Effects:

$$
\begin{aligned}
& G W T=14 \mathrm{ft} \\
& D_{f}+B=12 \mathrm{ft}
\end{aligned}
$$

Because GWT is greater than Df+B, there are no groundwater effects on the net bearing pressure.

Bearing Capacity Factors:

$$
\begin{aligned}
& N_{q}:=e^{\pi \cdot \tan \left(\phi^{\prime}\right)} \cdot \tan \left(45 \operatorname{deg}+\frac{\phi^{\prime}}{2}\right)^{2}=18.401 \\
& N_{c}:=\frac{\left(N_{q}-1\right)}{\tan \left(\phi^{\prime}\right)}=30.14 \\
& N_{\gamma}:=2 \cdot\left(N_{q}+1\right) \cdot \tan \left(\phi^{\prime}\right)=22.402
\end{aligned}
$$

Modification Factors:
Shape Factors:

$$
\begin{gathered}
B^{\prime}:=B-2 \cdot e=4.52 f t \quad L^{\prime}:=L-2 \cdot e=118.02 \mathrm{ft} \\
s_{c}:=1+\left(\frac{B^{\prime}}{L^{\prime}}\right) \cdot\left(\frac{N_{q}}{N_{c}}\right)=1.023 \quad s_{\gamma}:=1-\left(0.4 \cdot\left(\frac{B^{\prime}}{L^{\prime}}\right)\right)=0.985 \\
s_{q}:=1+\left(\frac{B^{\prime}}{L^{\prime}}\right) \cdot \tan \left(\phi^{\prime}\right)=1.022
\end{gathered}
$$

Foundation Design

Lake View Community Center

Depth Factors:

$$
k:=\left(\frac{D_{f}}{B}\right)=0.846
$$

$$
\begin{aligned}
& d_{c}:=1+0.4 \cdot k=1.338 \\
& d_{q}:=1+2 \cdot k \cdot \tan \left(\phi^{\prime}\right) \cdot\left(1-\sin \left(\phi^{\prime}\right)\right)^{2}=1.244 \\
& d_{\gamma}:=1
\end{aligned}
$$

Load Inclination Factors:

$$
\begin{aligned}
m_{l}:=\frac{2+\frac{L}{B}}{1+\frac{L}{B}}=1.051 \quad m_{b}:=\frac{2+\frac{B}{L}}{1+\frac{B}{L}}=1.949 \quad m:=\sqrt{m_{l}{ }^{2}+m_{b}{ }^{2}}=2.214 \\
\quad c^{\prime}:=c_{u}=1.45 \mathrm{psi}
\end{aligned}
$$

$i_{c}:=1-\frac{m \cdot V_{1}}{A_{f} \cdot c^{\prime} \cdot N_{c}}=0.98$
$i_{q}:=\left(1-\frac{V_{1}}{P_{1}+\frac{A_{f} \cdot c^{\prime}}{\tan \left(\phi^{\prime}\right)}}\right)^{m}=0.744$
$i_{\gamma}:=\left(1-\frac{V_{1}}{P_{1}+\frac{A_{f} \cdot c^{\prime}}{\tan \left(\phi^{\prime}\right)}}\right)^{m+1}=0.651$
Base Inclination Factors:

$$
b_{c}:=1 \quad b_{q}:=1 \quad b_{\gamma}:=1
$$

Ground Inclination Factors:

$$
g_{c}:=1 \quad g_{q}:=1 \quad g_{\gamma}:=1
$$

Foundation Design

Lake View Community Center

Net Bearing Pressure:

$$
\begin{aligned}
& q_{n}:=c^{\prime} \cdot N_{c} \cdot\left(s_{c} \cdot d_{c} \cdot i_{c} \cdot b_{c} \cdot g_{c}\right)+q_{s} \cdot N_{q} \cdot\left(s_{q} \cdot d_{q} \cdot i_{q} \cdot b_{q} \cdot g_{q}\right)+0.5 \cdot B^{\prime} \cdot \gamma_{s o i l} \cdot N_{\gamma} \cdot\left(s_{\gamma} \cdot d_{\gamma} \cdot i_{\gamma} \cdot b_{\gamma} \cdot g_{\gamma}\right) \\
& q_{n}=188.893 p s i
\end{aligned} \begin{aligned}
& R e:=1-\sqrt{\frac{e}{f t}}=0.005 \quad q_{n^{\prime}}:=q_{n} \cdot(1-R e)=187.959 \mathrm{psi}
\end{aligned}
$$

Allowable Bearing Pressure:

$$
q_{a}:=\frac{q_{n^{\prime}}}{F S_{q}}=9.022 \mathrm{ksf}
$$

Actual Bearing Pressure:

$$
\begin{aligned}
& \quad q:=\frac{P_{1}}{A_{f}}+\gamma_{\text {fill }} \cdot D_{\text {fill }}+\gamma_{c} \cdot 6 \mathrm{in}+100 \mathrm{psf}+\gamma_{c} \cdot B=12.368 \mathrm{psi} \\
& w_{f}:=B \cdot L \cdot t_{f} \cdot \gamma_{c}=117 \mathrm{kip} \\
& q_{\text {min }}:=\frac{P_{1}+w_{f}}{B \cdot L} \cdot\left(1-\frac{6 \cdot e}{B}\right)=20.734 \mathrm{psf} \\
& q_{\text {max }}:=\frac{P_{1}+w_{f}}{B \cdot L} \cdot\left(1+\frac{6 \cdot e}{B}\right)=461.317 \mathrm{psf}
\end{aligned}
$$

Foundation Design

Lake View Community Center

Sliding Analysis:

$$
A_{f}:=B \cdot L=780 \mathrm{ft}^{2} \quad V_{1}=44.2 \mathrm{kip}
$$

Assume:

$$
F S_{v}:=2 \quad c^{\prime}:=c_{u} \quad w_{f}:=\gamma_{c} \cdot t_{f} \cdot A_{f}=117 \text { kip }
$$

Calculations:
Neglect Active Pressure: *Cohesive Soil

$$
V_{\text {slide }}:=V_{1}=44.2 \mathrm{kip}
$$

$F_{\text {max }}:=\left(P_{1}+w_{f}\right) \cdot \tan \left(\phi^{\prime}\right)+0.5 \cdot c^{\prime} \cdot A_{f}=189.995$ kip
$P_{p}:=0.5 \cdot \tan \left(45 \mathrm{deg}+\frac{\phi^{\prime}}{2}\right)^{2} \cdot \gamma_{\text {fill }} \cdot B \cdot D_{f}{ }^{2}=35.393 \mathrm{kip}$
$V_{n}:=F_{\max }+0.5 \cdot P_{p}=207.691 \mathrm{kip}$

$$
F S_{v}:=\frac{V_{n}}{V_{\text {slide }}}=4.699
$$

Settlement Analysis:

$$
\begin{aligned}
& H:=5 \cdot B=32.5 \mathrm{ft} \\
& A_{f}:=B \cdot L=780 \mathrm{ft}^{2}
\end{aligned}
$$

Bowles Method:

$$
\begin{aligned}
& \alpha:=4 \quad B^{\prime}:=\frac{B}{2} \quad L^{\prime}:=\frac{L}{2} \quad M:=\frac{L^{\prime}}{B^{\prime}}=18.462 \quad N:=\frac{H}{B^{\prime}}=10 \\
& I_{1}:=\frac{1}{\pi} \cdot\left(\left(M \cdot \ln \left(\frac{\left(1+\sqrt{M^{2}+1}\right) \cdot \sqrt{M^{2}+N^{2}}}{M \cdot\left(1+\sqrt{M^{2}+N^{2}+1}\right)}\right)\right)+\ln \left(\frac{\left(M+\sqrt{M^{2}+1}\right) \cdot \sqrt{1+N^{2}}}{M+\sqrt{M^{2}+N^{2}+1}}\right)\right)=0.752 \\
& I_{2}:=\frac{N}{2 \cdot \pi} \cdot\left(\operatorname{atan}\left(\frac{M}{N \cdot \sqrt{M^{2}+N^{2}+1}}\right)\right)=0.139 \\
& I_{s}:=I_{1}+\left(\frac{1-2 \cdot \mu_{s}}{1-\mu_{s}}\right) \cdot I_{2}=0.777 \\
& I_{f}:=1 \\
& \text { Final Settlement Calculations: } \\
& \quad q_{\text {net }}:=q-\gamma_{\text {fill }} \cdot D_{f}=7.785 \text { psi } \\
& \delta_{\text {flex }}:=\alpha \cdot I_{s} \cdot I_{f} \cdot\left(\frac{q_{\text {net }} \cdot\left(1-\mu_{s}^{2}\right)}{E_{s}}\right) \cdot B^{\prime}=0.104 \text { in } \\
& \delta_{\text {rigid } 4}:=0.93 \cdot \delta_{\text {flex }}=0.097 \text { in }
\end{aligned}
$$

Because the rigid settlement is less than 0.5 in . the design works.

Foundation Design

Lake View Community Center

Interior Continuous Footing:

Loads:

$$
P_{1}:=246 \text { kip } \quad L L_{i m p}:=100 \text { psf }
$$

Soil Parameters:

$$
\begin{aligned}
& c^{\prime}:=p s f \quad c_{u}:=10 \mathrm{kPa}=1.45 \mathrm{psi} \phi^{\prime}:=30 \mathrm{deg} \quad E_{s}:=50 \mathrm{MPa}=\left(1.044 \cdot 10^{6}\right) \text { psf } \\
& \gamma_{\text {soil }}:=130 \text { pcf } \quad \gamma_{s a t}:=135 \mathrm{pcf} \quad \gamma_{\text {fill }}:=120 \text { pcf } \quad \gamma_{w}:=62.4 \text { pcf } \quad \mu_{s}:=0.45
\end{aligned}
$$

Concrete Parameters:
$G W T:=14 \mathrm{ft}$

$$
\gamma_{c}:=150 p c f
$$

Footing Parameters:
Footing Depth:

$$
D_{\min }:=60 \text { in }=5 \mathrm{ft} \quad D_{f}:=5 \mathrm{ft}+6 \mathrm{in}
$$

Footing Thickness:

$$
t_{f}:=12 \text { in }
$$

Fill Depth:

$$
D_{\text {fill }}:=D_{f}-t_{f}=4.5 \mathrm{ft}
$$

Slab Thickness:

$$
t_{\text {slab }}:=8 \text { in }
$$

Factors of Safety:

$$
F S_{q}:=3 \quad F S_{v}:=2 \quad F S_{T}:=2
$$

Foundation Design

Lake View Community Center

Bearing Capacity Analysis: (Vesic's Equations) - Exterior Footings

$$
\begin{array}{cl}
B:=2 \mathrm{ft}+0 \mathrm{in} & L:=120 \mathrm{ft} \\
A_{f}:=B \cdot L=240 \mathrm{ft}^{2} & w_{f}:=t_{f} \cdot B \cdot \gamma_{c}=0.3 \frac{\mathrm{kip}}{\mathrm{ft}}
\end{array}
$$

Surcharge Load:

$$
q_{s}:=D_{f} \cdot \gamma_{f i l l}+\gamma_{c} \cdot 6 \text { in }+20 p s f=755 p s f
$$

Groundwater Effects:

$$
\begin{aligned}
& G W T=14 \mathrm{ft} \\
& D_{f}+B=7.5 \mathrm{ft}
\end{aligned}
$$

Because GWT is greater than Df+B, there are no groundwater effects on the net bearing pressure.

Bearing Capacity Factors:

$$
\begin{aligned}
& N_{q}:=e^{\pi \cdot \tan \left(\phi^{\prime}\right)} \cdot \tan \left(45 \operatorname{deg}+\frac{\phi^{\prime}}{2}\right)^{2}=18.401 \\
& N_{c}:=\frac{\left(N_{q}-1\right)}{\tan \left(\phi^{\prime}\right)}=30.14 \\
& N_{\gamma}:=2 \cdot\left(N_{q}+1\right) \cdot \tan \left(\phi^{\prime}\right)=22.402
\end{aligned}
$$

Modification Factors:
Shape Factors:

$$
\begin{aligned}
& s_{c}:=1+\left(\frac{B}{L}\right) \cdot\left(\frac{N_{q}}{N_{c}}\right)=1.01 \quad s_{\gamma}:=1-\left(0.4 \cdot\left(\frac{B}{L}\right)\right)=0.993 \\
& s_{q}:=1+\left(\frac{B}{L}\right) \cdot \tan \left(\phi^{\prime}\right)=1.01
\end{aligned}
$$

Foundation Design

Lake View Community Center

Depth Factors:

$$
k:=\operatorname{atan}\left(\frac{D_{f}}{B}\right)=1.222
$$

$$
\begin{aligned}
& d_{c}:=1+0.4 \cdot k=1.489 \\
& d_{q}:=1+2 \cdot k \cdot \tan \left(\phi^{\prime}\right) \cdot\left(1-\sin \left(\phi^{\prime}\right)\right)^{2}=1.353 \\
& d_{\gamma}:=1
\end{aligned}
$$

Load Inclination Factors:

$$
\begin{aligned}
& m_{l}:=\frac{2+\frac{L}{B}}{1+\frac{L}{B}}=1.016 \quad m_{b}:=\frac{2+\frac{B}{L}}{1+\frac{B}{L}}=1.984 \\
& i_{q}:=1 \quad i_{\gamma}:=1
\end{aligned}
$$

Base Inclination Factors:

$$
b_{c}:=1 \quad b_{q}:=1 \quad b_{\gamma}:=1
$$

Ground Inclination Factors:

$$
g_{c}:=1 \quad g_{q}:=1 \quad g_{\gamma}:=1
$$

Foundation Design

Lake View Community Center

Net Bearing Pressure:

$$
\begin{gathered}
q_{n}:=c^{\prime} \cdot N_{c} \cdot\left(s_{c} \cdot d_{c} \cdot i_{c} \cdot b_{c} \cdot g_{c}\right)+q_{s} \cdot N_{q} \cdot\left(s_{q} \cdot d_{q} \cdot i_{q} \cdot b_{q} \cdot g_{q}\right)+0.5 \cdot B \cdot \gamma_{s o i l} \cdot N_{\gamma} \cdot\left(s_{\gamma} \cdot d_{\gamma} \cdot i_{\gamma} \cdot b_{\gamma} \cdot g_{\gamma}\right) \\
q_{n}=152.173 p s i
\end{gathered}
$$

Allowable Bearing Pressure:

$$
q_{a}:=\frac{q_{n}}{F S_{q}}=50.724 \mathrm{psi}
$$

Actual Bearing Pressure:

$$
\begin{aligned}
& q:=\frac{P_{1}}{A_{f}}+\gamma_{f i l l} \cdot D_{f i l l}+\gamma_{c} \cdot 6 \text { in }+100 p s f+\gamma_{c} \cdot B=14.167 \text { psi } \\
& \quad \gamma_{\text {soil }} \cdot D_{f}=4.965 p s i
\end{aligned}
$$

Foundation Design

Lake View Community Center

Sliding Analysis:

$$
A_{f}:=B \cdot L=240 \mathrm{ft}^{2} \quad V_{1}=? \mathrm{kip}
$$

Assume:

$$
F S_{v}:=2 \quad c^{\prime}:=c_{u} \quad w_{f}:=\gamma_{c} \cdot t_{f} \cdot A_{f}=36 \mathrm{kip}
$$

Calculations:

Neglect Active Pressure: *Cohesive Soil

$$
\begin{aligned}
& \quad V_{\text {slide }}:=V_{1}=? \mathrm{kip} \\
& F_{\text {max }}:=\left(P_{1}+w_{f}\right) \cdot \tan \left(\phi^{\prime}\right)+0.5 \cdot \mathrm{c}^{\prime} \cdot A_{f}=187.875 \mathrm{kip} \\
& P_{p}:=0.5 \cdot \tan \left(45 \mathrm{deg}+\frac{\phi^{\prime}}{2}\right)^{2} \cdot \gamma_{\text {fill }} \cdot B \cdot D_{f}{ }^{2}=10.89 \mathrm{kip} \\
& V_{n}:=F_{\max }+0.5 \cdot P_{p}=193.32 \mathrm{kip}
\end{aligned}
$$

$$
F S_{v}:=\frac{V_{n}}{\sqrt[V_{\text {slide }}]{ }}=?
$$

Settlement Analysis:

$$
\begin{aligned}
& H:=5 \cdot B=10 \mathrm{ft} \\
& A_{f}:=B \cdot L=240 \mathrm{ft}^{2}
\end{aligned}
$$

Bowles Method:

$$
\begin{aligned}
& \alpha:=4 \quad B^{\prime}:=\frac{B}{2} \quad L^{\prime}:=\frac{L}{2} \quad M:=\frac{L^{\prime}}{B^{\prime}}=60 \quad N:=\frac{H}{B^{\prime}}=10 \\
& \left.I_{1}:=\frac{1}{\pi} \cdot\left(\left(M \cdot \ln \left(\frac{\left(1+\sqrt{M^{2}+1}\right) \cdot \sqrt{M^{2}+N^{2}}}{M \cdot\left(1+\sqrt{M^{2}+N^{2}+1}\right.}\right)\right)\right)+\ln \left(\frac{\left(M+\sqrt{M^{2}+1}\right) \cdot \sqrt{1+N^{2}}}{M+\sqrt{M^{2}+N^{2}+1}}\right)\right)=0.737 \\
& I_{2}:=\frac{N}{2 \cdot \pi} \cdot\left(\operatorname{atan}\left(\frac{M}{N \cdot \sqrt{M^{2}+N^{2}+1}}\right)\right)=0.156 \\
& I_{s}:=I_{1}+\left(\frac{1-2 \cdot \mu_{s}}{1-\mu_{s}}\right) \cdot I_{2}=0.765 \\
& I_{f}:=1 \\
& \text { Final Settlement Calculations: } \\
& q_{\text {net }}:=q-\gamma_{\text {fill }} \cdot D_{f}=9.583 \text { psi } \\
& \delta_{\text {flex }}:=\alpha \cdot I_{s} \cdot I_{f} \cdot\left(\frac{q_{\text {net }} \cdot\left(1-\mu_{s}^{2}\right)}{E_{s}}\right) \cdot B^{\prime}=0.039 \text { in } \\
& \delta_{\text {rigid } 4}:=0.93 \cdot \delta_{\text {flex }}=0.036 \text { in }
\end{aligned}
$$

Because the rigid settlement is less than 0.5 in. the design works.

Foundation Design

Lake View Community Center

North Garage Exterior Continuous Footing:

Loads:

$$
P_{1}:=18 \mathrm{kip} \quad V_{1}:=7.1 \mathrm{kip} \quad M_{1}:=V_{1} \cdot(4 \mathrm{ft})=28.4 \mathrm{kip} \cdot \mathrm{ft}
$$

Soil Parameters:

$$
L L_{i m p}:=100 p s f
$$

$$
\begin{aligned}
& c^{\prime}:=0 p_{s f f_{u}}:=10 \mathrm{kPa}=1.45 \mathrm{psi} \phi^{\prime}:=30 \mathrm{deg} \quad E_{s}:=50 \mathrm{MPa}=\left(1.044 \cdot 10^{6}\right) \mathrm{psf} \\
& \gamma_{\text {soil }}:=130 \mathrm{pcf} \quad \gamma_{s a t}:=135 \mathrm{pcf} \quad \gamma_{\text {fill }}:=120 \mathrm{pcf} \quad \gamma_{w}:=62.4 \mathrm{pcf} \quad \mu_{s}:=0.45
\end{aligned}
$$

Concrete Parameters:
$G W T:=14 \mathrm{ft}$

$$
\gamma_{c}:=150 p c f
$$

Footing Parameters:
Footing Depth:

$$
D_{\min }:=60 \text { in }=5 \mathrm{ft} \quad D_{f}:=5 \mathrm{ft}+6 \mathrm{in}
$$

Footing Thickness:

$$
t_{f}:=12 \text { in }
$$

Fill Depth:

$$
D_{\text {fill }}:=D_{f}-t_{f}=4.5 \mathrm{ft}
$$

Slab Thickness:

$$
t_{\text {slab }}:=8 \text { in }
$$

Factors of Safety:

$$
F S_{q}:=3 \quad F S_{v}:=2 \quad F S_{T}:=2
$$

Foundation Design

Lake View Community Center

Bearing Capacity Analysis: (Vesic's Equations) - Exterior Footings

$$
\begin{array}{cc|c}
B:=3 \mathrm{ft}+6 \mathrm{in} & L:=25 \mathrm{ft} \\
A_{f}:=B \cdot L=87.5 \mathrm{ft}^{2} & & w_{f}:=t_{f} \cdot B \cdot \gamma_{c}=0.525 \frac{\mathrm{kip}}{\mathrm{ft}} \\
e:=\frac{M_{1}-\left(P_{1} \cdot 1 \mathrm{ft}\right)}{P_{1}}=0.578 \mathrm{ft} & \leq \square & \frac{B}{6}=0.583 \mathrm{ft}
\end{array}
$$

Surcharge Load:

$$
q_{s}:=D_{f} \cdot \gamma_{\text {fill }}+\gamma_{c} \cdot 6 \text { in }+100 p s f=835 p s f
$$

Groundwater Effects:

$$
\begin{aligned}
& G W T=14 \mathrm{ft} \\
& D_{f}+B=9 \mathrm{ft}
\end{aligned}
$$

Because GWT is greater than Df+B, there are no groundwater effects on the net bearing pressure.

Bearing Capacity Factors:

$$
\begin{aligned}
& N_{q}:=e^{\pi \cdot \tan \left(\phi^{\prime}\right)} \cdot \tan \left(45 \mathrm{deg}+\frac{\phi^{\prime}}{2}\right)^{2}=18.401 \\
& N_{c}:=\frac{\left(N_{q}-1\right)}{\tan \left(\phi^{\prime}\right)}=30.14 \\
& N_{\gamma}:=2 \cdot\left(N_{q}+1\right) \cdot \tan \left(\phi^{\prime}\right)=22.402
\end{aligned}
$$

Modification Factors:
Shape Factors:

$$
\begin{gathered}
B^{\prime}:=B-2 \cdot e=2.344 \mathrm{ft} \quad L^{\prime}:=L-2 \cdot e=23.844 \mathrm{ft} \\
s_{c}:=1+\left(\frac{B^{\prime}}{L^{\prime}}\right) \cdot\left(\frac{N_{q}}{N_{c}}\right)=1.06 \quad s_{\gamma}:=1-\left(0.4 \cdot\left(\frac{B^{\prime}}{L^{\prime}}\right)\right)=0.961 \\
s_{q}:=1+\left(\frac{B^{\prime}}{L^{\prime}}\right) \cdot \tan \left(\phi^{\prime}\right)=1.057
\end{gathered}
$$

Foundation Design

Lake View Community Center

Depth Factors:

$$
k:=\left(\frac{D_{f}}{B}\right)=1.571
$$

$$
\begin{aligned}
& d_{c}:=1+0.4 \cdot k=1.629 \\
& d_{q}:=1+2 \cdot k \cdot \tan \left(\phi^{\prime}\right) \cdot\left(1-\sin \left(\phi^{\prime}\right)\right)^{2}=1.454 \\
& d_{\gamma}:=1
\end{aligned}
$$

Load Inclination Factors:

$$
\begin{aligned}
& m_{l}:=\frac{2+\frac{L}{B}}{1+\frac{L}{B}} 1.123 \quad m_{b}:=\frac{2+\frac{B}{L}}{1+\frac{B}{L}}=1.877 \quad m:=\sqrt{m_{l}{ }^{2}+m_{b}{ }^{2}}=2.187 \\
& c^{\prime}:=c_{u}=1.45 \mathrm{psi}
\end{aligned}
$$

$i_{c}:=1-\frac{m \cdot V_{1}}{A_{f} \cdot c^{\prime} \cdot N_{c}}=0.972$
$i_{q}:=\left(1-\frac{V_{1}}{P_{1}+\frac{A_{f} \cdot c^{\prime}}{\tan \left(\phi^{\prime}\right)}}\right)^{m}=0.714$
$i_{\gamma}:=\left(1-\frac{V_{1}}{P_{1}+\frac{A_{f} \cdot c^{\prime}}{\tan \left(\phi^{\prime}\right)}}\right)^{m+1}=0.612$
Base Inclination Factors:

$$
b_{c}:=1 \quad b_{q}:=1 \quad b_{\gamma}:=1
$$

Ground Inclination Factors:

$$
g_{c}:=1 \quad g_{q}:=1 \quad g_{\gamma}:=1
$$

Foundation Design

Lake View Community Center

Net Bearing Pressure:

$$
\begin{aligned}
& q_{n}:=c^{\prime} \cdot N_{c} \cdot\left(s_{c} \cdot d_{c} \cdot i_{c} \cdot b_{c} \cdot g_{c}\right)+q_{s} \cdot N_{q} \cdot\left(s_{q} \cdot d_{q} \cdot i_{q} \cdot b_{q} \cdot g_{q}\right)+0.5 \cdot B^{\prime} \cdot \gamma_{s o i l} \cdot N_{\gamma} \cdot\left(s_{\gamma} \cdot d_{\gamma} \cdot i_{\gamma} \cdot b_{\gamma} \cdot g_{\gamma}\right) \\
& q_{n}=204.218 p s i
\end{aligned} \begin{aligned}
& \text { Re:=1- } \sqrt{\frac{e}{f t}}=0.24 \quad q_{n^{\prime}}:=q_{n} \cdot(1-R e)=155.229 \mathrm{psi}
\end{aligned}
$$

Allowable Bearing Pressure:

$$
q_{a}:=\frac{q_{n^{\prime}}}{F S_{q}}=51.743 \mathrm{psi}
$$

Actual Bearing Pressure:

$$
\begin{aligned}
& \quad q:=\frac{P_{1}}{A_{f}}+\gamma_{f i l l} \cdot D_{f i l l}+\gamma_{c} \cdot 6 \text { in }+100 \mathrm{psf}+\gamma_{c} \cdot B=10.04 \mathrm{psi} \\
& w_{f}:=B \cdot L \cdot t_{f} \cdot \gamma_{c}=13.125 \mathrm{kip} \\
& q_{\text {min }}:=\frac{P_{1}+w_{f}}{B \cdot L} \cdot\left(1-\frac{6 \cdot e}{B}\right)=3.388 \mathrm{psf} \\
& q_{\text {max }}:=\frac{P_{1}+w_{f}}{B \cdot L} \cdot\left(1+\frac{6 \cdot e}{B}\right)=708.041 \mathrm{psf}
\end{aligned}
$$

Foundation Design

Lake View Community Center

Sliding Analysis:

$$
A_{f}:=B \cdot L=87.5 \mathrm{ft}^{2} \quad V_{1}=7.1 \mathrm{kip}
$$

Assume:

$$
F S_{v}:=2 \quad c^{\prime}:=c_{u} \quad w_{f}:=\gamma_{c} \cdot t_{f} \cdot A_{f}=13.125 \mathrm{kip}
$$

Calculations:

Neglect Active Pressure: *Cohesive Soil

$$
V_{\text {slide }}:=V_{1}=7.1 \mathrm{kip}
$$

$$
F_{\max }:=\left(P_{1}+w_{f}\right) \cdot \tan \left(\phi^{\prime}\right)+0.5 \cdot c^{\prime} \cdot A_{f}=27.107 \mathrm{kip}
$$

$$
P_{p}:=0.5 \cdot \tan \left(45 \mathrm{deg}+\frac{\phi^{\prime}}{2}\right)^{2} \cdot \gamma_{f i l l} \cdot B \cdot D_{f}{ }^{2}=19.058 \mathrm{kip}
$$

$$
V_{n}:=F_{\max }+0.5 \cdot P_{p}=36.636 \mathrm{kip}
$$

$$
F S_{v}:=\frac{V_{n}}{V_{\text {slide }}}=5.16
$$

Settlement Analysis:

$$
\begin{aligned}
& H:=5 \cdot B=17.5 \mathrm{ft} \\
& A_{f}:=B \cdot L=87.5 \mathrm{ft}^{2}
\end{aligned}
$$

Bowles Method:

$$
\begin{aligned}
& \alpha:=4 \quad B^{\prime}:=\frac{B}{2} \quad L^{\prime}:=\frac{L}{2} \quad M:=\frac{L^{\prime}}{B^{\prime}}=7.143 \quad N:=\frac{H}{B^{\prime}}=10 \\
& I_{1}:=\frac{1}{\pi} \cdot\left(\left(M \cdot \ln \left(\frac{\left(1+\sqrt{M^{2}+1}\right) \cdot \sqrt{M^{2}+N^{2}}}{M \cdot\left(1+\sqrt{M^{2}+N^{2}+1}\right)}\right)\right)+\ln \left(\frac{\left(M+\sqrt{M^{2}+1}\right) \cdot \sqrt{1+N^{2}}}{M+\sqrt{M^{2}+N^{2}+1}}\right)\right)=0.77 \\
& I_{2}:=\frac{N}{2 \cdot \pi} \cdot\left(\operatorname{atan}\left(\frac{M}{N \cdot \sqrt{M^{2}+N^{2}+1}}\right)\right)=0.092 \\
& I_{s}:=I_{1}+\left(\frac{1-2 \cdot \mu_{s}}{1-\mu_{s}}\right) \cdot I_{2}=0.787 \\
& I_{f}:=1 \\
& \text { Final Settlement Calculations: } \\
& \quad q_{\text {net }}:=q-\gamma_{\text {fill }} \cdot D_{f}=5.456 \text { psi } \\
& \delta_{\text {flex }}:=\alpha \cdot I_{s} \cdot I_{f} \cdot\left(\frac{q_{\text {net }} \cdot\left(1-\mu_{s}^{2}\right)}{E_{s}}\right) \cdot B^{\prime}=0.04 \text { in } \\
& \delta_{\text {rigid4 }}:=0.93 \cdot \delta_{\text {flex }}=0.037 \text { in }
\end{aligned}
$$

Because the rigid settlement is less than 0.5 in . the design works.

Foundation Design

Lake View Community Center

West Garage Exterior Continuous Footing:

Loads:

$$
P_{1}:=35 \mathrm{kip} \quad V_{1}:=14.25 \mathrm{kip} \quad M_{1}:=V_{1} \cdot(4 \mathrm{ft})=57 \mathrm{kip} \cdot \mathrm{ft}
$$

Soil Parameters:

$$
L L_{i m p}:=100 p s f
$$

$$
\begin{aligned}
& c^{\prime}:=0 p^{\prime} f_{u}:=10 \mathrm{kPa}=1.45 \mathrm{psi} \phi^{\prime}:=30 \mathrm{deg} \quad E_{s}:=50 \mathrm{MPa}=\left(1.044 \cdot 10^{6}\right) p s f \\
& \gamma_{\text {soil }}:=130 \mathrm{pcf} \quad \gamma_{s a t}:=135 \mathrm{pcf} \quad \gamma_{\text {fill }}:=120 \mathrm{pcf} \quad \gamma_{w}:=62.4 \mathrm{pcf} \quad \mu_{s}:=0.45
\end{aligned}
$$

Concrete Parameters:
$G W T:=14 \mathrm{ft}$

$$
\gamma_{c}:=150 p c f
$$

Footing Parameters:
Footing Depth:

$$
D_{\min }:=60 \text { in }=5 \mathrm{ft} \quad D_{f}:=5 \mathrm{ft}+6 \mathrm{in}
$$

Footing Thickness:

$$
t_{f}:=12 \text { in }
$$

Fill Depth:

$$
D_{\text {fill }}:=D_{f}-t_{f}=4.5 \mathrm{ft}
$$

Slab Thickness:

$$
t_{\text {slab }}:=8 \text { in }
$$

Factors of Safety:

$$
F S_{q}:=3 \quad F S_{v}:=2 \quad F S_{T}:=2
$$

Foundation Design

Lake View Community Center

Bearing Capacity Analysis: (Vesic's Equations) - Exterior Footings

$$
\begin{aligned}
& B:=4 \mathrm{ft}+0 \mathrm{in} \quad L:=50 \mathrm{ft} \\
& A_{f}:=B \cdot L=200 \mathrm{ft}^{2} \quad w_{f}:=t_{f} \cdot B \cdot \gamma_{c}=0.6 \frac{\mathrm{kip}}{\mathrm{ft}} \\
& e:=\frac{M_{1}-\left(P_{1} \cdot 1 \mathrm{ft}\right)}{P_{1}}=0.629 \mathrm{ft} \quad \square \leq \square \quad \frac{B}{6}=0.667 \mathrm{ft}
\end{aligned}
$$

Surcharge Load:

$$
q_{s}:=D_{f} \cdot \gamma_{f i l l}+\gamma_{c} \cdot 6 \text { in }+100 p s f=835 p s f
$$

Groundwater Effects:

$$
\begin{aligned}
& G W T=14 \mathrm{ft} \\
& D_{f}+B=9.5 \mathrm{ft}
\end{aligned}
$$

Because GWT is greater than Df+B, there are no groundwater effects on the net bearing pressure.

Bearing Capacity Factors:

$$
\begin{aligned}
& N_{q}:=e^{\pi \cdot \tan \left(\phi^{\prime}\right)} \cdot \tan \left(45 \operatorname{deg}+\frac{\phi^{\prime}}{2}\right)^{2}=18.401 \\
& N_{c}:=\frac{\left(N_{q}-1\right)}{\tan \left(\phi^{\prime}\right)}=30.14 \\
& N_{\gamma}:=2 \cdot\left(N_{q}+1\right) \cdot \tan \left(\phi^{\prime}\right)=22.402
\end{aligned}
$$

Modification Factors:
Shape Factors:

$$
\begin{gathered}
B^{\prime}:=B-2 \cdot e=2.743 \mathrm{ft} \quad L^{\prime}:=L-2 \cdot e=48.743 \mathrm{ft} \\
s_{c}:=1+\left(\frac{B^{\prime}}{L^{\prime}}\right) \cdot\left(\frac{N_{q}}{N_{c}}\right)=1.034 \quad \quad s_{\gamma}:=1-\left(0.4 \cdot\left(\frac{B^{\prime}}{L^{\prime}}\right)\right)=0.977 \\
s_{q}:=1+\left(\frac{B^{\prime}}{L^{\prime}}\right) \cdot \tan \left(\phi^{\prime}\right)=1.032
\end{gathered}
$$

Foundation Design

Lake View Community Center

Depth Factors:

$$
k:=\left(\frac{D_{f}}{B}\right)=1.375
$$

$$
\begin{aligned}
& d_{c}:=1+0.4 \cdot k=1.55 \\
& d_{q}:=1+2 \cdot k \cdot \tan \left(\phi^{\prime}\right) \cdot\left(1-\sin \left(\phi^{\prime}\right)\right)^{2}=1.397 \\
& d_{\gamma}:=1
\end{aligned}
$$

Load Inclination Factors:

$$
m_{l}:=\frac{2+\frac{L}{B}}{1+\frac{L}{B}}=1.074 \quad m_{b}:=\frac{2+\frac{B}{L}}{1+\frac{B}{L}}=1.926 \quad m:=\sqrt{m_{l}^{2}+m_{b}^{2}}=2.205
$$

$i_{c}:=1-\frac{m \cdot V_{1}}{A_{f} \cdot c^{\prime} \cdot N_{c}}=0.975$

$$
c^{\prime}:=c_{u}=1.45 \mathrm{psi}
$$

$i_{q}:=\left(1-\frac{V_{1}}{P_{1}+\frac{A_{f} \cdot c^{\prime}}{\tan \left(\phi^{\prime}\right)}}\right)^{m}=0.73$

$$
i_{\gamma}:=\left(1-\frac{V_{1}}{P_{1}+\frac{A_{f} \cdot c^{\prime}}{\tan \left(\phi^{\prime}\right)}}\right)^{m+1}=0.634
$$

Base Inclination Factors:

$$
b_{c}:=1 \quad b_{q}:=1 \quad b_{\gamma}:=1
$$

Ground Inclination Factors:

$$
g_{c}:=1 \quad g_{q}:=1 \quad g_{\gamma}:=1
$$

Foundation Design

Lake View Community Center

Net Bearing Pressure:

$$
\begin{aligned}
& q_{n}:=c^{\prime} \cdot N_{c} \cdot\left(s_{c} \cdot d_{c} \cdot i_{c} \cdot b_{c} \cdot g_{c}\right)+q_{s} \cdot N_{q} \cdot\left(s_{q} \cdot d_{q} \cdot i_{q} \cdot b_{q} \cdot g_{q}\right)+0.5 \cdot B^{\prime} \cdot \gamma_{s o i l} \cdot N_{\gamma} \cdot\left(s_{\gamma} \cdot d_{\gamma} \cdot i_{\gamma} \cdot b_{\gamma} \cdot g_{\gamma}\right) \\
& q_{n}=197.927 p s i
\end{aligned} \begin{aligned}
& R e:=1-\sqrt{\frac{e}{f t}}=0.207 \quad q_{n^{\prime}}:=q_{n} \cdot(1-R e)=156.922 p s i
\end{aligned}
$$

Allowable Bearing Pressure:

$$
q_{a}:=\frac{q_{n^{\prime}}}{F S_{q}}=52.307 \mathrm{psi}
$$

Actual Bearing Pressure:

$$
\begin{aligned}
& \quad q:=\frac{P_{1}}{A_{f}}+\gamma_{\text {fill }} \cdot D_{\text {fill }}+\gamma_{c} \cdot 6 \text { in }+100 \mathrm{psf}+\gamma_{c} \cdot B=10.347 \mathrm{psi} \\
& w_{f}:=B \cdot L \cdot t_{f} \cdot \gamma_{c}=30 \mathrm{kip} \\
& q_{\min }:=\frac{P_{1}+w_{f}}{B \cdot L} \cdot\left(1-\frac{6 \cdot e}{B}\right)=18.571 \mathrm{psf} \\
& q_{\text {max }}:=\frac{P_{1}+w_{f}}{B \cdot L} \cdot\left(1+\frac{6 \cdot e}{B}\right)=631.429 \mathrm{psf}
\end{aligned}
$$

Foundation Design

Lake View Community Center

Sliding Analysis:

$$
A_{f}:=B \cdot L=200 \mathrm{ft}^{2} \quad V_{1}=14.25 \mathrm{kip}
$$

Assume:

$$
F S_{v}:=2 \quad c^{\prime}:=c_{u} \quad w_{f}:=\gamma_{c} \cdot t_{f} \cdot A_{f}=30 \mathrm{kip}
$$

Calculations:
Neglect Active Pressure: *Cohesive Soil

$$
V_{\text {slide }}:=V_{1}=14.25 \mathrm{kip}
$$

$$
F_{\max }:=\left(P_{1}+w_{f}\right) \cdot \tan \left(\phi^{\prime}\right)+0.5 \cdot c^{\prime} \cdot A_{f}=58.413 \mathrm{kip}
$$

$$
P_{p}:=0.5 \cdot \tan \left(45 \mathrm{deg}+\frac{\phi^{\prime}}{2}\right)^{2} \cdot \gamma_{f i l l} \cdot B \cdot D_{f}^{2}=21.78 \mathrm{kip}
$$

$$
V_{n}:=F_{\max }+0.5 \cdot P_{p}=69.303 \mathrm{kip}
$$

$$
F S_{v}:=\frac{V_{n}}{V_{\text {slide }}}=4.863
$$

Settlement Analysis:

$$
\begin{aligned}
& H:=5 \cdot B=20 \mathrm{ft} \\
& A_{f}:=B \cdot L=200 \mathrm{ft}^{2}
\end{aligned}
$$

Bowles Method:

$$
\begin{aligned}
& \alpha:=4 \quad B^{\prime}:=\frac{B}{2} \quad L^{\prime}:=\frac{L}{2} \quad M:=\frac{L^{\prime}}{B^{\prime}}=12.5 \quad N:=\frac{H}{B^{\prime}}=10 \\
& \left.I_{1}:=\frac{1}{\pi} \cdot\left(\left(M \cdot \ln \left(\frac{\left(1+\sqrt{M^{2}+1}\right) \cdot \sqrt{M^{2}+N^{2}}}{M \cdot\left(1+\sqrt{M^{2}+N^{2}+1}\right.}\right)\right)\right)+\ln \left(\frac{\left(M+\sqrt{M^{2}+1}\right) \cdot \sqrt{1+N^{2}}}{M+\sqrt{M^{2}+N^{2}+1}}\right)\right)=0.762 \\
& I_{2}:=\frac{N}{2 \cdot \pi} \cdot\left(\operatorname{atan}\left(\frac{M}{N \cdot \sqrt{M^{2}+N^{2}+1}}\right)\right)=0.124 \\
& I_{s}:=I_{1}+\left(\frac{1-2 \cdot \mu_{s}}{1-\mu_{s}}\right) \cdot I_{2}=0.785 \\
& I_{f}:=1 \\
& \text { Final Settlement Calculations: } \\
& q_{\text {net }}:=q-\gamma_{\text {fill }} \cdot D_{f}=5.764 \text { psi } \\
& \delta_{\text {flex }}:=\alpha \cdot I_{s} \cdot I_{f} \cdot\left(\frac{q_{\text {net }} \cdot\left(1-\mu_{s}^{2}\right)}{E_{s}}\right) \cdot B^{\prime}=0.048 \text { in } \\
& \delta_{\text {rigid } 4}:=0.93 \cdot \delta_{\text {flex }}=0.044 \text { in }
\end{aligned}
$$

Because the rigid settlement is less than 0.5 in. the design works.

Foundation Design

Lake View Community Center

Spread Footings:

Loads:

$$
P_{1}:=10.2 \mathrm{kip} \quad T:=5.65 \mathrm{kip} \quad L L_{i m p}:=100 \mathrm{psf}
$$

Soil Parameters:

$$
\begin{aligned}
& c^{\prime}:=0 \text { psf } \quad c_{u}:=10 \mathrm{kPa}=1.45 \mathrm{psi} \phi^{\prime}:=30 \mathrm{deg} \quad E_{s}:=50 \mathrm{MPa}=\left(1.044 \cdot 10^{6}\right) \text { psf } \\
& \gamma_{\text {soil }}:=130 \mathrm{pcf} \quad \gamma_{s a t}:=135 \mathrm{pcf} \quad \gamma_{\text {fill }}:=120 \mathrm{pcf} \quad \gamma_{w}:=62.4 \mathrm{pcf} \quad \mu_{s}:=0.45
\end{aligned}
$$

Concrete Parameters:
$G W T:=14 \mathrm{ft}$

$$
\gamma_{c}:=150 p c f
$$

Footing Parameters:
Footing Depth:

$$
D_{\min }:=60 \text { in }=5 \mathrm{ft} \quad D_{f}:=5 \mathrm{ft}+6 \mathrm{in}
$$

Footing Thickness:

$$
t_{f}:=12 \text { in }
$$

Fill Depth:

$$
D_{\text {fill }}:=D_{f}-t_{f}=4.5 \mathrm{ft}
$$

Slab Thickness:

$$
t_{\text {slab }}:=8 \text { in }
$$

Factors of Safety:

$$
F S_{q}:=3 \quad F S_{v}:=2 \quad F S_{T}:=2
$$

Foundation Design

Lake View Community Center

Bearing Capacity Analysis: (Vesic's Equations) - Exterior Footings

$$
\begin{gathered}
B:=3 f t+0 \mathrm{in} \quad L:=B \\
A_{f}:=B \cdot L=9 f t^{2} \quad w_{f}:=t_{f} \cdot B \cdot \gamma_{c}=0.45 \frac{\mathrm{kip}}{\mathrm{ft}}
\end{gathered}
$$

Surcharge Load:

$$
q_{s}:=D_{f} \cdot \gamma_{\text {fill }}+\gamma_{c} \cdot 6 \text { in }+100 p s f=835 p s f
$$

Groundwater Effects:

$$
\begin{aligned}
& G W T=14 \mathrm{ft} \\
& D_{f}+B=8.5 \mathrm{ft}
\end{aligned}
$$

Because GWT is greater than Df+B, there are no groundwater effects on the net bearing pressure.

Bearing Capacity Factors:

$$
\begin{aligned}
& N_{q}:=e^{\pi \cdot \tan \left(\phi^{\prime}\right)} \cdot \tan \left(45 \mathrm{deg}+\frac{\phi^{\prime}}{2}\right)^{2}=18.401 \\
& N_{c}:=\frac{\left(N_{q}-1\right)}{\tan \left(\phi^{\prime}\right)}=30.14 \\
& N_{\gamma}:=2 \cdot\left(N_{q}+1\right) \cdot \tan \left(\phi^{\prime}\right)=22.402
\end{aligned}
$$

Modification Factors:
Shape Factors:

$$
\begin{gathered}
s_{c}:=1+\left(\frac{B}{L}\right) \cdot\left(\frac{N_{q}}{N_{c}}\right)=1.611 \quad s_{\gamma}:=1-\left(0.4 \cdot\left(\frac{B}{L}\right)\right)=0.6 \\
s_{q}:=1+\left(\frac{B}{L}\right) \cdot \tan \left(\phi^{\prime}\right)=1.577
\end{gathered}
$$

Foundation Design

Lake View Community Center

Depth Factors:

$$
k:=\operatorname{atan}\left(\frac{D_{f}}{B}\right)=1.071
$$

$$
\begin{aligned}
& d_{c}:=1+0.4 \cdot k=1.429 \\
& d_{q}:=1+2 \cdot k \cdot \tan \left(\phi^{\prime}\right) \cdot\left(1-\sin \left(\phi^{\prime}\right)\right)^{2}=1.309 \\
& d_{\gamma}:=1
\end{aligned}
$$

Load Inclination Factors:

$$
\begin{aligned}
& m_{l}:=\frac{2+\frac{L}{B}}{1+\frac{L}{B}}=1.5 \quad m_{b}:=\frac{2+\frac{B}{L}}{1+\frac{B}{L}}=1.5 \quad m:=\sqrt{m_{l}^{2}+m_{b}^{2}}=2.121 \\
& i_{c}:=1 \quad i_{q}:=1 \quad i_{\gamma}:=1
\end{aligned}
$$

Base Inclination Factors:

$$
b_{c}:=1 \quad b_{q}:=1 \quad b_{\gamma}:=1
$$

Ground Inclination Factors:

$$
g_{c}:=1 \quad g_{q}:=1 \quad g_{\gamma}:=1
$$

Foundation Design

Lake View Community Center

Net Bearing Pressure:

$$
\begin{gathered}
q_{n}:=c^{\prime} \cdot N_{c} \cdot\left(s_{c} \cdot d_{c} \cdot i_{c} \cdot b_{c} \cdot g_{c}\right)+q_{s} \cdot N_{q} \cdot\left(s_{q} \cdot d_{q} \cdot i_{q} \cdot b_{q} \cdot g_{q}\right)+0.5 \cdot B \cdot \gamma_{s o i l} \cdot N_{\gamma} \cdot\left(s_{\gamma} \cdot d_{\gamma} \cdot i_{\gamma} \cdot b_{\gamma} \cdot g_{\gamma}\right) \\
q_{n}=238.564 p s i
\end{gathered}
$$

Allowable Bearing Pressure:

$$
q_{a}:=\frac{q_{n}}{F S_{q}}=79.521 \mathrm{psi}
$$

Actual Bearing Pressure:

$$
\begin{aligned}
q & :=\frac{P_{1}}{A_{f}}+\gamma_{f i l l} \cdot D_{f i l l}+\gamma_{c} \cdot 6 \mathrm{in}+100 \mathrm{psf}+\gamma_{c} \cdot B=15.961 \mathrm{psi} \\
w_{f} & :=B \cdot L \cdot t_{f} \cdot \gamma_{c}=1.35 \mathrm{kip}
\end{aligned}
$$

Foundation Design

Lake View Community Center

Uplift Analysis:

$$
A_{f}:=B \cdot L=9 f t^{2}
$$

Assume:

$$
\begin{aligned}
& w_{f}=1.35 \mathrm{kip} \\
& T=5.65 \mathrm{kip}
\end{aligned} \quad \begin{aligned}
&
\end{aligned}
$$

$$
p:=2 \cdot B+2 \cdot L=12 \mathrm{ft} \quad w_{f}:=B \cdot L \cdot t_{f} \cdot \gamma_{c}=1.35 \mathrm{kip}
$$

$$
s_{u}:=c_{u}
$$

$$
\frac{s_{u} \cdot p \cdot D_{f}+w_{f}}{F S_{t}}=7.567 \mathrm{kip} \quad \|>\square \quad T=5.65 \mathrm{kip}
$$

$$
\begin{aligned}
& H:=5 \cdot B=15 f t \\
& A_{f}:=B \cdot L=9 f t^{2}
\end{aligned}
$$

Bowles Method:

$$
\begin{aligned}
& \alpha:=4 \quad B^{\prime}:=\frac{B}{2} \quad L^{\prime}:=\frac{L}{2} \quad M:=\frac{L^{\prime}}{B^{\prime}}=1 \quad N:=\frac{H}{B^{\prime}}=10 \\
& I_{1}:=\frac{1}{\pi} \cdot\left(\left(M \cdot \ln \left(\frac{\left(1+\sqrt{M^{2}+1}\right) \cdot \sqrt{M^{2}+N^{2}}}{M \cdot\left(1+\sqrt{M^{2}+N^{2}+1}\right)}\right)\right)+\ln \left(\frac{\left(M+\sqrt{M^{2}+1}\right) \cdot \sqrt{1+N^{2}}}{M+\sqrt{M^{2}+N^{2}+1}}\right)\right)=0.498 \\
& I_{2}:=\frac{N}{2 \cdot \pi} \cdot\left(\operatorname{atan}\left(\frac{M}{N \cdot \sqrt{M^{2}+N^{2}+1}}\right)\right)=0.016 \\
& \\
& I_{s}:=I_{1}+\left(\frac{1-2 \cdot \mu_{s}}{1-\mu_{s}}\right) \cdot I_{2}=0.501 \\
& \quad I_{f}:=1
\end{aligned}
$$

Final Settlement Calculations: $\delta_{E} \leq 0.5$ in

$$
\begin{gathered}
q_{\text {net }}:=q-\gamma_{\text {fill }} \cdot D_{f}=11.377 \mathrm{psi} \\
\delta_{\text {flex }}:=\alpha \cdot I_{s} \cdot I_{f} \cdot\left(\frac{q_{n e t} \cdot\left(1-\mu_{s}^{2}\right)}{E_{s}}\right) \cdot B^{\prime}=0.045 \mathrm{in} \\
\delta_{\text {rigid } 4}:=0.93 \cdot \delta_{\text {flex }}=0.042 \mathrm{in}
\end{gathered}
$$

Because the rigid settlement is less than 0.5 in. the design works.

Concrete/Rebar Design:

Section Properties:

$$
\begin{array}{llll}
E_{s}:=29000 \mathrm{ksi} & w_{c}:=150 \mathrm{pcf} & t_{f}:=1 \mathrm{ft} & A_{b 5}:=0.44 \mathrm{in}^{2} \\
f_{c^{\prime}}:=4000 \mathrm{psi} & f_{y}:=60 \mathrm{ksi} & & d_{b 5}:=0.625 \mathrm{in}
\end{array}
$$

$$
E_{c}:=33 \cdot(150)^{1.5} \cdot \sqrt{4000} p s i=3834.254 \mathrm{ksi} \quad \text { cover }:=3 \text { in }
$$

$$
\beta:=0.85
$$

Analysis:
$n:=1$
Singly Rein. Rectangular Section:

$$
\begin{aligned}
& b:=12 \text { in } \quad d:=t_{f}-\text { cover }=9 \text { in } \quad A_{s}:=A_{b 5} \cdot n=0.44 \mathrm{in}^{2} \\
& y_{c}:=\frac{\sqrt{n \cdot A_{s}} \cdot \sqrt{n \cdot A_{s}+2 \cdot b \cdot d}-n \cdot A_{s}}{b}=0.777 \mathrm{in} \\
& I:=n \cdot A_{s} \cdot\left(d-y_{c}\right)^{2}+\frac{1}{12} \cdot b \cdot y_{c}{ }^{3}+b \cdot y_{c} \cdot\left(\frac{y_{c}}{2}\right)^{2}=31.628 \mathrm{in}^{4} \\
& \quad A_{\text {stensioncontrol }}:=\frac{0.85 \cdot f_{c^{\prime}} \cdot b \cdot \beta}{f_{y}} \cdot\left(\frac{3 \cdot d}{8}\right)=1.951 \mathrm{in}^{2} \\
& a:=\frac{A_{s} \cdot f_{y}}{0.85 \cdot f_{c^{\prime}} \cdot b}=0.647 \mathrm{in} \\
& \phi M_{n}:=0.9 \cdot A_{s} \cdot f_{y} \cdot\left(d-\frac{a}{2}\right)=17.179 \mathrm{kip} \cdot \mathrm{ft}
\end{aligned}
$$

Shear Check:

$$
\begin{gathered}
\lambda:=1 \quad \rho_{w}:=\frac{A_{s}}{b \cdot d}=0.004 \\
\phi V_{c}:=0.9 \cdot \min \left(5 \cdot \lambda \cdot \sqrt{f_{c^{\prime}} \cdot p s i}, 8 \cdot \lambda \cdot \rho_{w}^{\frac{1}{3}} \cdot \sqrt{f_{c^{\prime}} \cdot p s i}\right) \cdot b \cdot d=7.855 \mathrm{kip}
\end{gathered}
$$

Interior Footing:

$$
w:=14.167 \mathrm{psi} \cdot 1 \mathrm{ft}=2040.048 \frac{\mathrm{lbf}}{\mathrm{ft}}
$$

Shear - Moment EQ:

$$
\begin{aligned}
& V(x):=w \cdot x \\
& M(x):=\frac{w \cdot x^{2}}{2} \\
& M(0.5 \mathrm{ft})=0.255 \mathrm{kip} \cdot \mathrm{ft} \\
& \quad V(0.5 \mathrm{ft})=1.02 \mathrm{kip}
\end{aligned}
$$

Spread Footing:

$$
w:=15.961 \mathrm{psi} \cdot 1 \mathrm{ft}=2298.384 \frac{\mathrm{lbf}}{\mathrm{ft}}
$$

Shear - Moment EQ:

$$
\begin{aligned}
& V(x):=w \cdot x \\
& M(x):=\frac{w \cdot x^{2}}{2} \\
& M(0.5 \mathrm{ft})=0.287 \mathrm{kip} \cdot \mathrm{ft} \\
& V(0.5 \mathrm{ft})=1.149 \mathrm{kip}
\end{aligned}
$$

Exterior Footings:

$$
\begin{aligned}
& q_{\text {min }}:=20.734 \frac{l b f}{f t} \quad q_{\max }:=461.317 \frac{l b f}{f t} \quad B:=6 \mathrm{ft}+6 \mathrm{in} \\
& \text { slope }:=\frac{q_{\max }-q_{\min }}{B}=67.782 \mathrm{psf} \\
& \quad q:=q_{\max }-(4 \mathrm{ft}+3 \mathrm{in}) \cdot \text { slope }=173.244 \frac{\mathrm{lbf}}{\mathrm{ft}} \\
& \\
& w_{1}:=q \quad w_{2}:=\left(q_{\max }-q\right)=288.074 \frac{\mathrm{lbf}}{\mathrm{ft}} \quad x:=4 \mathrm{ft}+3 \mathrm{in} \\
& M_{\max }:=w_{1} \cdot \frac{x^{2}}{2}+0.5 \cdot w_{2} \cdot x \cdot\left(\frac{2}{3} \mathrm{x}\right)=3.299 \mathrm{kip} \cdot \mathrm{ft} \\
& V_{\max }:=w_{1} \cdot x+0.5 \cdot x \cdot w_{2}=1.348 \mathrm{kip}
\end{aligned}
$$

North Garage Footings:

$$
\begin{aligned}
& q_{\min }:=3.388 \frac{l b f}{f t} \quad q_{\max }:=708.04 \frac{l b f}{f t} \quad B:=3 \mathrm{ft}+6 \mathrm{in} \\
& \text { slope }:=\frac{q_{\max }-q_{\min }}{B}=201.329 \mathrm{psf} \quad x:=2 \mathrm{ft}+3 \mathrm{in} \\
& \quad q:=q_{\max }-(x) \cdot \text { slope }=255.049 \frac{\mathrm{lbf}}{\mathrm{ft}} \\
& w_{1}:=q \quad w_{2}:=\left(q_{\max }-q\right)=452.991 \frac{\mathrm{lbf}}{\mathrm{ft}} \\
& M_{\max }:=w_{1} \cdot \frac{x^{2}}{2}+0.5 \cdot w_{2} \cdot x \cdot\left(\frac{2}{3} x\right)=1.41 \mathrm{kip} \cdot \mathrm{ft} \\
& V_{\text {max }}:=w_{1} \cdot x+0.5 \cdot x \cdot w_{2}=1.083 \mathrm{kip}
\end{aligned}
$$

West Garage Footings:

$$
\begin{aligned}
& q_{\text {min }}:=18.571 \frac{l b f}{f t} \quad q_{\text {max }}:=631.43 \frac{l b f}{f t} \quad B:=4 \mathrm{ft}+4 \mathrm{in} \\
& \text { slope }:=\frac{q_{\max }-q_{\min }}{B}=141.429 \mathrm{psf} \quad x:=2 \mathrm{ft}+6 \mathrm{in} \\
& \\
& q:=q_{\max }-(x) \cdot \text { slope }=277.858 \frac{\mathrm{lbf}}{\mathrm{ft}} \\
& w_{1}:=q \quad w_{2}:=\left(q_{\max }-q\right)=353.573 \frac{\mathrm{lbf}}{\mathrm{ft}} \\
& M_{\text {max }}:=w_{1} \cdot \frac{x^{2}}{2}+0.5 \cdot w_{2} \cdot x \cdot\left(\frac{2}{3} \mathrm{x}\right)=1.605 \mathrm{kip} \cdot \mathrm{ft} \\
& V_{\text {max }}:=w_{1} \cdot x+0.5 \cdot x \cdot w_{2}=1.137 \mathrm{kip}
\end{aligned}
$$

Rebar design provides adequate flexural strength for all footings and the concrete provides adequate strength for shear forces.

Appendix D - Runoff Calculations

Runoff Analysis

Pre-Construction

Catchment Area One:

Time of Concentration:
(based on NRCS Lag Method - SUDAS Section 2B-3-D)

$$
\begin{aligned}
& A_{1}:=259153 \mathrm{ft}^{2}=5.949 \text { acre } \quad A_{1}:=5.949 \\
& l:=927.7 \mathrm{ft} \quad l:=927.7 \\
& S:=\frac{1000}{C N}-10=2.658 \\
& Y:=\frac{10 \mathrm{ft}}{l}=0.011 \mathrm{ft} \quad Y:=1.1 \% \\
& \quad \text { (Table 2B - } 4.03 \text { Soils Group C) } \\
& t_{c}:=\frac{100 \cdot l^{0.8} \cdot(S+1)^{0.7}}{1900 \cdot Y^{0.5}}=294.283 \\
& t_{c}:=294 \mathrm{~min}=4.9 \mathrm{hr}
\end{aligned}
$$

Flowrate from Civil 3D:
$C_{\text {runoff }}:=0.6 \quad$ Table 2B-4.01 (SUDAS Design Manual)

$$
A_{\text {impermeable }}:=54175 \mathrm{ft}^{2}=1.244 \text { acre } \quad C_{\text {imper }}:=0.97
$$

$$
\begin{array}{ll}
Q_{1}:=3.3 \frac{f t^{3}}{s} & \begin{array}{l}
\text { based on 50-year return Period (Per } \\
\text { Iowa DOT Desian Guide) }
\end{array}
\end{array}
$$

Runoff Analysis

Pre-Construction

NRCS Velocity Method:
(1.) Sheet Flow:

$$
\begin{array}{l|l}
n:=0.24 & \text { (Dense Grass - SUDAS Table 2B-3.01) } \\
P_{2}:=3.01 & \text { (2-year, 24 hour rainfall (in) - Table 2B-2.04 SUDAS) } \\
l:=50 & \text { (Initial flow of rainfall - no more than } 100 \mathrm{ft} \text {) - units (ft) } \\
S:=\frac{2}{l}=0.04 & \text { (Slope - } \mathrm{ft} / \mathrm{ft}) \\
& \begin{array}{ll}
T_{s}:=\frac{0.007 \cdot(n \cdot l)^{0.8}}{P_{2}{ }^{0.5} \cdot Y^{0.4}}=0.179 & T_{s}:=0.179 \mathrm{hr}=10.74 \mathrm{~min}
\end{array}
\end{array}
$$

(2.) Shallow Concentrated flow:

$$
\begin{gathered}
l:=350 \mathrm{ft} \\
s:=7 \frac{f t}{l}=0.02
\end{gathered}
$$

$$
V_{c}:=6.962 \cdot(s)^{0.5} \frac{f t}{s e c}=0.985 \frac{f t}{s} \quad \begin{aligned}
& \text { (ft/s) - Table 2B - } 3.01 \text { (Short - Grass } \\
& \text { Prairie) }
\end{aligned}
$$

$$
T_{s c}:=\frac{l}{V_{c}}=5.925 \mathrm{~min}
$$

(3.) Open Channel Flow:

$$
n:=0.03 \quad \text { (Manning Coeff. - Natural Stream \#1) }
$$

Assumptions for 'r':

$$
\begin{gathered}
d:=0.2 \mathrm{ft} \quad w:=0.2 \mathrm{ft} \quad \text { (Triangular Channel) } \\
a:=0.5 w \cdot d=0.02 \mathrm{ft}^{2} \quad P:=2 \cdot\left(\sqrt{(0.5 w)^{2}+d^{2}}\right)=0.447 \mathrm{ft} \\
r:=\frac{a}{P}=0.045 \mathrm{ft} \quad r:=0.045
\end{gathered}
$$

Runoff Analysis

Pre-Construction

$$
\begin{aligned}
& l:=927 \mathrm{ft}-350 \mathrm{ft}=577 \mathrm{ft} \\
& s:=6 \frac{\mathrm{ft}}{l}=0.01 \\
& V_{o c}:=\frac{1.49 \cdot r^{\frac{2}{3}} \cdot \mathrm{~s}^{0.5}}{n}=0.641 \quad V_{o c}:=0.641 \frac{\mathrm{ft}}{\mathrm{sec}}=0.641 \frac{\mathrm{ft}}{\mathrm{~s}} \\
& T_{o}:=\frac{l}{V_{o c}}=15.003 \mathrm{~min}
\end{aligned}
$$

Time of Concentration:

$$
T_{c}:=T_{s}+T_{s c}+T_{o}=31.667 \mathrm{~min}
$$

$$
Q_{10 y 1}:=14.56 \frac{\mathrm{ft}^{3}}{\mathrm{sec}}=14.56 \frac{1}{\mathrm{~s}} \cdot f t^{3} \quad V:=27948 \mathrm{ft}^{3}=0.642 \mathrm{acre} \cdot \mathrm{ft}
$$

Runoff Analysis

Pre-Construction

Catchment Area Two:

Time of Concentration:
(based on NRCS Lag Method - SUDAS Section 2B-3-D)

$$
\begin{aligned}
& A_{2}:=79643 \mathrm{ft}^{2}=1.828 \text { acre } \quad A_{2}:=1.83 \\
& l:=512.5 \mathrm{ft} \quad l:=512.5 \\
& S:=\frac{1000}{C N}-10=2.658 \\
& Y:=\frac{12 \mathrm{ft}}{l}=0.023 \mathrm{ft} \quad Y:=79 \quad \text { (Table 2B - } 4.03 \text { Soils Group C) } \\
& t_{c}:=\frac{100 \cdot l^{0.8} \cdot(S+1)^{0.7}}{1900 \cdot Y^{0.5}}=126.598 \\
& \quad t_{c}:=126.6 \mathrm{~min}=2.11 \mathrm{hr}
\end{aligned}
$$

Flowrate from Civil 3D:
$C_{\text {runoff }}:=0.6 \quad$ Table 2B-4.01 (SUDAS Design Manual)

$$
A_{\text {impermeable }}:=0 \mathrm{ft}^{2}=0 \text { acre } \quad C_{\text {imper }}:=0.97
$$

$$
Q_{2}:=2.14 \frac{f t^{3}}{s} \quad \begin{aligned}
& \text { based on 50-year return Period (Per } \\
& \text { Iowa DOT Design Guide) }
\end{aligned}
$$

Runoff Analysis

Pre-Construction

NRCS Velocity Method:
(1.) Sheet Flow:

$$
\begin{array}{l|l}
n:=0.24 & \text { (Dense Grass - SUDAS Table 2B-3.01) } \\
P_{2}:=3.01 & \text { (2-year, 24 hour rainfall (in) - Table 2B-2.04 SUDAS) } \\
l:=50 & \text { (Initial flow of rainfall - no more than } 100 \mathrm{ft} \text {) - units (ft) } \\
S:=\frac{2}{l}=0.04 & \text { (Slope - } \mathrm{ft} / \mathrm{ft}) \\
& \begin{array}{ll}
T_{s}:=\frac{0.007 \cdot(n \cdot l)^{0.8}}{P_{2}{ }^{0.5} \cdot Y^{0.4}}=0.133 & T_{s}:=0.179 \mathrm{hr}=10.74 \mathrm{~min}
\end{array}
\end{array}
$$

(2.) Shallow Concentrated flow:

$$
\begin{aligned}
& l:=100 \mathrm{ft} \\
& s:=7 \frac{f t}{l}=0.07
\end{aligned}
$$

$$
V_{c}:=6.962 \cdot(s)^{0.5} \frac{f t}{s e c}=1.842 \frac{f t}{s} \quad \begin{aligned}
& \text { (ft/s) - Table 2B - } 3.01 \text { (Short - Grass } \\
& \text { Prairie) }
\end{aligned}
$$

$$
T_{s c}:=\frac{l}{V_{c}}=0.905 \mathrm{~min}
$$

(3.) Open Channel Flow:

$$
n:=0.03 \quad \text { (Manning Coeff. - Natural Stream \#1) }
$$

Assumptions for 'r':

$$
\begin{gathered}
d:=0.2 \mathrm{ft} \quad w:=0.2 \mathrm{ft} \quad \text { (Triangular Channel) } \\
a:=0.5 w \cdot d=0.02 \mathrm{ft}^{2} \quad P:=2 \cdot\left(\sqrt{(0.5 w)^{2}+d^{2}}\right)=0.447 \mathrm{ft} \\
r:=\frac{a}{P}=0.045 \mathrm{ft} \quad r:=0.045
\end{gathered}
$$

Runoff Analysis

Pre-Construction

$$
\begin{aligned}
& l:=512.5 \mathrm{ft}-100 \mathrm{ft}=412.5 \mathrm{ft} \\
& s:=6 \frac{\mathrm{ft}}{l}=0.015 \\
& V_{o c}:=\frac{1.49 \cdot r^{\frac{2}{3}} \cdot \mathrm{~s}^{0.5}}{n}=0.758 \quad V_{o c}:=0.641 \frac{\mathrm{ft}}{\mathrm{sec}}=0.641 \frac{\mathrm{ft}}{\mathrm{~s}} \\
& T_{o}:=\frac{l}{V_{o c}}=10.725 \mathrm{~min}
\end{aligned}
$$

Time of Concentration:

$$
T_{c}:=T_{s}+T_{s c}+T_{o}=22.37 \mathrm{~min}
$$

Runoff Analysis

Pre-Construction

Catchment Area Three:

Time of Concentration:

$$
\begin{aligned}
& A_{3}:=137400 \mathrm{ft}^{2}=3.154 \text { acre } \quad A_{3}:=3.154 \\
& l:=825 \mathrm{ft} \quad l:=825 \\
& S:=\frac{1000}{C N}-10=2.658 \\
& Y:=\frac{12 \mathrm{ft}}{l}=0.015 \mathrm{ft} \quad Y:=2.3 \% \\
& \text { (Table 2B - } 4.03 \text { Soils Group C) } \\
& t_{c}:=\frac{100 \cdot l^{0.8} \cdot(S+1)^{0.7}}{1900 \cdot Y^{0.5}}=185.283
\end{aligned}
$$

$$
t_{c}:=185.3 \mathrm{~min}=3.088 \mathrm{hr}
$$

Flowrate from Civil 3D:

$$
C_{\text {runoff }}:=0.6 \quad \text { Table 2B-4.01 (SUDAS Design Manual) }
$$

$$
A_{\text {impermeable }}:=0 \mathrm{ft}^{2}=0 \text { acre } \quad C_{\text {imper }}:=0.97
$$

$$
Q_{3}:=2.14 \frac{f t^{3}}{s} \quad \begin{aligned}
& \text { based on 50-year return Period (Per } \\
& \text { Iowa DOT Design Guide) }
\end{aligned}
$$

Runoff Analysis

Pre-Construction

NRCS Velocity Method:
(1.) Sheet Flow:

$$
\begin{array}{l|l}
n:=0.24 & \text { (Dense Grass - SUDAS Table 2B-3.01) } \\
P_{2}:=3.01 & \text { (2-year, 24 hour rainfall (in) - Table 2B-2.04 SUDAS) } \\
l:=50 & \text { (Initial flow of rainfall - no more than } 100 \mathrm{ft} \text {) - units (ft) } \\
S:=\frac{2}{l}=0.04 & \text { (Slope - } \mathrm{ft} / \mathrm{ft}) \\
& \begin{array}{ll}
T_{s}:=\frac{0.007 \cdot(n \cdot l)^{0.8}}{P_{2}{ }^{0.5} \cdot Y^{0.4}}=0.133 & T_{s}:=0.179 \mathrm{hr}=10.74 \mathrm{~min}
\end{array}
\end{array}
$$

(2.) Shallow Concentrated flow:

$$
\begin{gathered}
l:=225 \mathrm{ft} \\
s:=6 \frac{f t}{l}=0.027 \\
V_{c}:=6.962 \cdot(s)^{0.5} \frac{f t}{\sec }=1.137 \frac{\mathrm{ft}}{s} \quad \\
\begin{array}{l}
\text { (ft/s) - Table 2B - } 3.01 \text { (Short - Grass } \\
T_{s c}:=\frac{l}{V_{c}}=3.298 \mathrm{~min}
\end{array}
\end{gathered}
$$

(3.) Open Channel Flow:

$$
n:=0.03 \quad \text { (Manning Coeff. - Natural Stream \#1) }
$$

Assumptions for 'r':

$$
\begin{gathered}
d:=0.2 \mathrm{ft} \quad w:=0.2 \mathrm{ft} \quad \text { (Triangular Channel) } \\
a:=0.5 w \cdot d=0.02 \mathrm{ft}^{2} \quad P:=2 \cdot\left(\sqrt{(0.5 w)^{2}+d^{2}}\right)=0.447 \mathrm{ft} \\
r:=\frac{a}{P}=0.045 \mathrm{ft} \quad r:=0.045
\end{gathered}
$$

Runoff Analysis

Pre-Construction

$$
\begin{aligned}
& l:=825 \mathrm{ft}-225 \mathrm{ft}=600 \mathrm{ft} \\
& s:=6 \frac{\mathrm{ft}}{l}=0.01 \\
& V_{o c}:=\frac{1.49 \cdot r^{\frac{2}{3}} \cdot \mathrm{~s}^{0.5}}{n}=0.628 \quad V_{o c}:=0.641 \frac{\mathrm{ft}}{\mathrm{sec}}=0.641 \frac{\mathrm{ft}}{\mathrm{~s}} \\
& T_{o}:=\frac{l}{V_{o c}}=15.601 \mathrm{~min}
\end{aligned}
$$

Time of Concentration:

$$
T_{c}:=T_{s}+T_{s c}+T_{o}=29.639 \mathrm{~min}
$$

Runoff Analysis

Pre-Construction

Runoff Analysis

Pre-Construction

\qquad

Runoff Analysis

Pre-Construction

Post-Construction:

Eliminates Catchment Area 2 and 3 with self-containing site plan.

Before Site:

$$
Q_{t o t a l}:=Q_{10 y 1}+Q_{10 y 2}+Q_{10 y 3}=26.45 \frac{f t^{3}}{s}
$$

After Site:

$$
Q_{t o t a l}:=Q_{10 y 1}=14.56 \frac{f t^{3}}{s}
$$

Appendix E - Bioswale \& Infiltration Basin Calculations

Bioswale/Retention Cell Design

Compute the WQv Peak Runoff Rate:

$$
\begin{array}{l|l|l|l|}
\hline \text { Depth }:=1.25 \text { in } \quad \text { (per the IaDNR) } \\
\hline t_{d}:=24 \mathrm{hr} \quad C N:=96 & C:=0.96 & \\
\hline i_{w q}:=\frac{\text { Depth }}{24 \mathrm{hr}}=0.052 \frac{\mathrm{in}}{\mathrm{hr}} & S:=\frac{1000}{C N}-10=0.417 & S:=0.417 \mathrm{in}
\end{array}
$$

The required Water Quality Volume.
Drainage Areas: (Civil 3D)

Area (Lot One):

$$
A_{1}:=19760 \mathrm{ft}^{2}=0.454 \text { acre }
$$

Area (Lot Two):

$$
A_{2}:=45825 \mathrm{ft}^{2}=1.052 \text { acre }
$$

> Area (Building):

$$
A_{B}:=13500 \mathrm{ft}^{2}=0.31 \text { acre }
$$

Area (North Lot):

$$
A_{\text {North }}:=36405 \mathrm{ft}^{2}=0.836 \text { acre }
$$

WQv Storm Volume:

Volumetric Runoff Coeff.:

$$
R_{v}:=0.05+0.009 \cdot(95)=0.905 \quad C N:=98
$$

Water Quality Volume:

$$
W Q:=R_{v} \cdot 1.25 \text { in }=1.131 \text { in } \quad A_{m}:=A_{1}+A_{B}+A_{\text {North }}=1.599 \text { acre }
$$

$$
\begin{array}{ll}
W Q_{v}:=W Q \cdot A_{m}=6567.378 \mathrm{ft}^{3} \quad & \text { Volume for given storm } \\
& \text { event. }
\end{array}
$$

Volume of Swale must be greater than this volume.

Peak Runoff for other Key Rainfall Events (24 hour Storm): Based on Rational Method Analysis.

1 year Storm:

$$
\begin{aligned}
& 2 \text { year Storm: } \\
& \qquad \begin{array}{c}
d_{2}:=0.78 \text { in } \quad i_{2}:=3.14 \frac{\mathrm{in}}{\mathrm{hr}} \\
Q 1_{2}:=C \cdot i_{2} \cdot A_{1}=1.379 \frac{f t^{3}}{s} \quad Q 2_{2}:=C \cdot i_{2} \cdot A_{2}=3.198 \frac{f t^{3}}{s} \\
Q 3_{2}:=C \cdot i_{2} \cdot A_{3}=3.166 \frac{f t^{3}}{s} \quad Q_{B 2}:=C \cdot i_{2} \cdot A_{B}=0.942 \frac{f t^{3}}{s} \\
Q_{N 2}:=C \cdot i_{2} \cdot A_{\text {North }}=2.54 \frac{f t^{3}}{s}
\end{array}
\end{aligned}
$$

5 year Storm: $\quad i_{5}:=3.96 \frac{i n}{h r} \quad d_{5}:=0.99 i n$

$$
Q 1_{5}:=C \cdot i_{5} \cdot A_{1}=1.739 \frac{f t^{3}}{s} \quad Q 2_{5}:=C \cdot i_{5} \cdot A_{2}=4.033 \frac{f t^{3}}{s}
$$

$$
Q 3_{5}:=C \cdot i_{5} \cdot A_{3}=3.993 \frac{f t^{3}}{s} \quad Q_{B 5}:=C \cdot i_{5} \cdot A_{B}=1.188 \frac{f t^{3}}{s}
$$

$$
Q_{N 5}:=C \cdot i_{5} \cdot A_{N o r t h}=3.204 \frac{f t^{3}}{s}
$$

$$
\begin{aligned}
& i_{1}:=2.66 \frac{i n}{h r} \quad d_{1}:=0.66 \mathrm{in} \\
& Q 1_{1}:=C \cdot i_{1} \cdot A_{1}=1.168 \frac{f t^{3}}{s} \quad Q 2_{1}:=C \cdot i_{1} \cdot A_{2}=2.709 \frac{f t^{3}}{s} \\
& Q 3_{1}:=C \cdot i_{1} \cdot A_{3}=2.682 \frac{f t^{3}}{s} \quad Q_{B 1}:=C \cdot i_{1} \cdot A_{B}=0.798 \frac{f t^{3}}{s} \\
& Q_{N 1}:=C \cdot i_{1} \cdot A_{\text {North }}=2.152 \frac{f t^{3}}{s}
\end{aligned}
$$

$$
\begin{aligned}
& 10 \text { year Storm: } \quad i_{10}:=4.69 \frac{i n}{h r} \quad d_{10}:=1.17 \mathrm{in} \\
& Q 1_{10}:=C \cdot i_{10} \cdot A_{1}=2.059 \frac{f t^{3}}{s} \quad Q 2_{10}:=C \cdot i_{10} \cdot A_{2}=4.776 \frac{f t^{3}}{s} \\
& Q 3_{10}:=C \cdot i_{10} \cdot A_{3}=4.729 \frac{f t^{3}}{s} \quad Q_{B 10}:=C \cdot i_{10} \cdot A_{B}=1.407 \frac{f t^{3}}{s} \\
& Q_{N 10}:=C \cdot i_{10} \cdot A_{N o r t h}=3.794 \frac{f t^{3}}{s}
\end{aligned}
$$

25 year Storm: $\quad i_{25}:=5.74 \frac{i n}{h r} \quad d_{25}:=1.43 \mathrm{in}$
$Q 1_{25}:=C \cdot i_{25} \cdot A_{1}=2.52 \frac{f t^{3}}{s} \quad Q 2_{25}:=C \cdot i_{25} \cdot A_{2}=5.845 \frac{f t^{3}}{s}$
$Q 3_{25}:=C \cdot i_{10} \cdot A_{3}=4.729 \frac{f t^{3}}{s} \quad Q_{B 25}:=C \cdot i_{25} \cdot A_{B}=1.722 \frac{f t^{3}}{s}$

$$
Q_{N 25}:=C \cdot i_{25} \cdot A_{\text {North }}=4.644 \frac{f t^{3}}{s}
$$

100 year
Storm:

$$
i_{100}:=7.46 \frac{i n}{h r} \quad d_{100}:=1.86 \mathrm{in}
$$

$Q 1_{100}:=C \cdot i_{100} \cdot A_{1}=3.276 \frac{f t^{3}}{s} \quad Q 2_{100}:=C \cdot i_{100} \cdot A_{2}=7.597 \frac{f t^{3}}{s}$
$Q 3_{100}:=C \cdot i_{100} \cdot A_{3}=7.522 \frac{f t^{3}}{s} \quad Q_{B 100}:=C \cdot i_{100} \cdot A_{B}=2.238 \frac{f t^{3}}{s}$

$$
Q_{N 100}:=C \cdot i_{100} \cdot A_{N o r t h}=6.035 \frac{f t^{3}}{s}
$$

System is Online. (BioSwale Design)
*Water is going directly from drainage area to swale.

Location and Size Pretreatment Practices:

Grass Swale. Optimum Flow Velocity if <= 2.0 fps.

Channel Protection Volume:

$$
\begin{aligned}
& A_{m}:=A_{B}+A_{1}+A_{\text {North }}=0.002 \mathrm{mi}^{2} \\
& Q:=1.40 \mathrm{in} \quad q_{i}:=2.95 \frac{f t^{3}}{s} \quad q_{u}:=1632 \frac{f t^{3}}{s \cdot m i^{2} \cdot i n} \\
& q_{o q i}:=0.02 \\
& V_{s v r}:=0.683-1.43\left(q_{o q i}\right)+1.64 \cdot\left(q_{o q i}\right)^{2}-0.804 \cdot\left(q_{o q i}\right)^{3}=0.655 \\
& C_{p v}:=V_{s v r} \cdot Q \cdot A_{m}=5323.97 f t^{3}
\end{aligned}
$$

Overbank Flood Protection Volume:

$$
\begin{aligned}
& A_{m}:=A_{B}+A_{1}+A_{\text {North }}=0.002 \mathrm{mi}^{2} \\
& Q:=4.071 \mathrm{in} \quad q_{i}:=6.59 \frac{\mathrm{ft}^{3}}{\mathrm{~s}} \quad q_{u}:=3641 \frac{\mathrm{ft}^{3}}{\mathrm{~s} \cdot \mathrm{mi} i^{2} \cdot \mathrm{in}} \\
& q_{o q i}:=0.02 \\
& V_{\text {svr }}:=0.683-1.43\left(q_{o q i}\right)+1.64 \cdot\left(q_{o q i}\right)^{2}-0.804 \cdot\left(q_{o q i}\right)^{3}=0.655 \\
& O_{f p v}:=V_{\text {svr }} \cdot Q \cdot A_{m}=15481.344 \mathrm{ft}^{3}
\end{aligned}
$$

If Swale Volume is larger than the above volume, this means it was be able to handle larger storms and these storms will not affect its structural integrity.

Pretreatment Volume:

$$
V:=0.1 \mathrm{in} \cdot A_{m}=580.542 \mathrm{ft}^{3}
$$

Forebay Volume. A possible pretreatment solution if deemed necessary. A forebay ponds water before it enters the Swale, hence a pretreatment measure.
Swale Dimensions:

$$
\begin{aligned}
& L:=530 \mathrm{ft} \quad \text { slope }:=\frac{8 \mathrm{ft}}{L}=1.509 \% \quad d_{\text {avg }}:=12 \text { in } \\
& \quad a:=0.01 \mathrm{ft} \\
& T_{1}:=2 \mathrm{ft} \cdot \sqrt{\frac{d_{\text {avg }}}{a}}=20 \mathrm{ft} \\
& A_{\text {flow } 1}:=\frac{2}{3} \cdot T_{1} \cdot d_{\text {avg }}=13.333 \mathrm{ft}^{2}
\end{aligned}
$$

Flow volume based on a 12 inch depth of

$$
V_{\text {water }}:=A_{\text {flow } 1} \cdot L=7067 \mathrm{ft}^{3}
$$ water, must be greater than the WQv volume in accordance with DNR Stormwater Manual.

Number of Check Dams:

$$
d_{\max }:=18 \text { in }
$$

$$
\text { spacing }:=\frac{d_{\max }}{\text { slope }}=99.375 \mathrm{ft} \quad \text { Place every } 100 \mathrm{ft}
$$

$$
\begin{array}{ll}
\frac{L}{100 \mathrm{ft}}=5.3 & \begin{array}{l}
6 \text { Required. And will slow flow of water, } \\
\text { allowing for more infiltration. Infiltration }
\end{array}
\end{array}
$$ allowing for more infiltration. Infiltration and velocity calculations to follow.

2-year and 25 year Velocity Check:

$$
\begin{gathered}
n:=0.05 \quad W:=24.5 \quad S:=0.015 \quad Q_{2}:=3.43 \quad Q_{25}:=6.59 \\
D_{2}:=\left(\frac{Q_{2} \cdot n}{1.49 \cdot S^{0.5} \cdot W}\right)^{\frac{3}{5}}=0.141
\end{gathered}
$$

$$
\begin{aligned}
& V:=\frac{Q_{2}}{W \cdot D_{2}}=0.99 \quad V_{2}:=0.99 \frac{\mathrm{ft}}{\mathrm{~s}} \\
& D_{25}:=\left(\frac{Q_{25} \cdot n}{1.49 \cdot S^{0.5} \cdot W}\right)^{\frac{3}{5}}=0.209 \\
& V:=\frac{Q_{25}}{W \cdot D_{25}}=1.286 \quad V_{25}:=1.286 \frac{\mathrm{ft}}{\mathrm{~s}} \\
& D_{25}:=0.209 \mathrm{ft} \\
& D_{\text {swale }}:=d_{\text {max }}+0.5 \mathrm{ft}+D_{25}=2.209 \mathrm{ft} \quad \text { above the } 12 \text { in WQv flow. } \\
& T:=2 \mathrm{ft} \cdot \sqrt{\frac{D_{\text {swale }}-D_{25}}{a}}=28.284 \mathrm{ft} \\
& A_{\text {flow }}:=\frac{2}{3} \cdot T \cdot\left(D_{\text {swale }}-D_{25}\right)=37.712 f t^{2} \\
& V_{\text {swale }}:=L \cdot A_{\text {flow }}=19987.552 \mathrm{ft}^{3} \quad \text { Total Swale Volume. }
\end{aligned}
$$

Checking Infiltration Rate/Time:

$$
\begin{aligned}
& k:=1.0 \frac{i n}{h r} \\
& Q_{\text {inf }}:=k \cdot L \cdot T_{1}=0.245 \frac{f t^{3}}{s} \\
& \text { time }:=\frac{A_{\text {flow } 1} \cdot L}{Q_{\text {inf }}}=8 \mathrm{hr}
\end{aligned}
$$

Less than the required 24 hours for WQv event.

Retention Cell Design:

$A_{\text {lot } 2}:=A_{2}=1.052$ acre
(Infiltration Basin)

$$
A_{l o t 3}:=A_{3}=1.042 \text { acre }
$$

Will only take runoff from the lower section of
WQv Calculations: site (majority of parking lot)

$$
\begin{aligned}
& R_{v}:=0.96 \\
& W Q:=R_{v} \cdot 1.25 \mathrm{in} \quad A_{i}:=A_{l o t 2}+A_{l o t 3}=2.094 \text { acre } \\
& W Q_{v}:=W Q \cdot A_{i}=9120 \mathrm{ft}^{3}
\end{aligned}
$$

Other Rainfall Events: (NRCS TR-55 Per Iowa DNR)

$$
\begin{array}{l|l}
Q_{1}:=5.34 \frac{f t^{3}}{s} & 1 \text { year } \\
\hline Q_{2}:=6.19 \frac{f t^{3}}{s} & 2 \text { year } \\
\hline Q_{5}:=7.82 \frac{f t^{3}}{s} & 5 \text { year } \\
\hline Q_{10}:=9.40 \frac{f t^{3}}{s} & 10 \text { year } \\
\hline Q_{25}:=11.91 \frac{f t^{3}}{s} & 25 \text { year }
\end{array}
$$

Again, Online System

Table C2-S1-4: Soil specific recharge factors

Hydrologic Soil Group	Average Annual Recharge Volume (in/yr)	Soil Specific Recharge Factor (S)
A-Sandy	18	0.51
B-Silty	12	0.34
C-Clayey	6	0.17
D-Clayey	3	0.08

S chosen based on C and D soil groups (Clarion Loam)

Max. Allowable depth:

$$
\begin{aligned}
& f:=1.02 \frac{\mathrm{in}}{\mathrm{hr}} \quad T_{p}:=72 \mathrm{hr} \\
& d_{\text {max }}:=f \cdot T_{p}=6.12 \mathrm{ft} \\
& d_{\text {max }}:=4 \mathrm{ft}
\end{aligned}
$$

Channel Protection Volume:

$$
\begin{aligned}
& Q:=1.870 \text { in } q_{i}:=2.68 \frac{f t^{3}}{s} \quad q_{u}:=1632 \frac{f t^{3}}{s \cdot m i^{2} \cdot i n} \\
& q_{o q i}:=0.02 \\
& V_{s v r}:=0.683-1.43\left(q_{o q i}\right)+1.64 \cdot\left(q_{o q i}\right)^{2}-0.804 \cdot\left(q_{o q i}\right)^{3}=0.655 \\
& \\
& C_{p v}:=V_{s v r} \cdot Q \cdot A_{i}=9309.564 f t^{3}
\end{aligned}
$$

Overbank Flood Protection Volume:

$$
\begin{aligned}
& Q:=5.04 \text { in } \quad q_{i}:=11.91 \frac{f t^{3}}{s} \quad q_{u}:=3641 \frac{f t^{3}}{s \cdot m i^{2} \cdot i n} \\
& q_{o q i}:=0.02 \\
& V_{s v r}:=0.683-1.43\left(q_{o q i}\right)+1.64 \cdot\left(q_{o q i}\right)^{2}-0.804 \cdot\left(q_{o q i}\right)^{3}=0.655 \\
& O_{f p v}:=V_{s v r} \cdot Q \cdot A_{i}=25091.019 \mathrm{ft}^{3}
\end{aligned}
$$

Assuming Trapezoidal Basin:

$$
\begin{array}{l|l|l}
L:=375 \mathrm{ft} & W:=37.5 \mathrm{ft} & \mathrm{~m}:=3 \\
L_{b}:=L-2 \cdot m \cdot d_{\text {max }}=351 \mathrm{ft} & \frac{L}{W}=10 \\
W_{b}:=W-2 \cdot m \cdot d_{\text {max }}=13.5 \mathrm{ft} & &
\end{array}
$$

Dimensions based on remaining area of site.

$$
V:=\frac{\left(L \cdot W+L_{b} \cdot W_{b}\right) \cdot d_{\max }}{2}=37602 \mathrm{ft}^{3}
$$

$$
\begin{aligned}
& d_{b}:=24 \mathrm{in} \\
& T_{p}:=\frac{d_{b}}{f}=23.529 \mathrm{hr}
\end{aligned} \quad V:=\frac{\left(L \cdot W+L_{b} \cdot W_{b}\right) \cdot d_{b}}{2}=18801 \mathrm{ft}^{3}
$$

Under the 48 hour infiltration requirement for 24 inch depth. 24 inches is substantially larger than the WQv volume, meaning the WQv event will infiltrate in less than a day.

Appendix F - Detailed Cost Estimate

RSMeans Cost Data (TVM)

RSMeans Cost Data (TVM)							
Category	Item	2011			2020 (3\% Const Cost Inflation)		
		Material	Installation	Total	Material	Installation	Total
Concrete	Strip Footing	\$20,500	\$18,500	\$39,000	\$26,700	\$24,100	\$50,900
	Foundation Wall	\$27,000	\$45,500	\$72,500	\$35,200	\$59,400	\$94,600
	6" Slab on grade (reinforced)	\$75,600	\$62,200	\$137,800	\$98,600	\$81,200	\$179,800
Wood Framing and Structure	Exterior Walls (inc. Siding and drywall)	\$32,000	\$39,000	\$71,000	\$41,800	\$50,900	\$92,600
	Interior Walls (inc. drywall)	\$10,500	\$24,000	\$34,500	\$13,700	\$31,300	\$45,000
	Windows	\$2,000	\$1,000	\$3,000	\$2,600	\$1,300	\$3,900
	Doors	\$49,000	\$15,000	\$64,000	\$63,900	\$19,600	\$83,500
	Drywall Ceiling	\$11,000	\$37,000	\$48,000	\$14,400	\$48,300	\$62,600
	Wood Trusses	\$66,000	\$31,000	\$97,000	\$86,100	\$40,400	\$126,600
	Roofing Material (Asphalt Shingles)	\$18,500	\$18,000	\$36,500	\$24,100	\$23,500	\$47,600
Mechanical	70 Ton A/C Unit	\$85,000	\$53,000	\$138,000	\$110,900	\$69,200	\$180,100
	Heating Unit	\$58,000	\$51,500	\$109,500	\$75,700	\$67,200	\$142,900
Plumbing \& Electrical	9 Water Closets (3 Men, 6 Womens)	\$7,000	\$5,500	\$12,500	\$9,100	\$7,200	\$16,300
	2 Urinals	\$2,500	\$1,500	\$4,000	\$3,300	\$2,000	\$5,200
	6 Lavatories (3 \& 3)	\$3,600	\$3,300	\$6,900	\$4,700	\$4,300	\$9,000
	Kitchen Sink/Counters	\$2,000	\$1,000	\$3,000	\$2,600	\$1,300	\$3,900
	Light Fixtures	\$60,000	\$73,000	\$133,000	\$78,300	\$95,200	\$173,500
Finishes	Painting	\$4,500	\$14,000	\$18,500	\$5,900	\$18,300	\$24,100
	Wood floor	\$38,000	\$24,000	\$62,000	\$49,600	\$31,300	\$80,900
Green Design	Seeded Areas	\$30,000	\$18,000	\$48,000	\$39,100	\$23,500	\$62,600
	Subdrainage Piping	\$2,400	\$1,000	\$3,400	\$3,100	\$1,300	\$4,400
	Total	\$610,000	\$540,000	\$1,140,000	\$790,000	\$700,000	\$1,490,000

Appendix G - Gantt Chart

LAKE VIEW COMMUNITY CENTER
IWFD Engineering

Tssk	$\begin{gathered} \text { ASSIGNED } \\ \text { TO } \end{gathered}$	Prockess	stant	อvo
Phase 1: Design Proposal				
Alternate Solutions		100\%	2/3/20	2/4/20
Proposal Report Draft		100\%	2/4/20	2/6/20
Proposal Presentation Dratt		100\%	2/4/20	2/6/20
Proposal Report/Presentation		100\%	277/20	27/120
Proposal Presentation		100\%	2/10/20	2/14/20
Phase 2 : Design Development				
Site Arrangement		100\%	2/13/20	2/18/20
Foundations		100\%	2/13/20	2/18/20
Structural Options		100\%	2/13/20	2/18/20
Parking Lot Development		100\%	2/13/20	2/18/20
Hydrology Options		100\%	2/13/20	2/18/20
Phase 3: Design Analysis				
Structural System Analysis		100\%	3/5/20	4/17/20
Roof Analysis		100\%	2/25/20	4/17/20
Foundations Analysis		100\%	3/31/20	4/9/20
Site Design		100\%	2/20/20	3/10/20
Runoff Analysis		100\%	3/4/20	3/13/20
Pipe/Open Channel Flow Analysis		100\%	3/4/20	3/13/20
Phase 4: Design Draft				
30 Rendering Generation		100\%	3/23/20	4/17/20
Plan Generation		100\%	3/23/20	4/17/20
Report Generation		100\%	3/23/20	4/17/20
Presentation Creation		100\%	3/23/20	4/17720
Poster Creation		100\%	3/23/20	4/17/20
Phase 5 : Final Design				
3 R Rendering finalization		100\%	4/18/20	5/8/20
Final Plan Set		100\%	4/18/20	5/8/20
Final Calculations		100\%	4/18/20	5/8/20
Final Report		100\%	4/18/20	5/8/20
Presentation Creation		100\%	4/18/20	5/8/20
Poster Creation		100\%	4/18/20	5/8/20

Appendix H - References

References

ACI (American Concrete Institute). (2018). "Building code requirement for reinforced concrete." ACI 318, Farmington Hills, MI.

American Wood Council. (2017). Wood Frames Construction Manual (2018 ed.). Leesburg, VA: American Wood Council.

ASCE. 2010. Minimum Design Loads for Buildings and Other Structures. ASCE/SEI Standard 7-10

Bowles, J. E. (2012). Foundation Analysis and Design. New Delhi: McGraw-Hill Education (India) Private Limited.

Breyer, D. E. (2015). Design of wood structures--ASD (7th ed.). McGraw Hill.

ICC, International Code Council, Inc. (2015). 2015 IBC: International building code. Country Club Hills, IL.

Iowa Department of Natural Resources. (2009). Iowa DNR Stormwater Manual. Des Moines, Iowa: Iowa DNR.

Iowa State University. (2020). SUDAS Design Manual. Des Moines, Iowa: Iowa SUDAS Corporation.

