

FINAL DELIVERABLE

Title	Manchester Fire Station Expansion	
Completed By	Soe Htet, Francis Hart, Abbie Dirks, Benjamin Rowley	
Date Completed	December 2020	
UI Department	Civil & Environmental Engineering	
Course Name	Project Design and Management - CEE: 4850:0001	
Instructor	Paul Hanley	2020 - 12 2
Community Partners	City of Manchester, Manchester Fire Department	

This project was supported by the Iowa Initiative for Sustainable Communities (IISC), a community engagement program at the University of Iowa. IISC partners with rural and urban communities across the state to develop projects that university students and IISC pursues a dual mission of enhancing quality of life in Iowa while transforming teaching and learning at the University of Iowa.

Research conducted by faculty, staff, and students of The University of Iowa exists in the public domain. When referencing, implementing, or otherwise making use of the contents in this report, the following citation style is recommended:

[Student names], led by [Professor's name]. [Year]. [Title of report]. Research report produced through the Iowa Initiative for Sustainable Communities at the University of Iowa.

This publication may be available in alternative formats upon request.

Iowa Initiative for Sustainable Communities The University of Iowa 347 Jessup Hall Iowa City, IA, 52241 Phone: 319.335.0032 Email: iisc@uiowa.edu Website: http://iisc.uiowa.edu/

The University of Iowa prohibits discrimination in employment, educational programs, and activities on the basis of race, creed, color, religion, national origin, age, sex, pregnancy, disability, genetic information, status as a U.S. veteran, service in the U.S. military, sexual orientation, gender identity, associational preferences, or any other classification that deprives the person of consideration as an individual. The University also affirms its commitment to providing equal opportunities and equal access to University facilities. For additional information contact the Office of Equal Opportunity and Diversity, (319) 335-0705.

COLD STORAGE & Parking Lot Expansion

400 E Main St, Manchester, IA 52057 Manchester, IA Fire Department

HHDR Consultants University of Iowa Department of Civil & Environmental Engineering MANCHESTER FIRE DEPARTMENT

Table of Contents

SEC'	CTION 1: EXECUTIVE SUMMARY	2
<u>SEC</u>	CTION 2: ORGANIZATION AND QUALIFICATIONS	4
1.	NAME OF ORGANIZATION	4
2.	ORGANIZATION LOCATION AND CONTACT INFORMATION	4
3.	ORGANIZATION AND DESIGN TEAM DESCRIPTION	4
SEC'	CTION 3: DESIGN SERVICES	5
1.	Ргојест Scope	5
2.	Work Plan	6
<u>SEC</u>	CTION 4: CONSTRAINTS, CHALLENGES, AND IMPACTS	
1.	CONSTRAINTS	8
2.	CHALLENGES	8
3.	Societal Impact with the Community and/or State of Iowa	8
<u>SEC</u>	CTION 5: ALTERNATIVE SOLUTIONS CONSIDERED	9
<u>SEC</u>	CTION 6: FINAL DESIGN DETAILS	
<u>SEC</u>	CTION 7: ENGINEER'S COST ESTIMATE	13
<u>SEC</u>	CTION 8: APPENDICES	15
Α.	APPENDIX A: SITE DESIGN CALCULATIONS AND REFERENCES	15
В.	APPENDIX B: STRUCTURAL DESIGN REFERENCES	
C.	APPENDIX C: STRUCTURAL DESIGN ROOF CALCULATIONS	20
D.	APPENDIX D: STRUCTURAL DESIGN WALL CALCULATIONS	53
Ε.	APPENDIX E: STRUCTURAL DESIGN FOUNDATION AND FOOTING CALCULATIONS	62
F.	Appendix F: Gantt Chart	76
G.	APPENDIX G: BIBLIOGRAPHY	78

Section 1: Executive Summary

The city of Manchester, Iowa requested the services of HHDR Consultants to design a new cold storage facility and parking lot for their fire department. HHDR Consultants is made up of four civil engineering students led by project manager Soe M. Htet. He has worked on structural design of the new storage building with team member Abbie Dirks. The site design was completed by team members Benjamin Rowley and Francis Hart. The initial team meeting for this project began on August 24, 2020 and a finished report, presentation, and poster was delivered on December 11, 2020.

Infrequently used equipment currently occupies space in the existing fire station that could be better utilized for everyday needs of the department. The new cold storage facility will serve as the primary location to store this equipment, including but not limited to a boat, a trailer, kayaks, and ice water and rescue equipment. The department initially proposed a 30'x30' storage facility in the northwest corner of the lot; however, this configuration would not have been adequate to meet their storage requirements. Two building size alternatives were considered and presented to the Manchester Fire Department as well as multiple locations corresponding with maximized parking designs. After discussion, the final building design of 36'x40' was chosen, and a location just north of the generator was selected in order to maximize parking.

The Manchester Fire Department initially considered adding a wash bay but ultimately decided against pursuing this option at this time due to economics and parking capacity constraints. However, design considerations were made to allow for the addition of a wash bay on the north end of the building should the department decide to add one in the future. The storage facility will need to be expanded to 36'x49' to fit a wash bay, and it should be noted that this larger design will reduce the amount of parking available by 2 stalls. Additionally, if the wash bay is added, a portion of the sidewalk and verge will need to be removed to accommodate an additional paved entrance into the parking lot. This is required so that firetrucks may enter and exit the wash bay without reversing or turning around.

The final design with no wash bay consists of a 36'x40' cold storage facility located just north of the existing generator and setback several feet further to the east than the existing fire station. This location maximized parking and allows for a total of 28 parking spaces including 12 spaces on the existing concrete, 14 new regular parking stalls, and 2 new ADA compliant parking spaces on the new concrete. Existing drains, located on the north end of the existing concrete and in the alleyway south of the parking lot, will collect runoff from concrete. The concrete slope has been designed to facilitate this.

The storage building utilizes double fan trusses readily available from local retailers. Said trusses were designed to withstand gravity and lateral loads appropriate for a storage facility of its nature in accordance with applicable building codes and design standards. 14' high and 8" thick reinforced concrete masonry unit (CMU) walls are responsible for supporting the roof trusses, providing lateral support, and transferring applied loads to the building's foundations. The floor of the facility is a sloped 8" thick slab-on-grade foundation with gutter openings for easy drainage. Cast-in-place continuous footings run the length of the building beneath the CMU walls to support the structure. Two 12' tall garage doors will be located on the east wall. These doors are 12' wide and 10' wide to allow easy access for the trailer and boat. Additionally, one standard entrance door will be placed on the south wall and three windows will be located on the west wall of the storage building. A 6'x6' utility closet is partitioned on the south-east corner for the electricity panel, water heater, and any other utility storage equipment. A sink will be located on the south wall near the standard entrance door and shelving for storage will be added to the south and west walls.

The storage building roof and walls will be insulated with blow-in cellulose insulation to achieve required R values for Climate Zone 6 in which Manchester, Iowa is located. Electricity and heating layouts have both been completed for the new storage building. The walls of the new building will be covered with brick façade to match the existing fire station. The interior walls of the storage building will be covered with fiber reinforced plastic which can be easily washed down by hose.

The main challenge faced during this project was striking a balance between maximum storage space and maximum parking spaces on site. An additional challenge was keeping the overall project costs to a minimum in order to make implementation of the designs feasible. Constraints for this project included restrictions on the building's placement location due to city codes and setbacks requirements. Finally, an oak tree in the northwest corner of the site required protection. No construction or changes to the site are to be implemented within a 15' radius of this tree in to protect the roots. Additionally, during construction, the tree and its protected radius should be roped off to avoid any heavy vehicles driving above and damaging the roots.

The site design was completed using Civil 3D and includes the locations of existing and future utilities, stormwater drainage, access roads and sidewalks. Similarly, the parking lot has been designed using Civil 3D as well to account for size, location, numbers of stalls, vehicle tracking, pavement type and thickness. The structural drawings of the cold storage facility were completed using Revit and includes the framing plans of the roof, floor, and foundations.

The site design totals \$26,700 with the highest costs resulting from the pavement and utility connections. The cost of structural design for the cold storage facility is estimated at \$55,800 with the walls and overhead doors accounting for highest cost items. Interior structural costs, such as interior finishes and electrical and heating components, are estimated to cost \$13,400. The total construction cost was found to be \$140,500 which includes overhead and profit as well as a multiplier for inflation from 2011 to 2020.

Contingency is estimated to be 10% of construction costs. Engineering and administration are estimated to be 20% of construction costs. This results in an added \$14,100 for contingency and \$28,100 for engineering and administration bringing the total project cost to \$183,000.

Section 2: Organization and Qualifications

- <u>Name of Organization</u>
 HHDR Consultants
- Organization Location and Contact Information Soe M. Htet – Project Manager (347) 604 – 4099

shtet@uiowa.edu

3. Organization and Design Team Description
Soe M. Htet - Project manager (Structural Engineering)
Francis Hart - Civil designer (Management)
Abbie Dirks - Structural designer (Structural Engineering)
Benjamin Rowley - Civil designer (Transportation Engineering)

Section 3: Proposed Services

1. Project Scope

The Manchester Fire Station requested that our team design a cold storage facility to add storage space for a boat, a trailer, snow and ice rescue equipment, kayaks, grills, tents, and other infrequently used equipment. A 36'x40' one story structure was designed to accommodate these storage requirements. Special considerations have been made when sizing the overhead doors to ensure that the boat and trailer are able to access the facility. The design includes one walk-in standard size door located on the south side of the facility and two 12' tall overhang garage doors on the east side of the facility for full accessibility. The garage doors are 10' and 12' wide. In addition, the client expressed an interest in installing a wash bay within the new facility. The wash bay component was ultimately removed from the design due to cost considerations. However, the site has reserved a sufficient area to allow for the possibility of a future wash bay addition.

Site Design

The site has been designed to connect utilities (water, electric, and sewer) from their existing locations to the new cold storage facility. A new parking lot has been designed that connects with the old parking lot with the principal goal of maximizing on-site parking. The final parking design without a wash bay has 28 parking spaces and the parking design for the site with a wash bay added has 27 parking spaces. For both designs, the total spaces include two ADA stalls. Parking lot and site design aspects follow specifications from the SUDAS Design and Specifications Manual. Parking standards and ADA compliance will be found in the Iowa DOT Design Manual.

Storage Building Design

Structural design for the 36'x40' cold storage building was separated into three main phases: roof design, wall design, and foundation design. The roof framing consists of 36' 4/12 double fan trusses. 8" CMU walls support the roof framing and provide lateral load resistance. The foundation consists of continuous footings with slab-on-grade flooring. Two 12' tall garage doors will be located on the east wall of the storage building. These doors are 10' and 12' wide to allow easy access for the trailer and boat. Additionally, one standard entrance door is placed on the south wall, one window is on the south wall, and three windows will be located on the west wall of the storage building. A 6'x 6' utility closet is partitioned in the south-east corner of the building to store electricity panels, a water heater, and other utility storage equipment. A sink will be located on the south wall just west of the entry door while shelving for storage will be added to the south and west walls.

2. Work Plan

Figure 1: Fire Station Expansion Work Plan

- 1. Project Start and Data Collection
 - i. Initial meetings with Professor Hanley and team to discuss progress and objectives
 - ii. Introductory client contact meeting over Zoom
- 2. Concept Development and Field Assessment
 - i. Site visit with client
 - ii. Determine and report a project schedule
 - iii. Review details of the current site and applicable codes
- 3. Design Concept Development
 - i. Civil 3D model of the current site and parking lot
 - ii. Revit 3D model of storage building and alternative options
 - iii. Preliminary drawings
 - iv. Preliminary cost estimate
- 4. Structural Design
 - i. <u>Roof Design</u>: Design of roof framing members using structural analysis software to comply with applicable design codes.
 - ii. <u>Wall Framing Design</u>: Design of wall framing members using structural analysis software to comply with applicable design codes.
 - iii. <u>Foundation Design</u>: Design of foundations and flooring using structural analysis software to comply with applicable design codes.
 - iv. Preliminary MEP Design
 - v. Structural Drawings: Drafting of appropriate structural drawings using Revit
- 5. Site Design
 - i. <u>Drainage</u>
 - ii. <u>Grading and Parking Pavement Elevations</u>: Design new concrete to line up with existing parking lot and alleyway elevations
 - iii. <u>Parking Layout:</u> Maximize parking spaces on lot
 - iv. <u>Utilities:</u> Connecting water, sanitary sewer, and electricity to the new storage building
- 6. Project Management and Coordination
 - i. Determine cost of project and budget break down
 - ii. Compose drafts of final report, presentations, and poster
 - iii. Presentation of design
 - iv. Compose final report, presentations, and poster

Project manager Soe Htet and team member Abbie Dirks split up work on structural design. Team members Benjamin Rowley and Francis Hart worked on site design. All team members took part in data collection, design concept development, and project management and coordination.

Section 4: Constraints, Challenges, and Impacts

1. Constraints

This project was primarily constrained by the space available on site. The current fire station, the generator on the east side of the empty lot and a tree in the northwest corner all are fixed elements that could not be changed, restricting where building was acceptable on site. The current parking lot pavement was required to remain as is, therefore the new parking lot will be expanded off the existing lot. In addition, setback limits enforced by the city have been considered and limited expansion near edges of the lot.

2. Challenges

The fire department requested storage space for several large objects including a boat, trailer, and wash bay. In order to accommodate all these elements, the storage building constructed needed to be relatively large. The department also requested that the parking capacity on site be maximized, however, space is limited on site. One challenged was balancing the amount of space allotted to parking and to the storage building in order to maximize both. A specific budget was not discussed, but since this project is supported by the community keeping project costs to a minimum was an important consideration at every step of the process. The size of the cold storage facility was limited by removing the wash bay in order to make implementation of the project realistic. A large portion of the existing sidewalk is greatly damaged and will need to be repaved. Finally, our team was asked to create the parking lot so that it was as accessible as possible for snowplows. Our design allows for easy access to the majority of the lot, although it may still be difficult to clear the site between the new storage building, generator, and existing fire building. This was a comprise made to allow for more parking and storage.

3. Societal Impact within the Community and/or State of Iowa

The addition of a storage building will give the fire department easy access to equipment and improve overall organization, which in turn will have a positive impact on the community by allowing the department to respond to calls as quickly as possible. The parking on site is sometimes used for nearby community events, therefore, expanding the parking will positively impact community members who choose to park here. The church next door was specifically mentioned as a community who uses the lot for overflow parking, and this expansion will benefit them. Another advantage of an expanded parking lot is that extra pavement provides additional space for outdoor storage and room for outdoor work such as cleaning of equipment when cars are not using the space.

Section 5: Alternative Designs That Were Considered

Two alternatives for storage buildings were discussed with Manchester at our second meeting. Several locations for the storage facility with corresponding parking lot options were explored as well. One such location considered was adjacent to and north of the generator and current fire station, slightly set back from the west property line. This location allowed for more parking spaces but made snow removal more difficult between the existing building, generator, and new storage building. Another alternative location considered was along the west property line setback to be parallel with the current Manchester Fire Department building. This option resulted in fewer parking spaces and made the possibility a future wash bay more difficult to implement but would have made snow removal simpler near the generator.

The first building size presented to Manchester was a 36'x36' building. This was the original footprint proposed during the project kickoff and would have provided enough space for a boat, a trailer as well as limited shelving. This option was determined to be unsatisfactory and failed to meet all the storage requirements requested.

The second building size presented had a larger dimension of 36'x49'. This option provided enough space for a wash bay in addition to the storage space for the equipment mentioned previously. This option was the best fit for the fire departments storage needs. However, it would have cost more and reduced the area available for parking.

After a second meeting with the Manchester Fire Department and discussing the available options, it was concluded that the 36'x40' storage facility was the most ideal option. The extra 4' length would allow for additional storage shelves without sacrificing parking capacity. Ultimately, it was decided that a wash bay was too expensive to include at this time but may be an addition the department could reconsider at a future date. The first location discussed, closer to the generator and slightly set back from the west property setback line, was therefore chosen. This location allowed for maximizing the parking capacity and made the possibility of a future wash bay easier to implement.

Section 6: Final Design Details

Site Design:

Paving and elevations

A new parking lot has been designed to line up with the existing lot in order to increase parking capacity. This can be accomplished by clearing the existing ground then preparing and compacting a 6" subgrade using native materials. A 6" granular subbase will then sit on top of the compacted subgrade. Finally, the subbase will be topped with a 6" layer of Portland Cement Concrete (PCC) paving. The 6" PCC was determined by using a website called Pavement Designer to see the thickness that would be needed to support the loads. The thickness from Pavement Designer was compared to the minimum thickness required by SUDAS. Since the thickness determined by Pavement Designer was 3.75", it is under the SUDAS minimum so the minimum SUDAS thickness of 6" was used for the parking lot thickness. A parking surface drawing is available in the Project Drawing Set (P-1) and includes elevations taken at the top of pavement. The subbase and subgrade should be elevated accordingly. The east side and south side of the parking lot will match the existing elevation of the existing parking lot (east) and the existing alley (south).

Drainage

The parking lot will funnel all water that falls onto the pavement centrally and then to one of the existing storm water intakes on both the south and east sides of the pavement. The parking lot is designed into two sections, a top half, and a bottom half. The top half is designed so water slopes from the north and south to meet in the middle and then flows to the east towards the existing intake. This top half is designed to have a slope of 1.5%. Runoff calculations were performed using the Rational Method and using chapter 3 of the Iowa Storm Water Management Manual. The 5-Yr and 25-Yr peak runoff flows were 0.31 ft³/s and 0.48 ft³/s, respectively. The bottom half is designed so the water slopes from the east and west to meet in the middle and then flows south towards an existing storm intake which is in the alley. This bottom half is designed to have a slope of 3.5%. The bottom half of the parking lot was calculated using the same method as above. The 5-Yr and 25-Yr peak runoff flows were 0.16 ft³/s and 0.25 ft³/s, respectively. The slope of the top half and bottom half don't meet the same slope because the existing alley and parking lot are at different elevations so in order to have the proposed lot meet existing, the slopes of the proposed lot will have to vary as shown in the Project Drawing Set (P-1).

Parking layout

A parking space striping layout is also included in the Project Drawing Set (P-2). The new parking lot design without a wash bay will allow for 12 parking spaces on the original pavement, 14 additional regular spaces on the new pavement, and 2 ADA accessible spaces also on the new pavement. According to SUDAS, with less than 25 parking stalls, there should be 1 ADA accessible parking stall. One additional stall than was necessary was added to create more ADA accessibility. If a wash bay is added there will be room for the same 12 original parking spaces on the old pavement as well as 13 new regular spaces and 2 new ADA spaces on the new concrete. This results in a total of 28 parking spaces without a wash bay and 27 if a wash bay is added.

Utilities

Both the existing sanitary sewer and water service utility lines have been designed to connect to the new storage facility. There will be a new 6" PVC sanitary sewer that connects from the storage building to the existing 8" sanitary sewer in the alley. This pipe will run north to south as the new storage facility is located north of the existing sanitary line. On the north end of the storage building there will be a clean out added for a potential drain if a wash bay is added in the future. In the middle of the storage building a floor drain will be included and pavement slab will be laid at a 0.5% slope to direct water towards this central drain. The water service will run from the north side of the property, as shown on the Proposed Utilities Drawing in the Project Drawing Set (P-5 and P-6), down to the south side of the storage building. The service will connect to the existing pipe at a gate valve and will be a ³/₄" PVC pipe that ends at the sink located on the south wall of the building. There is no new proposed storm sewer since the pavement should allow the water to flow to the existing intakes in the parking lot and alley. More information in Appendix A.

Storage Building Design:

Structural components were calculated using structural analysis programs and are designed to comply with local building ordinances, IBC, ASCE, ACI, AISC and all other applicable standards and codes. 3D renderings of the proposed structure are provided for reference and structural drawing have been drafted as part of the final deliverable.

Roof

A hip and gable roof with an east-west orientation spanning 36' and sloped at a pitch of 4:12 was chosen in order to match the aesthetics of existing fire station and to maintain a low profile within the neighborhood. Double fan wooden trusses were selected as the primary roof framing member over steel alternatives due to their relative ease of availability and cost effectiveness for a facility of this size and loading. Due to wide variability in species, grading and sizing of truss components amongst manufacturers, all truss calculations presented assumed the use of 2"x8" No.1 Douglas Fir Larch for bottom chord, top chord, and web members. Said truss members were modeled in RISA 2D as pinned simply supported beams and subjected to the appropriate gravity and lateral load criteria. The results of the analysis were used to ensure the truss members met the required bending, shear and bearing resistance in accordance with NDS 2018. Design calculations for the truss can be reviewed on pages 44 through 47 of Appendix C. The trusses themselves are spaced 4'-0" OC across the 40' north-south span of the facility. CFR insulated steel metal roof panels will be implemented for weathertight roof performance. An insulation R value of 49 was calculated as necessary for roof insulation in Manchester, Iowa which is located in Climate Zone 6 according to the US Department of Energy (see Appendix B Figure 5 and Figure 6). 42" wide panels with 6" deep insulation will provide an R value of 49.75 which is greater than the requirement of 49. These panels use vertical side seaming and a lock and groove system to reduce joints that need to be sealed and make installation simple. The panels are predrilled for fasteners so that they can be easily screwed onto the wooden truss roof system below.

8"x8"x16" grouted CMU blocks made up the building's exterior walls. A brick façade is applied to the exterior to match the aesthetic of the existing fire station. The exterior walls extend 14' above grade, 1'-6" below grade and are designed using NWC (w = 150 PCF) with a compressive strength of 4000 PSI. In accordance with Ch. 11 ACI 318-19, 60 grade #4 vertical reinforcement bars placed 1'-6" OC and 60 grade #4 horizontal reinforcement bars placed 1'-0" OC are provided for shear and flexural resistance. The reinforced CMU was determined to meet the required shear, bending, axial and slenderness ratio requirements as recommended by ACI 318-19. These calculations can be reviewed on pages 55 to 57 of Appendix D.

Prefabricated steel lintels were selected to support the load bearing on the windows and doors. Three separate lintel designs have been calculated for the 12' wide garage door, the 10' wide garage door, and the standard size entrance door and windows. Dead load calculations for bearing on these lintels can be viewed on pages 57-62 of Appendices D. Drawings of these lintels can be reviewed on S-09. Lintels will sit on steel plates above doors and windows and be anchored to the CMU walls. Dead loads bearing on the lintels were checked to be sufficiently smaller than the acceptable total ultimate dead load allowed for each prefabricated lintel. Lengths of lintels were calculated to be greater than the length of the clear span plus two times the height of the lintel according to the AISC 15th Edition Steel Design Manual. The 12' wide opening uses a lintel with length of 13.8 ft. The 10' garage opening will be fitted with a lintel that is 13.3' long. Finally, the standard sized entry door and 4 standard sized window gaps will be fitted with lintels that are 6.9' long.

Fiber reinforced plastic (FRP) is used for the interior finish for its water resistance and ability to be hosed down for cleaning purposes. According to the US Department of Energy walls in Climate Zone 6 require insulation R values of 13, see Appendix B Figure 5 and Figure 6. It is most cost effective to install a 3.5" thick layer of blown in cellulose insulation alongside a 0.9" thick sheet of FRP rather than exclusively using FRP. The insulation from the blown in cellulose will result in an insulation R value of 13.3, greater than the requirement of 13.

Foundation and Footings

Continuous footings were chosen to act as the foundations for the structure. The footings are designed to be cast-in-place using NWC (wc = 150 PCF) with a compressive strength f'c of 4000 PSI. To accommodate for a soil bearing capacity of 100 kN/m², the footings are 1'-6" thick, 4' wide and run the entire length of the structure beneath the walls. In accordance with ASCE 7-16, the footings were designed to meet bearing and uplift requirements. 60 grade #4 rebars spaced 10' along the transverse direction and 22 60 grade #8 rebars along the span of the footings are provided as recommended by ACI 318-19. A sloped 8" thick concrete slab is designed to rest directly above the grade to serve as flooring. This is in accordance with ACI 318 bearing strength requirements which can be viewed in Table 8 of Appendix B. A channel located at the center of the slab running along the north-south span accommodates the gutter.

Interior Building Design:

Electrical Design and Layout

The storage building was designed to maximize the productivity of those working inside it. Twenty-two 15-amp duplex receptacle outlets were chosen to be positioned across all 3 walls, inside the utility closet, in between the overhead doors and in the ceiling centered with the overhead doors. The 6 outlets positioned on the north wall reside on one 15-amp circuit breaker, the 6 outlets positioned on the west wall reside on one 15-amp circuit breaker, and 6 outlets positioned on the south wall and in the utility closet reside on another 15-amp circuit breaker. The final 4 outlets, two between the overhead doors and one for each overhead door, remain on one 15-amp circuit breaker. US National Electrical Code, Section 210.52, calls for outlets to be no more than 6 feet apart and the outlets designed in the storage building are spaced every 6 feet, except in the corners of the building. Two 100-amp electrical panels will be required to power the storage building. This takes into account everything in the current plan, while also leaving a buffer for future growth. A visual representation of the aforementioned electrical design and layout is included in the Project Drawing Set, drawing E-1.

Lighting Fixture Layout

Three columns of 3 LED tube lights were chosen to illuminate the space. Visual 3D (see Appendix G - Bibliography) was used to select the specific model of light fixture, EMS L48 6000LM IMACD MD 80CRI 40K. Each column of light fixtures is controlled by their own switch. There are two locations for these switches, one set is located on the south wall and the second set is located between the overhead doors. All exterior walls will be illuminated by 12.5" LED dusk-to-dawn soffit lights, 4 on each side spaced 10' apart on the east and west walls, and 9' apart on the north and south walls. The two sets of switches to control these exterior lights will be located in the northeast corner of the storage building and just inside the door on the south wall. A visual representation of the aforementioned lighting fixture layout is included in the Project Drawing Set, drawing E-2.

Heating, Ventilation

A forced air furnace is to be installed in the utility closet. This furnace will exhaust to the exterior through a short PVC pipe. Duct work will connect to the furnace to transfer warm air throughout the building and for general circulation. A tankless water heater will also be installed in the same utility closet, then being connected to the sink. The tankless heater is designed to handle 1-2 bathrooms, so will prove sufficient for the storage building. The main focus of the heating design is to keep everything from freezing. Those working inside the storage building will not do so at extended periods of time so it was deemed not necessary to heat the interior to that of a residential building. A visual representation of the aforementioned heating and ventilation layout is included in the Project Drawing Set, drawing HV-1.

Section 7: Engineer's Cost Estimate

Both a basic construction estimate and an estimate with this construction cost plus overhead and profit increased for inflation from 2011 to 2020 were calculated. Costs for the project can be separated into three main categories site design, structural design, and interior building costs such as heating and electricity. Site design costs include grading and utility work and lines. The largest costs from structural design are due to CMU walls, wood trusses, and roofing materials. These three categories together total a cost of \$98,000. When overhead and profit are added in this results in a total construction cost of \$121,000 in 2011 and jumps to \$140,500 in 2020 after inflation is factored in. A breakdown of individual costs per item can be viewed in Figure 2 below. All individual costs were found and calculated using RS Means. RS Means rounding standards were applied to our costs and total cost estimations and can be viewed in Table 3.

After this total construction cost was calculated allowances for contingency as well as engineering and administration were included. 10% of the 2020 construction cost with overhead and profit was added as contingency and 20% of this cost was added for engineering and administration. A total of \$14,100 was added for contingency and \$28,100 was added for engineering and administration. This brings the total project cost to \$183,000.

Qty	Line Number	~	Ø.	Т	Description	Unit	Extended Total	Extended Total O&P
1.00	220576100180				Cleanout, floor type, round or square, scoriated nickel b	Ea.	\$424.00	\$517.00
11.00	054413600270	٠			Roof truss, using galv LB metal studs, fink (W) or King F	Ea.	\$2,508.00	\$3,179.00
127.00	312323142020				Backfill, structural, common earth, 80 H.P. dozer, 50' hau	L.C.Y.	\$118.11	\$157.48
80.00	077123300400				Aluminum gutters, stock units, enameled, 5" box, .032"	L.F.	\$538.40	\$705.60
12.00	265113508610				Accent lights, interior, 0.5 W low voltage incandescent, c	L.F.	\$371.88	\$416.52
98.00	331113253960				Water supply distribution piping, polyvinyl chloride press	L.F.	\$69.58	\$98.00
70.00	333113252040				Public Sanitary Utility Sewerage Piping, piping polyvinyl	L.F.	\$441.70	\$566.30
28.00	077123100700				Aluminum downspouts, round, corrugated, 4" diameter,	L.F.	\$151.76	\$201.04
2128.00	097733100030				Fiberglass Reinforced Plastic Panels, on walls, adhesive r	S.F.	\$5,511.52	\$7,043.68
1440.00	033053404840				Structural concrete, in place, slab on grade (3500 psi), c	S.F.	\$5,011.20	\$5,990.40
6600.00	033053404820				Structural concrete, in place, slab on grade (3500 psi), c	S.F.	\$18,084.00	\$21,978.00
2128.00	042210420300				Concrete masonry unit (CMU), screen block, 2000 psi, 8	S.F.	\$18,917.92	\$25,833.92
1440.00	061210100570	٠			Structural insulated panels, 7/16" OSB both sides, straw	S.F.	\$15,681.60	\$17,668.80
644.44	312216100011				Fine grading, finish grading granular subbase for highwa	S.Y.	\$302.89	\$393.11
12.00	265113100360				Fixture hangers, flexible, 1/2" diameter, 6" long	Ea.	\$543.60	\$750.00
1.00	331113254170				Water supply distribution piping, fitting, 90 degree elbov	Ea.	\$6.32	\$8.79
1.00	331113254340				Water supply distribution piping, fitting, tee, class 200 p	Ea.	\$9.88	\$13.66
2.00	083613102300				Doors, overhead, commercial, stock, fiberglass and alur	Ea.	\$6,170.00	\$7,160.00
1.00	019313151883				Clean single sink	Ea.	\$10.11	\$15.39
1.00	333113253080				Public Sanitary Utility Sewerage Piping, piping polyvinyl	Ea.	\$66.50	\$93.50
12.00	052119106400				Individual steel bearing plate, 6" x 6" x 1/4", with J-hool	Ea.	\$106.92	\$128.28
1.00	333113253160				Public Sanitary Utility Sewerage Piping, tees, polyvinyl cl	Ea.	\$125.00	\$168.50
1.00	221319140400				Drain, floor receptor, 12-1/2" square top, 25 square inch	Ea.	\$176.00	\$193.00
1.00	331213154100				Water Service Connection, ductile iron, cement lined, 6"	Ea.	\$257.00	\$385.00
644.44	312216101050				Fine grading, fine grade for small irregular areas, to 15,(S.Y.	\$1,205.10	\$1,585.32
240.00	031113550020				C.I.P. concrete forms, mat foundation, plywood, 1 use, i	SFCA	\$2,253.60	\$3,201.60
11.00	260519550150				Non-metallic sheathed cable, copper with ground wire, 6	C.L.F.	\$1,919.50	\$2,739.00
1.00	331216103810				Water Utility distribution Valves, gate valves, cast iron, n	Ea.	\$658.50	\$786.00
22.00	260590104015				Receptacle devices, resi, duplex outlet, ivory, type NM ca	Ea.	\$805.20	\$1,122.00
4.00	080153810140				Windows, solid vinyl replacement, casement, insulated g	Ea.	\$1,192.00	\$1,460.00
7.00	034843401250				Precast lintel, 5' to 12' long, 8" wide, 8" high, 12' long, s	Ea.	\$1,564.50	\$1,918.00
180.00	032105750100				Splice rebar, standard, self-aligning type, taper threaded	Ea.	\$1,962.00	\$2,754.00
120.00	032105750120	٠			Splice rebar, standard, self-aligning type, taper threaded	Ea.	\$2,010.00	\$2,790.00
10.00	262413400160				Circuit breakers, 1 pole, 240 V, 15 to 60 amp, FA frame,	Ea.	\$1,655.00	\$2,005.00
1520.00	053123503350				Metal roof decking, steel, open type N wide rib, galvaniz	S.F.	\$3,465.60	\$4,240.80
1.00	235413101040				Furnace, hot air heating, blowers, electric, 17.1 MBH, U.	Ea.	\$692.00	\$841.00
1	00000000001		a		Water heater, instantaneous, electric, point of use (6.6 C	Ea.	\$580.00	\$116.00
12.00	00000000002		a		Motion Sensor Dusk to Dusk LED Flushmount Button Lig	Ea.	\$1,080.00	\$359.88
1.00	081116100030				Doors & Frames, aluminum, entrance, narrow stile, clear	Ea.	\$1,130.00	\$1,500.00
							\$97,776.89	\$121,083.57

Figure 2: RS Means Cost Estimation (2011 Prices)

Table 1: Construction Costs

Category	Items	Cost
Structural Design	Walls	\$36,700
	Windows and Doors	\$8,500
	Foundation, Floor, and Drain	\$6,425
	Roof	\$4,200
	Total Structural Costs	\$55,800
Site Design	6" Pavement	\$23,000
	Utilities	\$2,075
	Grading	\$1625
	Total Site Costs	\$26,700
Interior Structural Costs	Electrical	\$6,525
	Interior Finishes	\$5,525
	Heating	\$1,325
	Total Interior Costs	\$13,400
Total Construction Cost		\$98,000
Construction Cost Including Overh	nead and Profit (2020)	\$140,500

Table 2: Total Project Cost

Category	Cost
Construction Cost Including Overhead and Profit (2020)	\$140,500
Contingency	\$14,100
Engineering and Administration	\$28,100
Total Project Cost	\$183,000

Table 3: RS Means Rounding Standards

Prices From	То	Rounded to Nearest
\$0.01	\$5.00	\$0.01
5.01	20.00	0.05
20.01	100.00	1.00
100.01	1,000.00	5.00
1,000.01	10,000.00	25.00
10,000.01	50,000.00	100.00
50,000.01	Up	500.00

Section 8: Proposal Attachments

Appendix A: Site Design Calculations and References

Pavement Standards:

Figure 3: Pavementdesigner.org Screenshot of Parking Lot Requirement Results

Pavement Designer website did not reach the minimum requirements that were specified in SUDAS so the pavement thickness was altered according to SUDAS Design Manual. Pavement was designed with a 6" subbase and 6" subgrade for the equivalence of the 12" subgrade. That is why the desirable value of a 6" pavement was chosen.

Table 3: SUDAS Table 8B-1.03: Pavement Thickness for Light Loads

Subgrade	Surface	On 12" of Prepared Subgrad		On 12" of Prep with 4" Gran	ared Subgrade ular Subbase
CBR	Material	Minimum	Desirable	Minimum	Desirable
0	Rigid	5"	6"	4"	5"
9	Flexible	5"	6"	4"	5"
6	Rigid	5"	6"	4"	5"
0	Flexible	5"	6"	4"	5"
12	Rigid	5"	6"	4"	5"
U S	Flexible	6"	6"	5"	5"

Table 8B-1.03: Pavement Thickness for Light Loads (Parking lots with 200 or less cars/day and/or 2 or less trucks/day or equivalent axle loads)

Parking Standards:

Most of the design criteria for the parking lot and parking stalls was found in SUDAS Design Manual, Chapter 8. For the parking stalls, according to SUDAS Design Manual Chapter 8B-part C.1, the Facility Type is for "Low turnover" which requires a stall width of 8'-6".

Table 4: SUDAS Table 8B-1.01 Recommended Minimum Widths for Parking Stalls

Table 8B-1.01: Recommended Minimum Widths for Parking Stalls

Facility Type	Width
Low turnover (employees, students, etc)	8'-6"
Moderate to high turnover (retail, medical facilities, etc.)	9'-0"

Source: Urban Land Institute, National Parking Association

The parking dimensions for all the spots were done using Vehicle Tracking from Civil 3D which were up to SUDAS standards for the different parking angles.

Table 5: SUDAS Table 8B-1.02: Minimum Parking Dimensions

				Parking Angle (θ)				
	Parki	ng Lot Dimension	on Two-way Aisle One-way Aisle			y Aisle		
				90° 60° 45° 60° 45°				45°
Stal	l Projecti	on	SP	18'-0"	15'-7"	12'-9"	15'-7"	12'-9"
Aisl	e Width		Α	24'-0"	25'-10"	29'-8"	20'-4"	21'-6"
Base	e Module	;	M_1	60'-0''	57'-0"	55'-2"	51'-6"	47'-0"
Sing	gle Loade	d Module	M_2	42'-0"	39'-0"	37'-7"	32'-6"	29'-5"
Wal	l to Inter	lock	M ₃	60'-0"	55'-10"	52'-2"	49'-4"	44'-0"
Interlock to Interlock		M_4	60'-0"	53'-8"	49'-2"	47'-2"	41'-0"	
Ove	rhang		o	2'-6"	2'-2"	1'-9"	2'-2"	1'-9"
ч	(ev cr)	Width Projection	WP	8'-6"	9'-10"	12'-0"	9'-10"	12'-0"
Widt	0-0	Interlock	i	0'-0"	2'-2"	3'-0"	2'-2"	3'-0"
tall V	01.07	Width Projection	WP	9'-0"	10'-5"	12'-9"	10'-5"	12'-9"
ŝ	9-0	Interlock	i	0'-0"	2'-3"	3'-2"	2'-3"	3'-2"

Table 8B-1.02: Minimum Parking Dimensions

The number of parking spaces in the new lot are determined based off of the design that is chosen by the client. All options are under 25 parking spaces. The number of accessible spaces is based off of SUDAS Design Manual Chapter 8C-part B.2.

Table 6: SUDAS Table 8C-1.02: Minimum Accessible Parking Ratios

Total Number of Spaces Provided	Minimum Number of Accessible Spaces
1 to 25	
26 to 50	2
51 to 75	3
76 to 100	4
101 to 150	5
151 to 200	6
201 to 300	7
301 to 400	8
401 to 500	9
501 to 1,000	2% of total
1,001 and over	20, plus 1 for each 100, or fraction thereof, over 1,000

Table 8C-1.02: Minimum Accessible Parking Ratios

For spaces between 1 to 25, the minimum number of accessible spaces is 1 and that space needs to be van accessible. 1 van accessible spot and 1 car accessible spot was deemed sufficient.

Water Service Placement:

Water mains and services need to be placed at a certain depth below the surface in order to be under the freeze line. According to SUDAS Design Manual Chapter 4C part B.6, the minimum depth of cover in Delaware County should be 5'.

Figure 4C-1.01: Minimum Depth of Cover for Water Main Installation

Figure 4: SUDAS Figure 4C-1.01 Minimum Depth of Cover for Water Main Installation

Sanitary Sewer Placement:

The separation of the water service and the sanitary sewer should be at least 18" from the top of the sanitary and the bottom of the water service as stated in SUDAS Design Manual Chapter 8C part G.1.

Appendix B: Structural Design References

Figure 5: Insulation Climate Zones from Energystar.gov

Insulation I	sulation R-Values for Location, Heat Type & Area*					
Location	Heat Type	Attic	Wall	Floor	Crawl Space Wall**	Basement Wall
	Natural Gas	38-49	13	13	13	11
	Oil Furnace	38-49	13	13	13	11
7000 1	Electric Furnace	38-49	13	13	13	11
Zone 1	Electric Baseboard	38-49	13	13	13	11
	Heat Pump	38-49	13	13	13	11
	LPG Furnace	38-49	13	13	13	11
	Natural Gas	38	13	13-19	13	11
	Oil Furnace	38	13	13-19	13-25	11
7000 2	Electric Furnace	38-49	13	19-25	25	11
2016 2	Electric Baseboard	38-49	13	13-25	13-25	11
	Heat Pump	38	13	13-19	13	11
	LPG Furnace	38-49	13	19-30	25	11
	Natural Gas	30-38	13	13-19	13-25	11
	Oil Furnace	38	13	13-19	13	11
Zana 2	Electric Furnace 38 13	13-19	13-25	11		
Zone 3	Electric Baseboard	38	13	13-19	13	11
	Heat Pump	30-38	13	13	13	11
	LPG Furnace	38-49	13	13-30	13-25	11
	Natural Gas	38-49	13	25-30	25	11
	Oil Furnace	49	13	30	25	11
Zono A	Electric Furnace	38-49	13	25-30	25	25
20116 4	Electric Baseboard	49	13	30	25	11
	Heat Pump	38-49	13	13-25	13-25	11
	LPG Furnace	49	13	30	25	11-25
	Natural Gas	38	13	25	25	11
	Oil Furnace	49	13	30	25	11-15
Zone 5	Electric Furnace	49	13	30	25	25
2016 5	Electric Baseboard	49	13	30	25	11
	Heat Pump	38	13	30	25	11
	LPG Furnace	49	13	30	25	25
	Natural Gas	49	13	30	25	25
	Oil Furnace 49 13 30	25	25			
7000 6.8	Electric Furnace	49	13	30	25	25
20110 0-0	Electric Baseboard	49	13	30	25	25
	Heat Pump	49	13	30	25	25
	LPG Furnace	49	13	30	25	25

Figure 6: Insulation Climate Zone R-Value Requirements from Energystar.gov

Figure 7: Soil analysis for our site by the United States Department of Agriculture (USDA)

Table 7: Food and Agricultural Organization (FAO) of the United Nations Soil Bearing Capacities

Table 5.6 Soil Bearing Capacities

Soil Type	kN/m ²
Soft, wet, pasty or muddy soil	27 - 35
Alluvial soil, loam, sandy loam (clay +40 to 70% sand)	80 - 160
Sandy clay loam (clay +30% sand), moist clay	215 - 270
Compact clay, nearly dry	215 - 270
Solid clay with very fine sand	- 430
Dry compact clay (thick layer)	320 - 540
Loose sand	160 - 270
Compact sand	215 - 320
Red earth	- 320
Murram	- 430
Compact gravel	750 - 970
Rock	- 1700

Table 8: ACI Table A1.2: Allowable Distribution Loads

Table A	1 2A	lowable	distri	hutic	n lo	ade					Subgrad	le k = 100) lb/in.3	5†			
uniointe	ed aisle	s unifo	rm loa	ding	and	d var	iable		_	300	4.7	865	900	1090	1470	1745	1810
lavout:	PCA m	ethod		ung	, un	a vui	labic		5	350	4.7	1010	1050	1270	1715	2035	2115
luyout,		cinou								400	4.7	1155	1200	1455	1955	2325	2415
				Allow	vable l	oad, lb	/ft ²	_		300	5.4	950	955	1065	1320	1700	1925
		Critical	At		At othe	er aisle	width	S	6	350	5.4	1105	1115	1245	1540	1985	2245
Slab	Working	aisle	critical	6.0	9.6	10.0	12.6	14.0	_	400	5.4	1265	1275	1420	1760	2270	2565
in.	DSi	width, in.*	width	aisle	aisle	aisle	aisle	aisle		300	6.7	1095	1105	1120	1240	1465	1815
		Subara	de k = 50	50 lb/in ^{3†}			8	350	6.7	1280	1285	1305	1445	1705	2120		
	300	56	610	615	670	815	1050	1215		400	6.7	1460	1470	1495	1650	1950	2420
5	350	5.6	710	715	785	950	1225	1420		300	7.9	1215	1265	1215	1270	1395	1610
5	400	5.6	815	815 820 895 1085 1400 1620 10	10	350	7.9	1420	1475	1420	1480	1630	1880				
	300	6.4	670	675	695	780	945	1175		400	7.9	1625	1645	1625	1690	1860	2150
6	350	6.4	785	785	810	910	1100	1370	_	300	9.1	1320	1425	1325	1330	1400	1535
-	400	6.4	895	895	925	1040	1260	1570	12	350	9.1	1540	1665	1545	1550	1635	1795
	300	8.0	770	800	770	800	880	1010		400	9.1	1755	1900	1770	1770	1865	2050
8	350	8.0	900	935	900	935	1025	1180	_	300	10.2	1405	1590	1445	1405	1435	1525
	400	8.0	1025	1070	1025	1065	1175	1350	14	350	10.2	1640	1855	1685	1640	1675	1775
	300	9.4	845	930	855	850	885	960		400	10.2	1875	2120	1925	1875	1915	2030
10	350	9.4	985	1085	1000	990	1035	1120			Subara	k = 200	1b/in	8†			
	400	9.4	1130	1240	1145	1135	1185	1285	-	300	40	1225	1400	1930	2450	2565	2520
	300	10.8	915	1065	955	915	925	965	5	350	4.0	1425	1630	2255	2860	2000	2040
12	350	10.8	1065	1240	1115	1070	1080	1125	5	400	4.0	1630	1865	2575	3270	3420	3360
	400	10.8	1220	1420	1270	1220	1230	1290		300	4.5	1340	1415	1755	2305	2740	2810
	300	12.1	980	1225	1070	1000	980	995	6	350	4.5	1565	1650	2050	2800	3200	3275
14	350	12.1	1145	1430	1245	1170	1145	1160	0	400	4.5	1785	1800	2345	3100	3655	3745
	400	12.1	1310	1630	1425	1335	1310	1330	-	300	5.6	1550	1550	1605	2045	2635	3070
		Subgrad	le k = 100) lb/in.	3†				8	350	5.6	1810	1810	1095	2385	3075	3580
	300	4.7	865	900	1090	1470	1745	1810	0	400	5.6	2065	2070	2615	2730	3515	4095
5	350	4.7	1010	1050	1270	1715	2035	2115	-	300	6.6	1730	1745	1775	1965	2330	2895
	400	4.7	1155	1200	1455	1955	2325	2415	10	350	6.6	2020	2035	2070	2290	2715	3300
	300	5.4	950	955	1065	1320	1700	1925	10	400	6.6	2310	2325	2365	2620	3105	3860
6	350	5.4	1105	1115	1245	1540	1985	2245	-	300	7.6	1890	1945	1895	1995	2230	2610
	400	5.4	1265	1275	1420	1760	2270	2565	12	350	7.6	2205	2270	2210	2330	2600	3045
	300	6.7	1095	1105	1120	1240	1465	1815	12	400	7.6	2520	2505	2525	2550	2000	3480
8	350	6.7	1280	1285	1305	1445	1705	2120		200	7.0	2025	2393	2020	2000	2912	2480
	400	6.7	1460	1470	1495	1650	1950	2420	14	300	0.0	2025	2130	2030	2005	2210	2400
	300	7.9	1215	1265	1215	1270	1395	1610	14	330	8.0	2300	2010	2303	2405	2050	2890
10	350	7.9	1420	1475	1420	1480	1630	1880	-	400	8.0	2700	2870	2705	2750	2930	3303
	400	7.9	1625	1645	1625	1690	1860	2150	Critical ais	e width equ	als 2.209 tin	nes the rad	ius of re	lative st	tiffness.		
	300	9.1	1320	1425	1325	1330	1400	1535	k of subgrad	te; disregar	d increase in d = 300 i	k due to si	ubbase.	varies	only slip	ahtly fo	r other
12	350	9.1	1540	1665	1545	1550	1635	1795	load widths.	Allowable	stress = $1/2$	lexural str	ength.		any only	juny 10	

1. Loading Criteria (Live & Dead) Live Load $L_r := 20 \ psf$ Upper Chord (Typical Roof Live Load) L:=0 psf Dead Load Upper Chord Light-frame wood roof + wood sheathing + 1/2" + asphaltD1 = 13 psf shingle (3 psf) Lower Chord W:=18 ft $D_2 := 0.14 \frac{psf}{in} \cdot 16 in = 2.24 psf$ Insulation - Blown in cellulose $D_3 := \frac{243 \ lbf}{W \cdot 2 \cdot 4 \ ft} = 1.688 \ psf$ Self weight (243lbs from Menards) @ 4' OC $D_4 \coloneqq 2 psf$ Gypsum board Ceiling $D_5 \coloneqq 1 \text{ psf}$ Lighting and Electrical **Total Design Load** Reference Snow Loading S = 26.6 psf Wwind := 19.5 psf Reference Wind Loading $D_{top} \coloneqq \operatorname{ceil}\left(\frac{D_1}{psf}\right) psf = 13 psf$ $D_{bottom} := \operatorname{ceil}\left(\frac{D_2 + D_3 + D_4 + D_5}{nsf}\right) psf = 7 psf$

Appendix C: Structural Design Roof Calculations

	Project				Job Ref.	
IUWA	Section				Sheet no./rev.	
				1		
ENGINEERING	Calc. by S	Date 11/12/2020	Chk'd by	Date	App'd by	Date
SNOW LOADING						
In accordance with ASCE7-16						
Building details					Tedds calcu	Ilation version
Roof type		Hip and gable				
Width of roof (left on elevation)		b ₁ = 18.00 ft				
Width of roof (right on elevation)		b ₂ = 18.00 ft				
Slope of roof (left on elevation)		α ₁ = 18.44 deg	g			
Slope of roof (right on elevation)		α ₂ = 18.44 deg	g			
Ground snow load			•2			
Ground snow load (Figure 7.2-1)		$p_g = 30.00 \text{ lb/f}$	t ²	(C) 000 (C) 1		
Density of snow		$\gamma = \min(0.13 *$	p _g / 1π + 14lb	$/ft^{3}, 301b/ft^{3}) = 1$	7.90 lb/ft ³	
Terrain typeSect. 26.7		B				
Exposure condition (Table 7.3-1)			seu			
Thermal condition (Table 7.3-7)						
Thermal factor (Table 7.3.2)		$C_{1} = 1.00$				
Importance category (Table 1.5-2)	D	U 1.00				
Importance factor (Table 1.5-2)		. = 0.80				
Flat roof snow load (Sect 7.3)		p _f = 0.7 * C _e *	Ct * Is * pg = 1	6.80 lb/ft ²		
Warm roof slope factor (C _t <= 1	.0)					
Roof surface type		Slippery				
Ventilation		Ventilated				
Thermal resistance (R-value)		R = 30.00 °F h	n ft² / Btu			
Roof slope factor - left Fig 7.4-1a	(dashed line)	C _{s_l} = 0.79				
Roof slope factor - right Fig 7.4-1	a (dashed line)	C _{s_r} = 0.79				
Hip and gable roof loads	(0) 7 ()	0 +	40.00 11 /02			
Balanced sloped show load - left	(0.7.4)	$p_{s_i} = C_{s_i} p_f$	= 13.33 ID/IT ²			
Clana of loft roof	it (UI.7.4)	$p_{s_r} = C_{s_r} \cdot p_f$	- 13.33 ID/I[2			
Slope of right roof		$S_1 = 1 / \tan(\alpha_1)$	- 3.00			
Supe of right root	io rd	$S_r = 1 / \tan(\alpha_2)$	- 3.00			
Unbalanced load - left roof windy	vard	$p_{s_{w}} = 0.3 \text{ m} p_{s}$	_1 = 4 ID/TL ²			
Length eaves to ridge for drift be	alu	$p_{s_{1}} - p_{s_{1}} = 13$	8 00 ft			
Drift beight	gnt	$h_{m} = min(-1/1)$.) * (0 /2 * /m	av(1	1ft2)1/3 * /n / 1	Ib/ft2 + 10\1/
Dim neight			s) (0.++3 (m) * p * l //	an(iu_ww_i, 20 il)	nt) (þg/1	io/it ≁ i0)″
Postongulor ourshaws to not be	word old -	1.5 III), ∀(Is	Pg Iu_ww_1/ (4			
Rectangular surcharge to part lee	eward side	ps_rl_sur = Ndr_r	$\gamma / \gamma (S_r) = 13$.21 ID/IC		
Length of rectangular surcharge		$I_{u_rl_sur} = min(8)$	/ 3 " Ndr_r * √(5r), D2) = 5.93 ft		
Unpalanced load - left root leewa	ra	$p_{s_{-}} = p_{s_{-}} = 13$.33 ID/It ²			
Length eaves to ridge for drift he	abt	$p_{s_{rw}} = 0.3 * p_{s}$	_r = 4 ID/IL ²			
Drift baight	gnt	$I_{u_ww_r} = D_2 = 1$	0.UU IL	w/l 00 #) *	1======================================	h/#2 + 4011/4
Dim neight		1.5 * 1ft), √(Is	*p _g * l _{u_ww_r} / (4 * γ))) = 1.28 ft	(pg / 11	b/it- + 10)‴

D Overall loading

Projected vertical plan area of wall Projected vertical area of roof Minimum overall horizontal loading Leeward net force Windward net force Overall horizontal loading

17.00

-0.70

$A_{vert_w_0} = b * H = 1400.00 \text{ ft}^2$

13.36

$$\begin{split} & A_{vert_r_0} = b * d/2 * tan(\alpha_0) = \textbf{600.18} \ ft^2 \\ & F_{w.total_min} = p_{min_w} * A_{vert_w_0} + p_{min_r} * A_{vert_r_0} = \textbf{27.20} \ kips \\ & F_i = F_{w.wB} = \textbf{-11.5} \ kips \\ & F_w = F_{w.wA} = \textbf{9.2} \ kips \\ & F_{w.total} = max(F_w - F_i + F_{w.h}, \ F_{w.total_min}) = \textbf{27.2} \ kips \end{split}$$

612.03

-6.46

-10.56

TATAT	Project				Job Ref.		
	Section	Sheet no./rev. 3					
ENGINEERING	Calc. by S	Date 11/12/2020	Chk'd by	Date	App'd by	Date	

Roof load case 2 - Wind 0, GCpi -0.18, -0cpe

	Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _P (psf)	Net pressure p (psf)	Area A _{ref} (ft²)	Net force F _w (kips)
	A (+ve)	17.00	-0.03	13.36	2.00	1897.42	3.80
Γ	B (+ve)	17.00	-0.57	13.36	-4.22	1897.42	-8.01
ot	al vertical net f	orce		F _{w,v} = -4.00 kip	bs		

Total horizontal net force

F_{w,h} = 3.74 kips

Walls load case 2 - Wind 0, GCpi -0.18, -0cpe

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _P (psf)	Net pressure p (psf)	Area A _{ref} (ft²)	Net force F _w (kips)
A	14.00	0.80	12.90	11.41	1400.00	15.97
В	17.00	-0.50	13.36	-3.42	1400.00	-4.79
С	17.00	-0.70	13.36	-5.75	612.03	-3.52
D	17.00	-0.70	13.36	-5.75	612.03	-3.52

Avert_w_0 = b * H = 1400.00 ft²

 $A_{vert_r_0} = b * d/2 * tan(\alpha_0) = 600.18 ft^2$

 $F_{w,total_min} = p_{min_w} * A_{vert_w_0} + p_{min_r} * A_{vert_r_0} = 27.20 \text{ kips}$

Overall loading

Projected vertical plan area of wall

Projected vertical area of roof

Minimum overall horizontal loading

Leeward net force

Windward net force

Overall horizontal loading

rce F_w = F_{w,wA} = **16.0** kips al loading F_{w.total} = max(F_w - F_I + F_{w.h}, F_{w.total_min}) = **27.2** kips

Roof load case 3 - Wind 90, GC_{pi} 0.18, -c_{pe}

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _P (psf)	Net pressure p (psf)	Area A _{ref} (ft²)	Net force F _w (kips)
A (-ve)	17.00	-0.90	13.36	-12.89	322.58	-4.16
B (-ve)	17.00	-0.90	13.36	-12.89	322.58	-4.16
C (-ve)	17.00	-0.50	13.36	-8.23	645.16	-5.31
D (-ve)	17.00	-0.30	13.36	-5.90	2504.53	-14.77
tal vertical net f	orce		F _{w,v} = -26.94 k	ips		

F_I = F_{w,wB} = -4.8 kips

Total vertical net force Total horizontal net force

F_{w,v} = **-26.94** kips

Walls load case 3 - Wind 90, GCpl 0.18, -cpe

Ref. Ext pressure Peak velocity Net pressure Area Net force Zone A_{ref} (ft²) F_w (kips) height coefficient cpe pressure q_p p (psf) (ft) (psf) 15.00 0.80 6.60 537.00 3.54 A_1 12.90 A_2 15.00 0.80 12.90 6.60 0.00 0.00 A₃ 20.00 0.80 14.04 7.39 75.03 0.55 В 17.00 -0.26 13.36 -5.45 612.03 -3.33

IOWA
CIVIL & ENVIRONMENTAL

Project		Job Ref.			
Section				Sheet no./rev. 4	
Calc. by S	Date 11/12/2020	Chk'd by	Date	App'd by	Date

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _P (psf)	Net pressure p (psf)	Area A _{ref} (ft²)	Net force F _w (kips)
С	17.00	-0.70	13.36	-10.56	1400.00	-14.78
D	17.00	-0.70	13.36	-10.56	1400.00	-14.78

Overall loading

Projected vertical plan area of wall

Projected vertical area of roof

Minimum overall horizontal loading

Leeward net force

Windward net force

Overall horizontal loading

$$\begin{split} &\mathsf{A}_{\mathsf{vert_w_90}} = \mathsf{d}^* \mathsf{H} + \mathsf{d}^2 * \tan(\alpha_0) \, / \, \mathsf{4} = \mathbf{612.03} \; \mathsf{ft}^2 \\ &\mathsf{A}_{\mathsf{vert_r_90}} = \mathbf{0.00} \; \mathsf{ft}^2 \\ &\mathsf{F}_{\mathsf{w.total_min}} = \mathsf{p_{min_w}} * \mathsf{A}_{\mathsf{vert_w_90}} + \mathsf{p_{min_r}} * \mathsf{A}_{\mathsf{vert_r_90}} = \mathbf{9.79} \; \mathsf{kips} \end{split}$$

 $F_1 = F_{w,wB} = -3.3$ kips

 $F_w = F_{w,wA_1} + F_{w,wA_2} + F_{w,wA_3} = 4.1$ kips

F_{w,total} = max(F_w - F_I + F_{w,h}, F_{w,total_min}) = 9.8 kips

Roof load case 4 - Wind 90, GCpi -0.18, +cpe

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _P (psf)	Net pressure p (psf)	Area A _{ref} (ft²)	Net force F _w (kips)
A (+ve)	17.00	-0.18	13.36	0.31	322.58	0.10
B (+ve)	17.00	-0.18	13.36	0.31	322.58	0.10
C (+ve)	17.00	-0.18	13.36	0.31	645.16	0.20
D (+ve)	17.00	-0.18	13.36	0.31	2504.53	0.77

Total vertical net force Total horizontal net force F_{w,v} = **1.11** kips F_{w,h} = **0.00** kips

Walls load case 4 - Wind 90, GCpi -0.18, +cpe

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _P (psf)	Net pressure p (psf)	Area A _{ref} (ft²)	Net force F _w (kips)
A ₁	15.00	0.80	12.90	11.41	537.00	6.13
A ₂	15.00	0.80	12.90	11.41	0.00	0.00
A ₃	20.00	0.80	14.04	12.20	75.03	0.92
В	17.00	-0.26	13.36	-0.64	612.03	-0.39
С	17.00	-0.70	13.36	-5.75	1400.00	-8.05
D	17.00	-0.70	13.36	-5.75	1400.00	-8.05

Overall loading

Projected vertical plan area of wall Projected vertical area of roof Minimum overall horizontal loading Leeward net force Windward net force Overall horizontal loading
$$\begin{split} &\mathsf{A}_{vert_w_90} = d^* H + d^2 * tan(\alpha_0) \, / \, 4 = \textbf{612.03} \ ft^2 \\ &\mathsf{A}_{vert_r_90} = \textbf{0.00} \ ft^2 \\ &\mathsf{F}_{w.total_min} = p_{min_w} * \mathsf{A}_{vert_w_90} + p_{min_r} * \mathsf{A}_{vert_r_90} = \textbf{9.79} \ kips \end{split}$$

$$\begin{split} F_{I} &= F_{w,wB} = \textbf{-0.4 kips} \\ F_{w} &= F_{w,wA_{-1}} + F_{w,wA_{-2}} + F_{w,wA_{-3}} = \textbf{7.0 kips} \end{split}$$

 $F_{w,total} = max(F_w - F_l + F_{w,h}, F_{w,total_min}) = 9.8 kips$

IOWA	Project Section
CIVIL & ENVIRONMENTAL	Calc. by S

ct				Job Ref.	
on				Sheet no./rev.	
by	Date 11/12/2020	Chk'd by	Date	App'd by	Date

Node deflections

Load combination: 1.0D (Strength)

Node	Deflection		Rotation	Co-ordinate system
	X (in)	Z (in)	(°)	
1	0	0	0.1338	
2	0.016	0.143	0.01356	
3	0.027	0.143	-0.01356	
4	0.043	0	-0.1338	
5	0.03	0.131	0.02221	
6	0.021	0.144	0	
7	0.013	0.131	-0.02221	
8	0.027	0.143	0.01356	
9	0.015	0.143	-0.01356	

Load combination: 1.0D + 1.0L (Strength)

Node	Deflection		Rotation	Co-ordinate system
	х	z		
	(in)	(in)	(°)	
1	0	0	0.1338	
2	0.016	0.143	0.01356	
3	0.027	0.143	-0.01356	
4	0.043	0	-0.1338	
5	0.03	0.131	0.02221	
6	0.021	0.144	0	
7	0.013	0.131	-0.02221	
8	0.027	0.143	0.01356	
9	0.015	0.143	-0.01356	

Load combination: 1.0D + 1.0Lr (Strength)

Node	Deflection		Rotation	Co-ordinate system
	X (in)	Z (in)	(°)	
1	0	0	0.1338	
2	0.016	0.143	0.01356	
3	0.027	0.143	-0.01356	
4	0.043	0	-0.1338	
5	0.03	0.131	0.02221	
6	0.021	0.144	0	
7	0.013	0.131	-0.02221	
8	0.027	0.143	0.01356	
9	0.015	0.143	-0.01356	

IOWA	Project				Job Ref.	
	Section				Sheet no./rev. 4	
ENGINEERING	Calc. by S	Date 11/12/2020	Chk'd by	Date	App'd by	Date

Load combination: 1.0D + 1.0S (Strength)

Node	Defle	ection	Rotation	Co-ordinate system
	X (in)	Z (in)	(°)	
1	0	0	0.30002	
2	0.038	0.336	0.03245	
3	0.064	0.336	-0.03245	
4	0.102	0	-0.30002	
5	0.069	0.308	0.05318	
6	0.051	0.339	0	
7	0.032	0.308	-0.05318	
8	0.065	0.336	0.03245	
9	0.037	0.336	-0.03245	

Load combination: 1.0D + 0.75L + 0.75Lr (Strength)

Node	Defle	ction	Rotation	Co-ordinate system
	х	z		
	(in)	(in)	(°)	
1	0	0	0.1338	
2	0.016	0.143	0.01356	
3	0.027	0.143	-0.01356	
4	0.043	0	-0.1338	
5	0.03	0.131	0.02221	
6	0.021	0.144	0	
7	0.013	0.131	-0.02221	
8	0.027	0.143	0.01356	
9	0.015	0.143	-0.01356	

Load combination: 1.0D + 0.75L + 0.75S (Strength)

Node	Defle	ction	Rotation	Co-ordinate system
	х	Z		
	(in)	(in)	(°)	
1	0	0	0.25846	
2	0.033	0.288	0.02773	
3	0.055	0.288	-0.02773	
4	0.087	0	-0.25846	
5	0.059	0.264	0.04544	
6	0.044	0.29	0	
7	0.028	0.264	-0.04544	
8	0.056	0.288	0.02773	
9	0.031	0.288	-0.02773	

IOWA	Project				Job Ref.	
	Section				Sheet no./rev. 5	
ENGINEERING	Calc. by S	Date 11/12/2020	Chk'd by	Date	App'd by	Date

Load com	bination: 1.0D	+ 0.6W	(Strength)
----------	----------------	--------	------------

Node	Defle	ection	Rotation	Co-ordinate system
	X (in)	Z (in)	(°)	
1	0	0	0.20718	
2	0.026	0.228	0.0219	
3	0.043	0.228	-0.0219	
4	0.069	0	-0.20718	
5	0.047	0.209	0.03588	
6	0.034	0.23	0	
7	0.022	0.209	-0.03588	
8	0.044	0.228	0.0219	
9	0.025	0.228	-0.0219	

Load combination: 1.0D + 0.75L + 0.75S + 0.45W (Strength)

Node	Defle	ction	Rotation	Co-ordinate system
	х	z		
	(in)	(in)	(°)	
1	0	0	0.3135	
2	0.04	0.351	0.03398	
3	0.067	0.351	-0.03398	
4	0.107	0	-0.3135	
5	0.073	0.323	0.05569	
6	0.053	0.354	0	
7	0.034	0.323	-0.05569	
8	0.068	0.351	0.03398	
9	0.038	0.351	-0.03398	

Load combination: 0.6D + 0.6W (Strength)

Node	Deflection		Rotation	Co-ordinate system	
	х	Z			
	(in)	(in)	(°)		
1	0	0	0.15367		
2	0.019	0.171	0.01648		
3	0.032	0.171	-0.01648		
4	0.052	0	-0.15367		
5	0.035	0.157	0.027		
6	0.026	0.172	0		
7	0.016	0.157	-0.027		
8	0.033	0.171	0.01648		
9	0.019	0.171	-0.01648		

			Project				Job Ref.	
	JW		Section				Sheet no./rev 6	
CIVIL	& ENVIRON	MENTAL	Calc. by	Date	Chk'd by	Date	App'd by	Date
EN	GINEE	RING	S	11/12/2020				
Total I	base reaction	s						
Load	case/combin	ation	Force					
			FX (kips)	FZ (kips)				
1	1.0D (Strength)	0	2.981				
1.01) + 1.0L (Stren	ngth)	0	2.981				
1.0D	+ 1.0Lr (Stree	ngth)	0	2.981				
1.0E	0 + 1.0S (Strer	ngth)	0	7.004				
1.0D + 0.5	75L + 0.75Lr	(Strength)	0	2.981				
1.0D + 0.	.75L + 0.75S (Strength)	0	5.998				
1.0D	0 + 0.6W (Stree	ngth)	0	4.757				
1.0D + 0	.75L + 0.75S - (Strength)	+ 0.45W	0	7.33				
0.6D	0 + 0.6W (Stree	ngth)	0	3.565				
Eleme	ent end forces	;						
Load	combination:	1.0D (Stren	gth)					
Element	Length	Nodes	Axial force	Shear force	Moment			
	(ft)	Start/Enc	l (kips)	(kips)	(kip_ft)			
1	12	1	3.387	-0.142	-0.016			
		2	-3.387	-0.194	-0.294			
2	12	2	2.27	-0.168	0.292			
		3	-2.27	-0.168	-0.292			
3	12	3	3.387	-0.194	0.294			
		4	-3.387	-0.142	0.016			
4	9.49	1	-3.64	-0.208	0.016			
-	0.10	5	3.484	-0.26	-0.261			
5	9.49	5	-3.219	-0.219	0.252			
6	0.40	6	3.003	-0.249	-0.396			
0	9.49	7	-3.003	-0.249	0.390			
7	9.49	7	-3.484	-0.219	0.252			
,	5.45	4	3.64	-0.208	-0.016			
8	4.24	5	-0.547	-0.023	0.009			
	0.000	2	0.547	0.023	0.089			
9	8.49	2	1.023	0.013	-0.086			
		6	-1.023	-0.013	-0.024			
10	8.49	6	1.023	-0.013	0.024			
		3	-1.023	0.013	0.086			
11	4.24	3	-0.547	0.023	-0.089			
		7	0.547	-0.023	-0.009			
12	4	2	0	0	0			
		8	0	0	0			

		тм	Project				Job Ref.	
	IJW	IA	Section				Sheet no./rev.	
CIVIL	& ENVIRON						7	
EN	GINEE	RING	Calc. by S	Date 11/12/2020	Chk'd by	Date	App'd by	Date
Element	Length	Nodes	Axial force	Shear force	Moment			
	(ft)	Start/End	(kips)	(kips)	(kip_ft)			
13	4	3	0	0	0			
		9	0	0	0			
Load c	ombination:	1.0D + 1.0L (Strength)					
Element	Length	Nodes	Axial force	Shear force	Moment]		
	(ft)	Start/End	(kips)	(kips)	(kip ft)			
1	12	1	3.387	-0.142	-0.016			
		2	-3.387	-0.194	-0.294	1		
2	12	2	2.27	-0.168	0.292	1		
		3	-2.27	-0.168	-0.292	1		
3	12	3	3.387	-0.194	0.294	1		
	_	4	-3.387	-0.142	0.016	1		
4	9.49	1	-3.64	-0.208	0.016			
		5	3,484	-0.26	-0.261			
5	9.49	5	-3.219	-0.219	0.252			
		6	3.063	-0.249	-0.396			
6	9.49	6	-3.063	-0.249	0.396			
		7	3.219	-0.219	-0.252			
7	9.49	7	-3.484	-0.26	0.261			
		4	3.64	-0.208	-0.016			
8	4.24	5	-0.547	-0.023	0.009			
		2	0.547	0.023	0.089			
9	8.49	2	1.023	0.013	-0.086			
		6	-1.023	-0.013	-0.024			
10	8.49	6	1.023	-0.013	0.024			
		3	-1.023	0.013	0.086	-		
11	4.24	3	-0.547	0.023	-0.089	1		
		7	0.547	-0.023	-0.009	1		
12	4	2	0	0	0	1		
		8	0	0	0	1		
13	4	3	0	0	0	1		
		9	0	0	0	1		
Load	ombination	1.0D + 1.0L r	(Strength)			1		
Element	Length	Nodes	Axial force	Shear force	Moment]		
	(ft)	Start/End	(kins)	(kins)	(kin ft)			
1	12	1	3.387	-0.142	-0.016	1		
		2	-3,387	-0.194	-0.294	1		
2	12	2	2.27	-0.168	0.292	1		
-		3	-2.27	-0.168	-0.292	1		
3	12	3	3.387	-0.194	0.294	4		
		4	-3,387	-0.142	0.016	1		
			0.001	01212	0.010	1		

TATATA	Proj
<u>tu vva</u>	Sec
CIVIL & ENVIRONMENTAL	Cal
ENGINEERING	S
	10.00

Project				Job Ref.	
Section				Sheet no./rev. 8	
Calc. by S	Date 11/12/2020	Chk'd by	Date	App'd by	Date

Element	Length	Nodes	Axial force	Shear force	Moment	
	(ft)	Start/End	(kips)	(kips)	(kip_ft)	
4	9.49	1	-3.64	-0.208	0.016	
		5	3.484	-0.26	-0.261	
5	9.49	5	-3.219	-0.219	0.252	
		6	3.063	-0.249	-0.396	
6	9.49	6	-3.063	-0.249	0.396	
		7	3.219	-0.219	-0.252	
7	9.49	7	-3.484	-0.26	0.261	
		4	3.64	-0.208	-0.016	
8	4.24	5	-0.547	-0.023	0.009	
		2	0.547	0.023	0.089	
9	8.49	2	1.023	0.013	-0.086	
		6	-1.023	-0.013	-0.024	
10	8.49	6	1.023	-0.013	0.024	
		3	-1.023	0.013	0.086	
11	4.24	3	-0.547	0.023	-0.089	
		7	0.547	-0.023	-0.009	
12	4	2	0	0	0	
		8	0	0	0	
13	4	3	0	0	0	
		9	0	0	0	

Load combination: 1.0D + 1.0S (Strength)

Element	Length (ft)	Nodes Start/End	Axial force (kips)	Shear force (kips)	Moment (kip_ft)
1	12	1	8.043	-0.118	-0.405
		2	-8.043	-0.218	-0.2
2	12	2	5.413	-0.168	0.23
		3	-5.413	-0.168	-0.23
3	12	3	8.043	-0.218	0.2
		4	-8.043	-0.118	0.405
4 9.49	9.49	1	-8.701	-0.667	0.405
		5	8.227	-0.755	-0.821
5	9.49	5	-7.473	-0.675	0.843
		6	6.999	-0.747	-1.185
6	9.49	6	-6.999	-0.747	1.185
		7	7.473	-0.675	-0.843
7	9.49	7	-8.227	-0.755	0.821
		4	8.701	-0.667	-0.405
8	4.24	5	-1.616	-0.035	-0.022
		2	1.616	0.035	0.17
9	8.49	2	2.099	0.029	-0.199

		тм	Project				Job Ref.	
	<u> J N</u>		Section				Sheet no./rev. 9	
		RING	Calc. by S	Date 11/12/2020	Chk'd by	Date	App'd by	Date
Element	Length	Nodes	Axial force	Shear force	Moment]		
	(ft)	Start/End	(kips)	(kips)	(kip_ft)			
		6	-2.099	-0.029	-0.049			
10	8.49	6	2.099	-0.029	0.049			
		3	-2.099	0.029	0.199			
11	4.24	3	-1.616	0.035	-0.17			
		7	1.616	-0.035	0.022			
12	4	2	0	0	0			
		8	0	0	0			
13	4	3	0	0	0			
		9	0	0	0	-		
Load o	ombination	1.0D + 0.75L	+ 0.75Lr (Stre	ngth)		1		
Element	Length	Nodes	Axial force	Shear force	Moment]		
	(ft)	Start/End	(kips)	(kips)	(kip_ft)			
1	12	1	3.387	-0.142	-0.016			
		2	-3.387	-0.194	-0.294	-		
2	12	2	2.27	-0.168	0.292	-		
		3	-2.27	-0.168	-0.292			
3	12	3	3.387	-0.194	0.294	-		
		4	-3.387	-0.142	0.016			
4	9.49	1	-3.64	-0.208	0.016			
		5	3.484	-0.26	-0.261			
5	9.49	5	-3.219	-0.219	0.252			
		6	3.063	-0.249	-0.396	-		
6	9.49	6	-3.063	-0.249	0.396			
		7	3.219	-0.219	-0.252			
7	9.49	7	-3.484	-0.26	0.261			
		4	3.64	-0.208	-0.016	-		
8	4.24	5	-0.547	-0.023	0.009			
		2	0.547	0.023	0.089	1		
9	8.49	2	1.023	0.013	-0.086			
		6	-1.023	-0.013	-0.024			
10	8.49	6	1.023	-0.013	0.024			
		3	-1.023	0.013	0.086			
11	4.24	3	-0.547	0.023	-0.089	1		
		7	0.547	-0.023	-0.009	1		
12	4	2	0	0	0	1		
		8	0	0	0	1		
13	4	3	0	0	0	1		
		9	0	0	0	1		
Load o	combination	1.0D + 0.75L	+ 0.75S (Strer	ngth)	0			

			Project				Job Ref.	
	L V		Section				Sheet no./rev. 10	
CIVIL	& ENVIRON	MENTAL	Calc. by	Date	Chk'd by	Date	App'd by	Date
EN	GINEE	RING	S	11/12/2020				
Element	Length	Nodes	Axial force	Shear force	Moment			
	(ft)	Start/End	(kips)	(kips)	(kip_ft)			
1	12	1	6.879	-0.124	-0.308			
		2	-6.879	-0.212	-0.224			
2	12	2	4.627	-0.168	0.245			
		3	-4.627	-0.168	-0.245			
3	12	3	6.879	-0.212	0.224			
		4	-6.879	-0.124	0.308			
4	9.49	1	-7.435	-0.552	0.308	1		
		5	7.041	-0.631	-0.681			
5	9.49	5	-6.409	-0.561	0.696	1		
		6	6.015	-0.623	-0.988	1		
6	9.49	6	-6.015	-0.623	0.988	1		
		7	6.409	-0.561	-0.696			
7	9.49	7	-7.041	-0.631	0.681			
,	5.15	4	7 435	-0.552	-0.308	-		
8	4 24	5	-1 349	-0.032	-0.014			
0	7.24	2	1 340	0.032	0.15			
0	8.40	2	1.349	0.032	0.171			
9	0.49	6	1.05	0.025	-0.171			
10	8.40	6	-1.85	-0.025	-0.043			
10	0.49	2	1.65	-0.025	0.043			
11	4.24	2	-1.85	0.023	0.171			
11	4.24	7	-1.349	0.032	-0.15	-		
10	4	2	1.349	-0.032	0.014			
12	4	2	0	0	0			
12		8	0	0	0	-		
13	4	3	0	0	0	4		
2. S.S.		9	0	U	U			
Load	combination:	1.0D + 0.6W	(Strength)			1		
Element	Length	Nodes	Axial force	Shear force	Moment			
	(ft)	Start/End	(kips)	(kips)	(kip_ft)			
1	12	1	5.443	-0.131	-0.188			
		2	-5.443	-0.205	-0.253			
2	12	2	3.658	-0.168	0.264			
		3	-3.658	-0.168	-0.264			
3	12	3	5.443	-0.205	0.253			
		4	-5.443	-0.131	0.188	1		
4	9.49	1	-5.874	-0.411	0.188	1		
		5	5.578	-0.478	-0.509			
5	9.49	5	-5.097	-0.42	0.513	1		
		6	4.801	-0.469	-0.744	1		
6	9.49	6	-4.801	-0.469	0.744	1		
0	7.77		1.001	0.105	0.777	1		

			Project				lob Pof	
			Froject				JOD Ret.	
			Section				Sheet no./rev.	
							11	
FN	GINEE	RING	Calc. by	Date	Chk'd by	Date	App'd by	Date
			S	11/12/2020				
Florent	Low-th	Nodes	A rial fama	Shoon fame	Monant]		
Element	Length	Nodes Stort/End	Axial force	Shear force	Moment			
	(11)	5tart/Ellu 7	5 007	(KIPS)	0.513			
7	0.40	7	5.578	-0.42	0.500			
	9.49	1	-5.578	-0.478	0.309			
8	4.24		1.010	-0.411	-0.100			
0	4.24	2	1.019	-0.028	0.125			
0	<u> 9 40</u>	2	1.019	0.028	0.125			
9	0.49	2	1.490	0.02	-0.130			
10	Q 40	0	-1.498	-0.02	-0.035			
10	8.49	0	1.498	-0.02	0.035	1		
11	4.2.4	3	-1.498	0.02	0.136			
	4.24	3	-1.019	0.028	-0.125			
10		1	1.019	-0.028	0.005			
12	4	2	0	0	0			
		8	0	0	0			
13	4	3	0	0	0			
		9	0	0	0			
Load o	ombination:	1.0D + 0.75L	+ 0.75S + 0.45	W (Strength)		1		
Element	Length	Nodes	Axial force	Shear force	Moment			
	(ft)	Start/End	(kips)	(kips)	(kip_ft)			
1	12	1	8.421	-0.116	-0.436	-		
		2	-8 421	_0.22	0 102			
2		2	0.121	-0.22	-0.193			
1 1	12	2	5.668	-0.168	0.225			
	12	2 3	5.668	-0.168 -0.168	-0.193 0.225 -0.225			
3	12	2 2 3 3	5.668 -5.668 8.421	-0.168 -0.168 -0.22	-0.193 0.225 -0.225 0.193			
3	12	2 2 3 3 4	5.668 -5.668 8.421 -8.421	-0.168 -0.168 -0.22 -0.116	-0.193 0.225 -0.225 0.193 0.436			
3	12 12 9.49	2 2 3 4 1	5.668 -5.668 8.421 -8.421 -9.111	-0.168 -0.168 -0.22 -0.116 -0.704	-0.193 0.225 -0.225 0.193 0.436 0.436			
3	12 12 9.49	2 2 3 4 1 5	5.668 -5.668 8.421 -8.421 -9.111 8.611	-0.168 -0.168 -0.22 -0.116 -0.704 -0.795	-0.193 0.225 -0.225 0.193 0.436 0.436 -0.866			
3 4 5	12 12 9.49 9.49		5.668 -5.668 8.421 -8.421 -9.111 8.611 -7.818	-0.168 -0.168 -0.22 -0.116 -0.704 -0.795 -0.712	-0.193 0.225 -0.225 0.193 0.436 0.436 0.866 0.891			
3 4 5	12 12 9,49 9,49	$ \begin{array}{r} 2 \\ 2 \\ 3 \\ 4 \\ 1 \\ 5 \\ 5 \\ 6 \\ \hline 6 \end{array} $	5.668 -5.668 8.421 -8.421 -9.111 8.611 -7.818 7.318	-0.168 -0.168 -0.22 -0.116 -0.704 -0.795 -0.712 -0.787	-0.193 0.225 -0.225 0.193 0.436 -0.866 0.891 -1.249			
3 4 5 6	12 12 9.49 9.49 9.49	$ \begin{array}{r} 2 \\ 3 \\ 3 \\ 4 \\ 1 \\ 5 \\ 6 \\ 6 \\ 6 \end{array} $	5.668 -5.668 8.421 -8.421 -9.111 8.611 -7.818 7.318 -7.318	-0.168 -0.168 -0.22 -0.116 -0.704 -0.795 -0.712 -0.787	-0.193 0.225 -0.225 0.193 0.436 -0.866 0.891 -1.249 1.249			
3 4 5 6	12 12 9.49 9.49 9.49	$ \begin{array}{r} 2 \\ 3 \\ 4 \\ 1 \\ 5 \\ 6 \\ 6 \\ 7 \\ \end{array} $	5.668 -5.668 8.421 -8.421 -9.111 8.611 -7.818 7.318 -7.318 7.818	-0.168 -0.168 -0.22 -0.116 -0.704 -0.795 -0.712 -0.787 -0.787 -0.712	-0.193 0.225 -0.225 0.193 0.436 -0.866 0.891 -1.249 1.249 -0.891			
3 4 5 6 7	12 12 9.49 9.49 9.49 9.49 9.49	$ \begin{array}{c} 2 \\ 3 \\ 3 \\ 4 \\ 1 \\ 5 \\ 6 \\ 6 \\ 7 \\ 7 \\ 7 \end{array} $	5.668 -5.668 8.421 -8.421 -9.111 8.611 -7.818 7.318 7.318 7.818 -8.611	-0.168 -0.168 -0.22 -0.116 -0.704 -0.795 -0.712 -0.787 -0.712 -0.712	-0.193 0.225 -0.225 0.193 0.436 0.436 -0.866 0.891 -1.249 1.249 -0.891 0.866			
3 4 5 6 7	12 12 9.49 9.49 9.49 9.49 9.49	$ \begin{array}{r} 2 \\ 3 \\ 3 \\ 4 \\ 1 \\ 5 \\ 6 \\ 6 \\ 7 \\ 7 \\ 4 \\ \end{array} $	5.668 -5.668 8.421 -8.421 -9.111 8.611 -7.818 7.318 7.318 7.818 -8.611 9.111	-0.168 -0.168 -0.22 -0.116 -0.704 -0.795 -0.712 -0.787 -0.712 -0.795	-0.193 0.225 -0.225 0.193 0.436 0.436 -0.866 0.891 -1.249 1.249 -0.891 0.866 -0.436			
3 4 5 6 7 8	12 12 9.49 9.49 9.49 9.49 9.49 9.49 4.24	$ \begin{array}{r} 2 \\ 3 \\ 4 \\ 1 \\ 5 \\ 6 \\ 6 \\ 7 \\ 7 \\ 4 \\ 5 \\ \end{array} $	5.668 -5.668 8.421 -8.421 -9.111 8.611 -7.818 7.318 7.318 -7.318 7.818 -8.611 9.111 -1.703	-0.168 -0.168 -0.22 -0.116 -0.704 -0.795 -0.712 -0.787 -0.795 -0.712 -0.787 -0.795 -0.712 -0.795 -0.704	-0.193 0.225 -0.225 0.193 0.436 0.436 -0.866 0.891 -1.249 -0.891 0.866 -0.436 -0.436			
3 4 5 6 7 8	12 12 9.49 9.49 9.49 9.49 9.49 9.49 4.24	$ \begin{array}{r} 2 \\ 3 \\ 4 \\ 1 \\ 5 \\ 6 \\ 6 \\ 7 \\ 7 \\ 4 \\ 5 \\ 2 \\ \end{array} $	5.668 -5.668 8.421 -8.421 -9.111 8.611 -7.818 7.318 7.318 7.318 7.318 7.818 -8.611 9.111 -1.703 1.703	-0.168 -0.168 -0.22 -0.116 -0.704 -0.795 -0.712 -0.787 -0.712 -0.795 -0.712 -0.787 -0.795 -0.712 -0.704 -0.705 -0.705 -0.704 -0.036 0.036	-0.193 0.225 -0.225 0.193 0.436 0.436 -0.866 0.891 -1.249 -0.891 0.866 -0.436 -0.436 -0.25 0.176			
3 4 5 6 7 8 9	12 12 9.49 9.49 9.49 9.49 9.49 4.24 8.49	$ \begin{array}{r} 2 \\ 3 \\ 3 \\ 4 \\ 1 \\ 5 \\ 6 \\ 6 \\ 7 \\ 7 \\ 4 \\ 5 \\ 2 \\ 2 \\ 2 \\ \end{array} $	5.668 -5.668 8.421 -8.421 -9.111 8.611 -7.818 7.318 7.318 7.818 -8.611 9.111 -1.703 1.703 2.186	-0.168 -0.168 -0.22 -0.116 -0.704 -0.795 -0.712 -0.787 -0.795 -0.712 -0.795 -0.704 -0.703 -0.704 -0.705 -0.704 -0.036 0.036 0.031	-0.193 0.225 -0.225 0.193 0.436 0.436 -0.866 0.891 -1.249 1.249 -0.891 0.866 -0.436 -0.025 0.176 -0.208			
3 4 5 6 7 8 9	12 12 9.49 9.49 9.49 9.49 9.49 4.24 8.49	$ \begin{array}{r} 2 \\ 3 \\ 4 \\ 1 \\ 5 \\ 6 \\ 6 \\ 7 \\ 7 \\ 4 \\ 5 \\ 2 \\ 2 \\ 6 \\ \end{array} $	5.668 -5.668 8.421 -8.421 -9.111 8.611 -7.818 7.318 -7.318 7.818 -8.611 9.111 -1.703 1.703 2.186 -2.186	-0.168 -0.168 -0.22 -0.116 -0.704 -0.795 -0.712 -0.787 -0.795 -0.712 -0.795 -0.704 -0.36 0.036 0.031	-0.193 0.225 -0.225 0.193 0.436 -0.866 0.891 -1.249 1.249 -0.866 -0.91 0.866 -0.025 0.176 -0.208 -0.051			
3 4 5 6 7 8 9 10	12 12 9.49 9.49 9.49 9.49 9.49 4.24 8.49 8.49	$ \begin{array}{c} 2 \\ 3 \\ 3 \\ 4 \\ 1 \\ 5 \\ 6 \\ 6 \\ 7 \\ 7 \\ 4 \\ 5 \\ 2 \\ 2 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 7 \\ 7 \\ 4 \\ 5 \\ 2 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6$	5.668 -5.668 8.421 -8.421 -9.111 8.611 -7.818 7.318 7.318 -7.318 7.818 -8.611 9.111 -1.703 1.703 2.186 -2.186 2.186	-0.168 -0.168 -0.22 -0.116 -0.795 -0.712 -0.787 -0.795 -0.712 -0.795 -0.704 -0.795 -0.704 -0.036 0.031 -0.031	-0.193 0.225 -0.225 0.193 0.436 -0.866 0.891 -1.249 1.249 -0.866 -0.91 0.866 -0.025 0.176 -0.208 -0.051			
3 4 5 6 7 8 9 10	12 12 9.49 9.49 9.49 9.49 9.49 8.49 8.49	$ \begin{array}{r} 2 \\ 3 \\ 3 \\ 4 \\ 1 \\ 5 \\ 5 \\ 6 \\ 6 \\ 7 \\ 7 \\ 4 \\ 5 \\ 2 \\ 2 \\ 6 \\ 6 \\ 3 \\ \end{array} $	5.668 -5.668 8.421 -8.421 -9.111 8.611 -7.818 7.318 -7.318 7.818 -8.611 9.111 -1.703 1.703 2.186 -2.186 -2.186	-0.168 -0.168 -0.22 -0.116 -0.704 -0.795 -0.712 -0.787 -0.795 -0.712 -0.795 -0.704 -0.795 -0.704 -0.036 0.036 0.031 -0.031 0.031	-0.193 0.225 -0.225 0.193 0.436 -0.866 0.891 -1.249 1.249 -0.866 -0.436 -0.436 -0.25 0.176 -0.208 -0.051 0.225			
3 4 5 6 7 8 9 10 11	12 12 9.49 9.49 9.49 9.49 9.49 4.24 8.49 8.49 4.24	$ \begin{array}{r} 2 \\ 3 \\ 3 \\ 4 \\ 1 \\ 5 \\ 5 \\ 6 \\ 7 \\ 7 \\ 4 \\ 5 \\ 2 \\ 2 \\ 6 \\ 6 \\ 3 \\ 3 \\ 3 \\ \end{array} $	5.668 -5.668 8.421 -8.421 -9.111 8.611 -7.818 7.318 -7.318 7.818 -8.611 9.111 -1.703 1.703 2.186 -2.186 -2.186 -2.186 -1.703	-0.168 -0.168 -0.22 -0.116 -0.704 -0.795 -0.712 -0.787 -0.712 -0.795 -0.704 -0.705 -0.712 -0.787 -0.704 -0.036 0.036 0.031 -0.031 0.031 0.031	-0.193 0.225 -0.225 0.193 0.436 -0.866 0.891 -1.249 1.249 -0.866 -0.436 -0.436 -0.25 0.176 -0.208 -0.051 0.249			

IOWA	
CIVIL & ENVIRONMENTAL	

Project				Job Ref.	
Section				Sheet no./rev. 12	
Calc. by S	Date 11/12/2020	Chk'd by	Date	App'd by	Date

Element	Length	Nodes	Axial force	Shear force	Moment
	(ft)	Start/End	(kips)	(kips)	(kip_ft)
12	4	2	0	0	0
		8	0	0	0
13	4	3	0	0	0
		9	0	0	0

Load combination: 0.6D + 0.6W (Strength)

Element	Length	Nodes	Axial force	Shear force	Moment
	(ft)	Start/End	(kips)	(kips)	(kip_ft)
1	12	1	4.088	-0.074	-0.181
		2	-4.088	-0.127	-0.135
2	12	2	2.75	-0.101	0.148
		3	-2.75	-0.101	-0.148
3	12	3	4.088	-0.127	0.135
		4	-4.088	-0.074	0.181
4	9.49	1	-4.418	-0.328	0.181
		5	4.184	-0.374	-0.404
5	9.49	5	-3.809	-0.333	0.412
		6	3.575	-0.369	-0.586
6	9.49	6	-3.575	-0.369	0.586
		7	3.809	-0.333	-0.412
7	9.49	7	-4.184	-0.374	0.404
		4	4.418	-0.328	-0.181
8	4.24	5	-0.8	-0.019	-0.008
		2	0.8	0.019	0.089
9	8.49	2	1.089	0.015	-0.102
		6	-1.089	-0.015	-0.025
10	8.49	6	1.089	-0.015	0.025
		3	-1.089	0.015	0.102
11	4.24	3	-0.8	0.019	-0.089
		7	0.8	-0.019	0.008
12	4	2	0	0	0
		8	0	0	0
13	4	3	0	0	0
		9	0	0	0

Member results

Envelope - Strength combinations

Member	She	ear force	Moment					
	Pos Max abs		Max abs Pos		Pos	Min		
	(ft)	(kips)	(ft)	(kip_ft)	(ft)	(kip_ft)		
Bottom Chord	24	0.22	4.13	0.675	24	-0.294		
Left Rafter	9.49	-0.795	4.46	1.133 (max)	18.97	-1.249 (min)		
Right Rafter	9.49	0.795 (max abs)	14.52	1.133 (max)	0	-1.249 (min)		

Superior Bestim Bitter ins./rev. CiVIL & ENVIRONMENTAL Date 1 Cal: by SMH Date Citik by Date Color. By SMH Date Apprd to Date MOOD MEMBER DESIGN (NDS 2018) In accordance with the ANSI/AF&PA NDS 2018 using the ASD method Tedds calculation werelin Design section 1 User note: Check beam at support Tedds calculation werelin Momber details Service condition Dry Load duration of sections in member N = 1 Nominal breadth of sections Down = 2 in Down = 2 in Design section 4 Down = 2 in Down = 2 in Depth of sections Down = 2 in Down = 2 in Down = 4 in Down = 2 in Down = 2 in Down = 5 in Down = 2 in Down = 2 in Down = 4 in Down = 2 in Down = 2 in Down = 4 in Notice and the sections Down = 2 in Down = 2 in Down = 4 in Arrow in the ANSI in Proceeding and the section and the section in the antime and the section and the section in the antime and the antime and the section and the sectin and the section and the section and the sect	TATATA	0,000							000 1101.			
Civil & Environmentation Case by SMH Date Apple by Date WOOD MEMBER DESIGN (NDS 2018) In accordance with the ANSI/AF&PA NDS 2018 using the ASD method Tradds calculation version Design section 1 User note: Check beam at support Ten years Savin lumber section details Service condition Dry Load duration - Table 2.3.2 Ten years Sawn lumber section details N = 1 Nominal breakth of sections boxn = 2 in Breadth of sections b = 1.5 in Dominal dreakt of sections d = 7.25 in Douglas Fir-Larch, 2" & & wider, Select Structural grade Image: Span details Image: Span details Span details Lar 12 ft Theorem and in optic, F, 1000 pi Corpression parallel to grait, F, 1000 pi Monture of elections Lar 12 ft Effective benching length - Major axis Lar 12 ft Effective benching length - Major axis Lar 12 ft Design beerd force - Major axis Lar 2 ft Design beerd force - Major axis Lar 2 ft Design beerd force - Major axis Lar 4 lib_ft Dubraced length - Major axis Lar 4 lib <td< th=""><th></th><th>ection</th><th></th><th></th><th></th><th></th><th></th><th></th><th>Sheet no./rev. 1</th><th></th></td<>		ection							Sheet no./rev. 1			
WOOD MEMBER DESIGN (NDS 2018) Tradition of the ASD method Member details Sawn lumber section of the ASD method Nominal depth of sections the T-Larch, 2" & & wider, Select Structural grade Section and the ASD method section Constraining and the ASD method Tradition of gradition of gra	ENGINEERING	alc. by MH	D 1	^{ate} 1/12/2020	Chk'd	by	Date		App'd by	Date		
In accordance with the ANSI/AF-BPA NDS 2018 using the ASD method Tedds calculation version Design section 1 User note: Check beam at support Member details Sorvice condition Dry Load duration - Table 2.3.2 Ten years Sawn lumber section details Number of sections bene = 2 in Breadth of sections $b = 1.5$ in Mominal breadth of sections $b = 1.5$ in Douglas Fir-Larch, 2" & & wider, Select Structural grade $f = 1.5^{-}$ = 1 Triff same number section Cross section darea, A, 1057 n ² Section modules, S, 131 in ³ Section modules, S, 143 in ⁴ Section modules, S, 243 in Douglas Fir-Larch, 2" & Weise, Sect Structural grade Berding, F ₁ , 150 pil Compression parallels tograin, F ₁ , 100 pil Compression parallel tograin, F ₁ , 100 pil Compression paralel tograin, F ₁ ,	WOOD MEMBER DESIGN (NDS 201	<u>8)</u>										
Design section 1 User note: Check beam at support Member details Service condition Dry Load duration - Table 2.3.2 Ten years Sawn lumber section details $beam = 2 \ln$ Number of sections in member N = 1 Nominal breadth of sections $beam = 2 \ln$ Breadth of sections $b = 1.5 \ln$ Douglas Fir-Larch, 2" && wider, Select Structural grade Image: Section member $d = 7.25 \ln$ Material Douglas Fir-Larch, 2" && wider, Select Structural grade Image: Section modular, S_{ij} (3.1 hr) Section modular, S_{ij} (3.1 hr) Section modular, S_{ij} (3.1 hr) Section modular, S_{ij} (3.1 hr) Section modular, S_{ij} (3.1 hr) Section modular, S_{ij} (3.1 hr) Section modular, S_{ij} (3.1 hr) Section modular, S_{ij} (3.1 hr) Section modular, S_{ij} (3.1 hr) Section modular, S_{ij} (3.1 hr) Section modular, S_{ij} (3.1 hr) Section modular, S_{ij} (3.1 hr) Section modular, S_{ij} (3.1 hr) Section modular, S_{ij} (3.1 hr) Section modular, S_{ij} (3.1 hr) Section modular, S_{ij} (3.1 hr) Section modular, S_{ij} (3.1 hr) Section modular, S_{ij} (3.1 hr) <td>In accordance with the ANSI/AF&P/</td> <td>A NDS 201</td> <td>8 us</td> <td>ing the ASD</td> <td>metho</td> <td>d</td> <td></td> <td></td> <td>Tedds calcul</td> <td>ation version 2</td>	In accordance with the ANSI/AF&P/	A NDS 201	8 us	ing the ASD	metho	d			Tedds calcul	ation version 2		
Member details Dry Service condition Dry Load duration - Table 2.3.2 Ten years Swint lumber section details $Inn years$ Number of sections in member N = 1 Nominal breadth of sections $bern = 2$ in Breadth of sections $d = 7.25$ in Douglas Fir-Larch, 2" & Wider, Select Structural grade Vertication of area, 1, 075 in ¹⁵ Section motions, $S_{2.2}$ in ² Section motions, $S_{2.1}$ in ¹⁶ Section motions, $S_{2.2}$ in ² Section motion of $Z_{2.1}$ in ² Section motion	Design section 1 User note: Check beam at support											
Service condition Dry Lad duration - Table 2.3.2 Ten years Sawn lumber section of details Number of sections in member N = 1 Nominal breadth of sections $b_{nom} = 2 \ln$ Breadth of sections $b = 1.5 \ln$ Nominal depth of sections $d_{nom} = 3 \ln$ Depth of sections $d = 7.25 \ln$ Material Douglas Fir-Larch, 2" && wider, Select Structural grade Image: Section module, S_{1} 3.1 n^{13} Section module, S_{1} 3.1 n^{14} Section module S_{1} 3.1 n^{14}	Member details											
Load duration - Table 2.3.2 Ten years Sawn lumber section details N = 1 Nominal breadth of sections $D_{com} = 2$ in Breadth of sections $D = 1.5$ in Mominal depth of sections $d_{com} = 3$ in Depth of sections $d = 7.25$ in Material Douglas Fir-Larch, 2" && wider, Select Structural grade Image: Section moment of area, $l_{r_2} 2 \ln^2$ Section so properiodized to grain, $l_{r_1} 400 \mu d$ Ompression parallet o grain, $l_{r_1} 100 \mu d$ Compression parallet o grain, $l_{r_2} 100 \mu d$ Sheep argument of area, $l_{r_2} 2 \ln^2$ Modular of elastoty, $l_{r_1} 00000 \mu d$ Thension parallet o grain, $l_{r_2} 1000 \mu d$ Dubraced length - Major axis $L_x = 12 ft$	Service condition		0	Dry								
Sawn lumber section details Number of sections in member N = 1 Nominal breadth of sections $b_{nom} = 2$ in Breadth of sections $d_{cm} = 3$ in Douglas Fir-Larch, 2" & & wider, Select Structural grade Duby the section $d = 7.25$ in Duby the section Duby the section Image: the section of the section of the section Cross-sectional area, 1, 0407 in ² Image: the section of the section of the section Cross-sectional area, 1, 210° in ² Image: the section of the section of the section Cross-sectional area, 1, 210° in ² Section modulate, 5, 211° Section modulate, 5, 211° Section mometid area, 1, 210° Radius of graden, r, 2039 in Radius of graden, r, 2039 in Radius of graden, r, 2039 in Radius of graden, r, 1000 pel Section organic for pain, F, 100 pel Compression parallel to grain, F, 1000 pel Compression parallel to grain, F, 1000 pel Minimum modulatis of elasticity. Engine 620000 pel Modulate section organic for gravity candidate section propertidicate section organic for gravity candidate section propertidicate section organic for gravity candidate section propertidicate section presection for pain. F, 1000 pel	Load duration - Table 2.3.2		Т	en years								
Number of sections in nemberN = 1Nominal breadth of sections $b_{nom} = 2$ inBreadth of sections $b = 1.5$ inNominal depth of sections $d_{nom} = 3$ inDepth of sections $d_{nom} = 3$ inDepth of sections $d_{nom} = 7.25$ inMaterialDouglas Fir-Larch, 2" && wider, Select Structural grade***********************************	Sawn lumber section details											
Nominal breadth of sections $D_{nom} = 2$ inBreadth of sections $d_{mm} = 8$ inDepth of sections $d_{mm} = 8$ inDepth of sections $d = 7.25$ inDouglas Fir-Larch, 2" & & wider, Select Structural gradeImage: Section module, SectionImage: Section SectionImage: Section Section	Number of sections in member		N	l = 1								
Breadth of sections $b = 1.5$ in $d_{nom} = 8$ in $d = 7.25$ in Douglas Fir-Larch, 2" & & wider, Select Structural gradeMaterial $b = 1.5$ in $d = 7.25$ in Douglas Fir-Larch, 2" & & wider, Select Structural gradeImage: the section of the section module, s_p (3.1 n°) Secton space decident (3.1 n°) Secton module, s_p (3.1 n°) Secton structural grade Bending, $F_{1,0}$ (3.1 n°) Secton structural grade Secton	Nominal breadth of sections		b	 								
Nominal depth of sections $d_{nom} = 8$ in Depth of sections $d = 7.25$ in Douglas Fir-Larch , 2" & & wider, Select Structural grade $f = 1.5^{-} + \frac{2^{-}8^{-} * sawn tumber section}{2}$ Cross-section modulus, $S_{n} 2.1 n^{+}$ Section sparalel to grain, $F_{n} 100 \text{ psi}$ Compression perpendicular to grain, $F_{n} 0.000 \text{ pli}$ Minimum modulus of elasticity, E_{max} , 600000 psi Minimum modulus of elasticity, E_{max} , 600000 psi Minimum modulus of elasticity, E_{max} , 600000 psi Density, $p.342.04 \text{ Imm}^{-}$ Specific gravity, $0.42.04 \text{ Imm}^{-}$ Specific gravity, $0.42.04 \text{ Imm}^{-}$ Specific gravity, $0.42.04 \text{ Imm}^{-}$ Modulus of elasticity, E_{max} , 600000 psi Density, $p.34.240 \text{ Imm}^{-}$ Specific gravity, $0.42.04 \text{ Imm}^{-}$ Specific gravity, $0.42.04 \text{ Imm}^{-}$ Specific gravity, $0.42.04 \text{ Imm}^{-}$ Modulus of elasticity, E_{max} , 600000 psi Density, $p.34.240 \text{ Imm}^{-}$ Modulus of elasticity, E_{max} , 600000 psi Density, $P.42.04 \text{ Imm}^{-}$ Modulus of elasticity, E_{max} , 600000 psi Density, $P.42.04 \text{ Imm}^{-}$ Specific gravity, $0.42.04 \text{ Imm}^{-}$ Specific gravity, $0.42.04 \text{ Imm}^{-}$ Specific gravity, $0.42.04 \text{ Imm}^{-}$ Specific gravity, $0.42.04 Imm$	Breadth of sections		b	= 1.5 in								
Depth of sections $d = 7.25$ in Material $d = 7.25$ in Douglas Fir-Larch, 2" & & wider, Select Structural grade $f = 1.5^{-1}$ 2"8" sawn lumber section Cross sectional area, A, 10.875 in ² Section modulus, S ₁ , 23.1 in ³ Second moment of area, 1, 2.476 in ⁴ Second moment of area, 1, 2.10 ⁴ Radius of gyration, r, 2.003 in Radius of gyration, r, 2.003 in Radius of gyration, r, 2.003 in Radius of gyration, r, 2.003 in Compression parallel to grain, F, 1000 psi Compression parallel to grain, F, 1000 psi Compression parallel to grain, F, 1000 psi Density, p. 34.204 itom ¹¹ Specific draws benchmark by E, 10000000 psi Minimum modulus of elasticity, E, 1000000 psi Minimum modulus of elasticity, E, 1000000 psi Density, p. 34.204 itom ¹¹ Specific draws benchmark by E, 10000000 psi Minimum modulus of elasticity, E, 1000000 psi Density, p. 34.204 itom ¹¹ Specific grain F, 100 psi Compression parallel to grain, F, 1000 psi Density, p. 34.204 itom ¹¹ Specific grain F, 1000 psi Density, p. 34.204 itom ¹¹ Specific grain F, 1000 psi Minimum modulus of elasticity, E, 1000000 psi Density, p. 34.204 itom ¹¹ Specific period is a si the second sec	Nominal depth of sections		c	nom = 8 in								
MaterialDouglas Fir-Larch, 2" & & wider, Select Structural gradeImage: Stru	Depth of sections		c	l = 7.25 in								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Material	Douglas Fir-Larch, 2" && wider. Select Structural grade										
2"x8" sawn lumber section Cross-sectional area, A, 10.875 in² Section modulus, S_{μ} , 23 in² Section modulus, S_{μ} , 23 in² Section modulus, S_{μ} , 23 in² Second moment of area, I_{μ} , 47.6 in² Second moment of area, I_{μ} , 47.00 psi Compression parallel to grain, F_{μ} , 1700 psi Column buckling length - Major axis Los = L = 12 ft Los = L = 12 ft Los = L = 12 ft Los = 4 in Analysis resultsDesign bending moment - Major axisMainter Major axisMainter Major axis <th <="" colspan="2" td=""><td>4-15"-</td><td>•</td><td></td><td></td><td>,</td><td></td><td>,</td><td></td><td></td><td></td></th>	<td>4-15"-</td> <td>•</td> <td></td> <td></td> <td>,</td> <td></td> <td>,</td> <td></td> <td></td> <td></td>		4 -15"-	•			,		,			
Span detailsUnbraced length - Major axis $L_x = 12 \text{ ft}$ Effective bending length - Major axis $L_{e,x} = 1.63 * L_x + 3 * d = 21.373 \text{ ft}$ Column buckling length - Major axis $L_{b,x} = L_x = 12 \text{ ft}$ Unbraced length - Minor axis $L_y = 0 \text{ ft}$ Bearing length $L_b = 4 \text{ in}$ Analysis resultsDesign bending moment - Major axis $V_x = 795 \text{ lb}$ Design perpendicular compression - Major axis $V_x = 795 \text{ lb}$ Section \$1 results summaryUnitCapacityMaximumUtilization	725		Sec Sec Rac Rac Ben She Cor Cor Ten Moo Min Der Spe	tion modulus, $S_{x^{\prime}}$ tion modulus, $S_{y^{\prime}}$ ond moment of ar ond moment of ar ilus of gyration, $r_{y^{\prime}}$ glas Fir-Larch , 2 ding, $F_{y^{\prime}}$ 1500 psi ar parallel to grain pression parallel to grain pression parallel to grain tulus of elasticity, imum modulus of usity, ρ , 34.204 lbm cific gravity, G, 0.1	13.1 in ³ 2.7 in ³ ea, I _x , 47.4 ea, I _y , 2 ir 2.093 in 0.433 in * & wider i, F _v , 180 j to grain, F licular to g in, F _v , 100 E, 190000 elasticity, //ft ³	6 in ⁴ , Select Str ; _e , 1700 psi ; _e , 1700 psi 0 psi 0 psi E _{min} , 69000	p, 625 psi 0 psi					
Span detailsUnbraced length - Major axis $L_x = 12$ ftEffective bending length - Major axis $L_{e,x} = 1.63 * L_x + 3 * d = 21.373$ ftColumn buckling length - Major axis $L_{b,x} = L_x = 12$ ftUnbraced length - Minor axis $L_{b,x} = L_x = 12$ ftUnbraced length - Minor axis $L_y = 0$ ftBearing length $L_b = 4$ inAnalysis resultsDesign bending moment - Major axisDesign shear force - Major axis $V_x = 795$ lbDesign perpendicular compression - Major axis $R_x = 795$ lbSection s1 results summaryUnitCapacityMaximumUtilizationResult	Span datails											
Effective bending length - Major axisLex = 1.2 trEffective bending length - Major axisLex = 1.63 * Lx + 3 * d = 21.373 ftColumn buckling length - Major axisLbx = Lx = 12 ftUnbraced length - Minor axisLy = 0 ftBearing lengthLb = 4 inAnalysis resultsDesign bending moment - Major axisDesign bending moment - Major axisMx = 1249 lb_ftDesign shear force - Major axisVx = 795 lbDesign perpendicular compression - Major axisRx = 795 lbSection s1 results summaryUnitCapacityMaximumUtilizationResult	Unbraced length - Major axis		ī	x = 12 ft								
Column buckling length - Major axisLbxLate to the LintentColumn buckling length - Major axisLbx = Lx = 12 ftUnbraced length - Minor axisLy = 0 ftBearing lengthLb = 4 inAnalysis resultsDesign bending moment - Major axisMx = 1249 lb_ftDesign shear force - Major axisVx = 795 lbDesign perpendicular compression - Major axisRx = 795 lbSection s1 results summaryUnitCapacityMaximumUtilizationResult	Effective bending length - Major axis		I I	ex = 1,63 * L	x+3*0	d = 21.3	73 ft					
Unbraced length - Minor axis $L_y = 0$ ft Bearing length $L_b = 4$ in Analysis results Design bending moment - Major axis Design shear force - Major axis $V_x = 795$ lb Design perpendicular compression - Major axis $R_x = 795$ lb Section s1 results summary Unit Capacity Maximum Utilization Result	Column buckling length - Major axis		Ē		ft							
Bearing length $L_b = 4$ in Analysis results $M_x = 1249$ lb_ft Design bending moment - Major axis $M_x = 795$ lb Design perpendicular compression - Major axis $R_x = 795$ lb Section s1 results summary Unit Capacity Maximum Utilization Result	Unbraced length - Minor axis		L	y = 0 ft								
Analysis results Design bending moment - Major axis Mx = 1249 lb_ft Design shear force - Major axis Vx = 795 lb Design perpendicular compression - Major axis Rx = 795 lb Section s1 results summary Unit Capacity Maximum Utilization Result	Bearing length		L	. _b = 4 in								
Design bending moment - Major axis Mx = 1249 lb_ft Design shear force - Major axis Vx = 795 lb Design perpendicular compression - Major axis Rx = 795 lb Section s1 results summary Unit Capacity Maximum Utilization Result	Analysis results											
Design shear force - Major axis Vx = 795 lb Design perpendicular compression - Major axis Rx = 795 lb Section s1 results summary Unit Capacity Maximum Utilization Result	Design bending moment - Maior axis		Ν	/ _x = 1249 lb	ft							
Design perpendicular compression - Major axis Rx = 795 lb Section s1 results summary Unit Capacity Maximum Utilization Result	Design shear force - Maior axis		N	/ _x = 795 lb	61							
Section s1 results summary Unit Capacity Maximum Utilization Result	Design perpendicular compression - I	Major axis	F	R _x = 795 lb								
Section s1 results summary Unit Capacity Maximum Utilization Result										1		
	Section s1 results summary	Uni	it	Capacity		Maxim	um	Utilizat	tion	Result		

ΤΠΤΑΤΛ	Project							Job Ref.		
<u>tu vva</u>	Section							Sheet no./rev 2	r.	
CIVIL & ENVIRONMENTAL	Calc. by		Date	Chk'd by		Date	App'd by		Date	
	SIVILI		11/12/2020							
Shear stress		lb/in ²	180		110		0.609		PASS	
Bearing stress		lb/in ²	625		133		0.212		PASS	
Adjustment factors - Table 4.3.1	1		C 1							
Size factor for banding Table 44			$C_{\rm D} = 12$							
Size lactor for bending - Table 4A			GFb - 1.2							
Bending members - Flexure - cl	.3.3									
Design bending moment			M _x = 1249 lb_	_ft						
Design bending stress - Table 4.3	.1		$F_{b,x}' = F_{b} * C_{D}$	• * C _{Fb} =	1800 lb/i	n²				
Actual bending stress - eq.3.3-2			$f_{b,x} = M_x / S_x =$	= 1141	b/in²					
			$f_{b,x} / F_{b,x}' = 0.0$	634						
			PAS	SS - De	sign ben	ding stre	ss exc	eeds actua	l bending stre	
Bending members - Shear - cl.3	.4									
Design shear force			V _x = 795 lb							
Design shear stress - Table 4.3.1			$F_{v,x}' = F_v * C_D$	= 180	b/in ²					
Actual shear stress - eq.3.4-2	Actual shear stress - eq.3.4-2				d) = 110 II	b/in²				
			$f_{v,x} / F_{v,x}' = 0.6$	609						
				PASS	6 - Desigr	n shear s	tress e	xceeds act	tual shear stre	
Design for bearing - cl.3.10										
Design perpendicular compressio	n		R _x = 795 lb							
Design bearing stress - Table 4.3	.1		Fc_perp,x' = Fc_	perp = 62	5 lb/in ²					
Actual bearing stress			$f_{c_perp,x} = R_x /$	(b * L _b)	= 133 lb/i	n²				
			fc_perp,x / Fc_per		212					
	PAS	S - Desi	gn bearing st	ress ex	ceeds ad	ctual bea	ring st	ress perpe	ndicular to gra	
Design section 2										
User note: Check beam at mid-sp	an									
Member details										
Service condition			Dry							
Load duration - Table 2.3.2			Ten years							
Sawn lumber section details										
Number of sections in member			N = 1							
Nominal breadth of sections			b _{nom} = 2 in							
Breadth of sections			b = 1.5 in							
			d _{nom} = 8 in							
Nominal depth of sections			d = 7.25 in							
Nominal depth of sections Depth of sections										
Nominal depth of sections Depth of sections Material			Hem-Fir, 2"	&& wid	er, Selec	t Structu	ral grad	de		
Nominal depth of sections Depth of sections Material			Hem-Fir, 2"	&& wid	er, Selec	t Structu	ral gra	de		

Project				Job Ref.	
Section				Sheet no./rev. 4	
Calc. by SMH	Date 11/12/2020	Chk'd by	Date	App'd by	Date

f_{v,x} / F_{v,x}' = 0.202

PASS - Design shear stress exceeds actual shear stress

Design for bearing - cl.3.10 Design perpendicular compression

Design bearing stress - Table 4.3.1 Actual bearing stress
$$\begin{split} R_x &= \textbf{220} \ lb \\ F_{c_perp,x}' &= F_{c_perp} = \textbf{405} \ lb/in^2 \\ f_{c_perp,x} &= R_x \ / \ (b \ ^* \ L_b) = \textbf{37} \ lb/in^2 \end{split}$$

fc_perp,x / Fc_perp,x' = 0.091

PASS - Design bearing stress exceeds actual bearing stress perpendicular to grain

10/19/2020

Project: Storage Building Structural Design Section: Wind Design Calculations

$he := 14 \ ft \qquad h_{peak} := 19 \ ft$	$T \coloneqq 288 \text{ K} \qquad g \coloneqq 32.174 \frac{ft}{s^2} \qquad R \coloneqq 287 \frac{(N \cdot n)}{kg \cdot l}$
$h \coloneqq \frac{he + h_{peak}}{2} = 16.5 \ ft$	Average roof height
G ≔ 0.85	Gust Effect Factor for rigid buildings
K _d ≔0.85	Wind Directionality Factor
zg≔942 ft	Elevation of Manchester, IA
$K_e := e^{\frac{-g \cdot z_g}{R \cdot T}} = 0.967$	Ground Elevation Factor
<i>K</i> _{zt} ≔ 1.0	Topographic Factor
GCp;≔0.18	Internal Pressure Coefficient for enclosed building
V≔103 <i>mph</i>	Basic Wind Speed of Manchester, IA
Z locations: $z1 = 10 ft$	$z2:=he=14 \ ft$ $z3:=h_{peak}=19 \ ft$
Exposure B (<30ft):	α:=7 zg:=1200 ft
$K_{10} = 2.01 \cdot \left(\frac{15 \cdot ft}{zg}\right)_{2}^{\alpha} = 0.575$	5 $K_h \coloneqq 2.01 \cdot \left(\frac{h}{zg}\right)^{\frac{2}{\alpha}} = 0.591$
$K_{14} = 2.01 \cdot \left(\frac{15 \cdot ft}{zg}\right)^{\alpha} = 0.575$	5. $K_{19} := 2.01 \cdot \left(\frac{z3}{zg}\right)^{\alpha} = 0.615$
$q_{10} = 0.00256 \cdot \frac{psf}{mph^2} \cdot K_{10} \cdot K_{10}$	$K_{zt} \cdot K_d \cdot K_e \cdot V^2 = 12.823 \ psf$
$q_{14} = 0.00256 \cdot \frac{psf}{mph^2} \cdot K_{14} \cdot K_{14}$	$K_{zt} \cdot K_d \cdot K_e \cdot V^2 = 12.823 \ psf$
$q_h = 0.00256 \cdot \frac{psf}{mph^2} \cdot K_h \cdot K_z$	$t \cdot K_d \cdot K_e \cdot V^2 = 13.177 \ psf$

10/19/2020

Project: Storage Building Structural Design Section: Wind Design Calculations

 $q_{19} := 0.00256 \cdot \frac{psf}{mph^2} \cdot K_{19} \cdot K_{zt} \cdot K_d \cdot K_e \cdot V^2 = 13.719 \ psf$ Transverse Wind: $L_T = 36 ft$ $B_T = 40 ft$ $\frac{L_T}{B_T} = 0.9 \qquad C \rho_{TWwind} := 0.8 \qquad C \rho_{TWlee} := -0.5$ Walls: Roof: $atan\left(\frac{4}{12}\right) = 0.322$ 0.322 *rad* = 18.449 ° Wind is normal to ridge with θ = 18.449 degrees > 10 degrees $\frac{h}{L_{\pi}} = 0.458$ $C \rho_{TR1wind} = -0.493$ $C \rho_{TR1lee} = -0.569$ CpTR2wind := - 0.0558 CpTR2lee := 0 Longitudinal Wind: $B_L = 40 \ ft$ $L_L = 90 \ ft$ $\frac{L_L}{B_l} = 2.25$ $Cp_{LWwind} := 0.8$ $Cp_{LWlee} := -0.287$ Walls: $\frac{h}{L_1} = 0.183$ Roof: Wind is parallel to ridge Cp_{LR1} = - 1.3 Cp_{LR2} = - 0.18 from 0 - 20 ft: $Cp_{LR3} = -0.7$ $Cp_{LR2} = -0.18$ greater than 20 ft:

Project: Storage Building Structural Design Section: Wind Design Calculations

10/19/2020

a. Lo	ngitudinal design wind pressure for walls
Wa	Ils with positive pressure:
	$p_{10WP} \coloneqq q_{10} \cdot G \cdot Cp_{LWwind} - q_h \cdot GCp_i = 6.348 \text{ psf}$
	$p_{14WP} \coloneqq q_{14} \cdot G \cdot Cp_{LWwind} - q_h \cdot GCp_i = 6.348 \text{ psf}$
	$p_{19WP} \coloneqq q_{19} \cdot G \cdot Cp_{LWwind} - q_h \cdot GCp_i = 6.957 \text{ psf}$
	$p_{hLP} := q_h \cdot G \cdot Cp_{LWlee} - q_h \cdot GCp_i = -5.586 \ psf$
Wa	Ils with negative pressure:
	$p_{10WN} \coloneqq q_{10} \cdot G \cdot Cp_{LWwind} - q_h \cdot - GCp_i = 11.092 \text{ psf}$
	$p_{14WN} \coloneqq q_{14} \cdot G \cdot Cp_{LWWind} - q_h \cdot - GCp_i = 11.092 \text{ psf}$
	$p_{19WP} \coloneqq q_{19} \cdot G \cdot Cp_{LWwind} - q_h \cdot - GCp_j = 11.701 \text{ psf}$
	$p_{hLN} := q_h \cdot G \cdot Cp_{LWlee} - q_h \cdot - GCp_i = -0.843 \ psf$
o. Tra	ansverse design wind pressure for walls
Wa	Ils with positive internal pressure:
	$p_{10WP} \coloneqq q_{10} \cdot G \cdot Cp_{TWwind} - q_h \cdot GCp_i = 6.348 \text{ psf}$
	$p_{14WP} \coloneqq q_{14} \cdot G \cdot Cp_{TWwind} - q_h \cdot GCp_i = 6.348 \text{ psf}$
	$p_{hLP} \coloneqq q_h \cdot G \cdot Cp_{TWlee} - q_h \cdot GCp_i = -7.972 \ psf$
Wa	Ils with negative internal pressure:
	$p_{10WN} \coloneqq q_{10} \cdot G \cdot Cp_{TWwind} - q_h \cdot - GCp_i = 11.092 \text{ psf}$
	$p_{14WN} \coloneqq q_{14} \cdot G \cdot Cp_{TWwind} - q_h \cdot - GCp_i = 11.092 \text{ psf}$
	$p_{hLN} := q_h \cdot G \cdot C p_{TWlee} - q_h \cdot - G C p_i = -3.228 \text{ psf}$

10/19/2020

Project: Storage Building Structural Design Section: Wind Design Calculations

Longitudinal design wir	id pressure for roof
Roofs with positive pressu	re:
from 0 - 10 ft:	$p_{LRP1} \coloneqq q_h \cdot G \cdot Cp_{LR1} - q_h \cdot GCp_i = -16.933 \ psf$
	$p_{LRP2} := q_h \cdot G \cdot Cp_{LR2} - q_h \cdot GCp_i = -4.388 \ psf$
from 10 ft - 20 ft:	$p_{LRP3} \coloneqq q_h \cdot G \cdot Cp_{LR1} - q_h \cdot GCp_i = -16.933 \ psf$
	$p_{LRP4} \coloneqq q_h \cdot G \cdot Cp_{LR2} - q_h \cdot GCp_i = -4.388 \ psf$
from 20 ft - 40 ft:	$p_{LRP5} \coloneqq q_h \cdot G \cdot Cp_{LR3} - q_h \cdot GCp_i = -10.212 \ psf$
	$p_{LRP6} \coloneqq q_h \cdot G \cdot Cp_{LR2} - q_h \cdot GCp_i = -4.388 \ psf$
Roofs with negative press	Jre:
from 0 - 10 ft:	$p_{LRP1} \coloneqq q_h \cdot G \cdot Cp_{LR1} - q_h \cdot - GCp_i = -12.189 \text{ psf}$
	$p_{LRP2} := q_h \cdot G \cdot Cp_{LR2} - q_h \cdot - GCp_i = 0.356 \ psf$
from 10 ft - 20 ft:	$p_{LRP3} \coloneqq q_h \cdot G \cdot Cp_{LR1} - q_h \cdot - GCp_i = -12.189 \text{ psf}$
	$p_{LRP4} \coloneqq q_h \cdot G \cdot Cp_{LR2} - q_h \cdot - GCp_i = 0.356 \ psf$
from 20 ft - 40 ft:	$p_{LRP5} = q_h \cdot G \cdot Cp_{LR3} - q_h \cdot - GCp_i = -5.469 \text{ psf}$
	$p_{LRP6} := q_h \cdot G \cdot Cp_{LR2} - q_h \cdot - GCp_i = 0.356 \text{ psf}$

10/19/2020

Project: Storage Building Structural Design Section: Wind Design Calculations

d. Tra	ansverse des	sign wind	d pressu	ire for i	roof		
Ro	ofs with positi	ve interna	al pressu	re:			
	p _{WP1} ≔q _h •G	Cp _{TR1win}	d - q _h •G	Cp _i = -	7.894 ps i	F	
	p _{WP2} ≔q _h •G	Cp _{TR2win}	d - qh•G	Cpi= -	2.997 ps i	F	
	p _{LP1} ≔q _h •G•	Cp _{TR1lee} ·	q _h •GC	p _i = -8.	745 psf		
	p _{LP1} ≔q _h ∙G∙	Cp _{TR2lee} ·	q _h •GC	p _i = -2.	372 psf		
Ro	ofs with nega	tive intern	al press	ure:			
	p _{WN1} ≔q _h ∙G	• Cp _{TR1win}	nd - qh• -	GCp _i =	- 3.15 ps	f	
	p _{WN2} ≔q _h ∙G	• Cp _{TR2wir}	nd - qh• -	GCp _i =	1.747 ps	f	
	p _{LN1} ≔q _h •G•	Cp _{TR1/ee}	- q _h • - G	Cp _i = -	4.001 <i>pst</i>		
	p _{LN1} ≔q _h •G•	Cp _{TR2/ee}	- q _h G	Cp _i = 2.	372 psf		

Project: Storage Building Structural Design Section: Wind Design Calculations

10/19/2020

Appendix D: Structural Design Wall Calculations

TOTATA	Project				Job Ref.				
<u>AVV UI</u>	Section				Sheet no./rev. 2				
CIVIL & ENVIRONMENTAL	Calc. by	Date	Chk'd by	Date	App'd by	Date			
ENGINEERING	S	11/12/2020							
Permissible slenderness ratio		s _{r_perm} = min(34	1 + 12 × (M _{1_ac}	et / M _{2_act}), 40) =	34.0				
Slenderness check for braced w	all								
Radius of gyration		r_{min} = 0.3 × h =	2.40 in						
Actual slenderness ratio		$s_{r_{act}} = k \times I_u / r$	min = 70.00						
			Wall slend	lerness limit O	K, wall is brace	d slender wa			
Design loads for wall subjected	to shear and a	cial load							
Ultimate axial force per running for	ot	P _{u_act} = 1.00 k	ips/ft						
Ultimate shear force per running for	ot	V _{u_act} = 1.00 ki	ps/ft						
Magnified moment for braced sl	ender wall to 6.	6.4							
Moment of inertia of section		$I_{g} = (12in \times h^{3})/1$	2 = 512.000 i	n ⁴					
Euler's buckling load		$P_c = (\pi^2 \times 0.4 \times 0.4)$	$E_c \times I_a)/((1+\beta)$	d)×(k × lu) ² ×1ft)	= 156.470 kips	'ft			
Correction factor for actual to equiv	/. mmt. diagram	$C_m = 0.6 - (0.4)$	* M1 act / M2 a	(t) = 0.600					
Moment magnifier	and a sugram	$\delta_{ns} = \max(1.0.$	Cm / (1-(Pu ac	$((0.75 \times P_c)))) =$	= 1.000				
Minimum uniaxial moment for slen	der section	$M_{2 \min} = P_{11 \text{ act}} * (0.6 \text{ in} + 0.03 \text{ * h}) = 0.070 \text{ kin ft/ft}$							
	Magnified uniaxial moment $M_c = \delta_{ns} \times max(M_2 min, M_2 act) = 0.070$ kip f								
Axial load capacity of single lays	r roinforcomor	t wall subjected	d to bonding		((112_1111) 1112_00()				
c/d. ratio	rreinforcemer	r = 1.172	a to bending						
Effective cover to reinforcement		$d' = c_0 + (D_{res})^2$	2) = 1 750 in						
Depth of tension steel		$d_1 = h - d' = 6.2$	250 in						
Depth of NA from extreme compre-	ssion face	$c = r \times d_t = 7.3$	26 in						
Factor of depth of compressive str	ess block	B₁= 0 850							
Depth of equivalent rectangular str	ess block	$a = min((B_{1\times C}))$	h)= 6 227 in						
Strain in 'tension' reinforcement		$a = \min(\beta \times c)$	(c) = 0.0004	41					
f Strass in 'tension' reinforcement		$\varepsilon_s = \varepsilon_c \times (1 - u_t)$	f(t) = 0.0004	+I 8 pci					
		$C = 0.95 \dots f'$, ly) = 12700.	254 074 kino/ft					
	unning foot	$C_c = 0.05 \times T_c$	24 in 2	234.074 Kips/it					
Force in 'tension' steel	inning loot	$A_s - A_{st_v} - 0.1$	- 1673 kinc	/#					
Nominal axial load strength		$I_s = A_s \times I_s / III$	- 1.073 Kips	71L Ft					
Strength reduction factor		$r_n - O_c + I_s =$	200.747 KIPS/I	L.					
Ultimate avial load carrying cares	hy of wall	$\varphi = 0.00 - 0.00$	166 236 kina#	ft					
onimate axia load carrying capaci	uy Or wall	i⁼u−ψ×rn=	100.230 KIPS/	it.					
Check for axial load capacity of	wall				Wall is safe i	n axial loadin			
Bending capacity of single layer	reinforcement	wall							
Centroid of wall		y = h × 0.5 = 4	1.000 in						
Nominal moment strength		$M_n = C_c \times (y - 0)$	$0.5 \times a) - T_s \times b$	(d _t - y)= 18.453	kip_ft/ft				
Ultimate moment strength capacity	of wall	$M_u = \phi \times M_n = 0$	11.994kip_ft/ft						
Check for uniaxial bending capa	city of wall				Wall is sa	fe for bendin			
Check for shear capacity of wall	cl. 22.5								
Required shear strength		V _{u act} = 1.000 k	kips/ft						
Strength reduction factor		φ _v = 0.75							

TATA	Project				Job Ref.						
<u>LU VVA</u>	Section				Sheet no./rev 3						
ENGINEERING	Calc. by S	Date 11/12/2020	Chk'd by	Date	App'd by	Date					
Depth of tension steel		d _t = h - d' = 6 .	.250 in								
Size effect factor - cl. 22.5.5.1.3	$\lambda_s = min(\sqrt{2 / (1 + (d_t / 1 in) / 10)), 1.0)} = 1.00$										
atio of longitudinal reinforcement		ρ_w = A _s / (d _t ×	$\rho_{\rm w}$ = A _s / (d _t × 12 in)= 0.002								
Maximum shear force resisting cap	V_{max} = 5 × $\lambda \times \sqrt{(f'_c \times 1 \text{ psi}) \times d_t}$ = 23.717 kips/ft										
Shear strength provided by concrete		$V_{c1} = (8 \times \lambda_s \times \lambda \times (\rho_w)^{1/3} \times \sqrt{(f'_c \times 1 \text{ psi})} + P_{u_act} / (6 \times A_g) \times 12 \text{ in}) \times d_t = 0$									
		4.699 kips/ft									
Design shear capacity of section	$\phi V_c = \phi_v \times mir$	n(V _{c1} , V _{max})= 3	.524 kips/ft								
				P	ASS- Wall is sai	e in shear for					
Design summary											
Wall is 8" thick with 4000 psi conci	ete and 60000	psi steel									
Vertical reinforcement is No.4 bars	at 18" spacing	1									
Horizontal reinforcement is No.4 b	ars at 12" spac	ing									
Design status											
Design status					P	ASS-Wall is sa					
Design status					P	ASS-Wall is sa					
Design status					Pi	ASS-Wall is sa					
Design status					P	ASS-Wall is sa					
Design status					Pi	ASS-Wall is sa					
Design status					Pi	ASS-Wall is si					

10/21/2020

Project: Storage Building Structural Design Section: Lintel Design Calculations

Project: Storage Building Structural Design 10/21/2020 Section: Lintel Design Calculations CIVIL & ENVIRONMENTAL ENGINEERING $Ix := \frac{hw^3 \cdot tw + 8 \cdot bf \cdot tf^3 + 12 \cdot bf \cdot hw \cdot tf^2 + 6 \cdot bf \cdot hw^2 \cdot tf}{12} = 47.218 \text{ in}^4$ $ly := \frac{1}{12} \cdot hw \cdot tw^3 + \frac{2}{12} \cdot bf^3 \cdot tf = 9.502 \text{ in}^4$ Roof Load: $Roof \coloneqq 0.12 \frac{kip}{ft} + 0.24 \frac{kip}{ft} = 0.36 \frac{kip}{ft}$ Self Weight: $SW := A_{IB3C} \cdot ws = 10.481 \frac{Ibf}{ft}$ Wall Load (no arching action therefore consider full rectangular load) $DL \coloneqq ((14 \ ft - (12 \ ft))) \cdot wm = 168 \ \frac{lbf}{ft}$ $w \coloneqq Roof + SW + DL = 538.481 \frac{lbf}{ft}$ $W_{G1} \coloneqq w \cdot L_{IB3C1} = 32.412 \text{ kN}$ UDL₃₀₁ = 35 kN must be less than or equal to

10/21/2020

CIVIL & ENVIRONMENTAL ENGINEERING

Project: Storage Building Structural Design Section: Lintel Design Calculations

Project: Storage Building Structural Design Section: Lintel Design Calculations

Wall Load (no arching action therefore consider full rectangular load): $DL := ((14 \ ft - (12 \ ft))) \cdot 84 \ \frac{lbf}{ft^2} = 168 \ \frac{lbf}{ft}$ $w \coloneqq Roof + SW + DL = 538.481 \frac{lbf}{ft}$ $W_{G2} \coloneqq L_{1B3C2} \cdot w = 27.621 \ kN$ UDL₃₀₂ == 40 kN must be less than or equal to

Project: Storage Building Structural Design Section: Lintel Design Calculations

Project: Storage Building Structural Design 10/21/2020 Section: Lintel Design Calculations CIVIL & ENVIRONMENTAL ENGINEERING Roof Load: $Roof \coloneqq 0.12 \frac{kip}{ft} + 0.24 \frac{kip}{ft} = 0.36 \frac{kip}{ft}$ Self Weight: $SW := A_{IB2C} \cdot WS = 7.193 \frac{Ibf}{ft}$ Wall Load (no arching action therefore consider full rectangular load): $DL \coloneqq ((14 \ ft \cdot (7 \cdot ft))) \cdot 84 \ \frac{lbf}{ft^2} = 588 \ \frac{lbf}{ft}$ $w \coloneqq Roof + SW + DL = 955.193 \frac{lbf}{ft}$ $W_{G2} = L_{IB2C} \cdot w = 21.373 \text{ kN}$ UDL3c2 == 30 kN must be less than or equal to

Appendix E: Structural Design Foundation and Footing Calculations

Project: Storage Building Structural Design Section: Slab on Grade Calculations

Inputs: Slab thickness: t≔14 in Concrete strength, fc': f'c = 4000 psi lbf wc ≔ 150 Normal weight concrete, wc: ft^3 wm≔125 Normal CMU weight, wm: ft³ k≔100 **Ibf** Subgrade modulus, k: in³ Poisson's Ratio, μ : $\mu = 0.15$ $wr \coloneqq \frac{2.4 \ kip \cdot 11}{40 \ ft} = 0.66 \ \frac{kip}{ft}$ Distributed roof load: wr due to 11 wood trusses $ww \coloneqq wm \cdot (8 \text{ in} \cdot 14 \text{ ft}) = 1.167 \frac{kip}{ft}$ Distributed load due to CMU walls, ww: due to 8 inch thick walls and 14 ft tall walls $w \coloneqq wr = 0.66 \frac{kip}{ft}$ Total distributed load, w: $w \coloneqq 0.7 \frac{kip}{ft}$ Round to ...

Project: Storage Building Structural Design Section: Slab on Grade Calculations

ACI Bearing Strength

Table A1.2—Allowable distribution loads, unjointed alsies, uniform loading, and variable layout; PCA method

		Allowable load, lb/ft ²							
		Colored .	At		At othe	r aisle	width	6	
Slab	Working	citale	critical			10.0	10.0		
in in	stress, nsi	width in *	width	nisle	aisle	aisle	aisle	aish	
HL.	par	Subora	$de_k = 50$	Ib/in.3	1 ansie	arsie	and the		
	300	5.6	610	615	670	815	1050	121	
5	350	5.6	710	715	785	950	1225	142	
-	400	5.6	815	820	895	1085	1400	162	
	300	6.4	670	675	695	780	945	117	
6	350	6.4	785	785	810	910	1100	137	
	400	6.4	895	895	925	1040	1260	157	
	300	8.0	770	800	770	800	880	101	
8	350	8.0	900	935	900	935	1025	118	
	400	8.0	1025	1070	1025	1065	1175	135	
	300	9.4	845	930	855	850	885	99	
10	350	9.4	985	1085	1000	990	1035	112	
	400	9.4	1130	1240	1145	1135	1185	128	
	300	10.8	915	1065	955	915	925	96	
12	350	10.8	1065	1240	1115	1070	1080	112	
	400	10.8	1220	1420	1270	1220	1230	129	
	300	12.1	980	1225	1070	1000	980	99	
14	350	12.1	1145	1430	1245	1170	1145	110	
	400	12.1	1310	1630	1425	1335	1310	133	
		Subgrad	k = 100) Ib/in.	91				
	300	4.7	865	900	1090	1470	1745	181	
5	350	4.7	1010	1050	1270	1715	2035	211	
	400	4.7	1155	1200	1455	1955	2325	241	
	300	5.4	950	955	1065	1320	1700	192	
6	350	5.4	1105	1115	1245	1540	1985	224	
	400	5.4	1265	1275	1420	1760	2270	256	
	300	6.7	1095	1105	1120	1240	1465	181	
8	350	6.7	1280	1285	1305	1445	1705	212	
	400	6.7	1460	1470	1495	1650	1950	242	
	300	7.9	1215	1265	1215	1270	1395	161	
10	350	7.9	1420	1475	1420	1480	1630	188	
	400	7.9	1625	1645	1625	1690	1860	215	
	300	9.1	1320	1425	1325	1330	1400	153	
12	350	0.1	1540	1665	1545	1550	1696	170	

Modulus of elasticity, Ec:

Radius of Stiffness, Lr

k of subgrade (lbf/in^2)

t≔14 *in*

with 400 psi working stress and critical aisle widths is acceptable

			Subgra	de k = 10	0 lb/in.	1			
		300	4.7	865	900	1090	1470	1745	1810
	5	350	4.7	1010	1050	1270	1715	2035	2115
-		400	4.7	1155	1200	1455	1955	2325	2415
	,	300	5.4	950	955	1065	1320	1700	1925
-	6	350	5.4	1105	1115	1245	1540	1985	2245
		400	5.4	1265	1275	1420	1760	2270	2565
-		300	6.7	1093	1105	1120	1240	1905	1813
-	•	330	6.7	1460	1470	1305	1493	1050	2120
		300	7.0	1915	1265	1915	1000	1305	1610
	10	350	7.9	1420	1475	1420	1480	1630	1880
	10	400	7.9	1625	1645	1625	1600	1860	2150
-		300	9.1	1320	1425	1325	1330	1400	1535
-	12	350	9.1	1540	1665	1545	1550	1635	1795
		400	9.1	1755	1900	1770	1770	1865	2050
-		300	10.2	1405	1590	1445	1405	1435	1525
-	14	350	10.2	1640	1855	1685	1640	1675	1775
_		400	10.2	1875	2120	1925	1875	1915	2030
-			Subara	da k = 700	1 lb Go 3	19			
		300	4.0	1225	1400	1930	2450	2565	2520
	5	350	4.0	1425	1630	2255	2860	2000	2940
	0	400	4.0	1630	1865	2575	3270	3420	3360
_		300	4.5	1340	1415	1755	2395	2740	2810
	6	350	4.5	1565	1650	2050	2800	3200	3274
		400	4.5	1785	1890	2345	3190	3655	3745
		300	5.6	1550	1550	1695	2045	2635	3070
	8	350	5.6	1810	1810	1980	2385	3075	3580
. —		400	5.6	2065	2070	2615	2730	3515	4095
		300	6.6	1730	1745	1775	1965	2330	2895
	10	350	6.6	2020	2035	2070	2290	2715	3300
-		400	6.6	2310	2325	2365	2620	3105	3860
-		300	7.6	1890	1945	1895	1995	2230	2610
-	12	350	7.6	2205	2270	2210	2330	2600	3045
		400	7.6	2520	2595	2525	2660	2972	3480
-		300	8.6	2025	2150	2030	2065	2210	2480
	14	350	8.6	2360	2510	2365	2405	2580	2890
-		400	8.6	2700	2870	2705	2750	2950	3305
-	*Critical ais	de width eou	als 2.209 tis	nes the rad	ius of re	ative st	iffness.		
-	tk of subgra	ide; disregan	d increase in	k due to s	abbase.				
	Notes: Assa load widths	Allowable	stress = $1/2$	in.; allowal flexural str	bio load	vanies	only slip	ghtly fo	e othe
	-res maddin				Berr				
	57000	100		10 0		06			
; ==	5/000	•Vťc	•psi =	(3.6)	J5•1	0°)	ps		
			-						
	/	3	\ ^{0.2}	25					
		C • t~		- 5	0 0 0	0 1-			
:=	10 11	2)		- 5	J.00	2 11	·		
	(12•(1	-μ [*])	• K]						
		. /							
	lbf								

11/10/2020

Project: Storage Building Structural Design Section: Slab on Grade Calculations

Nodulus of rupture, MR:	$MR \coloneqq 9 \cdot \sqrt{f'c \cdot psi} = 569.21 \ psi$
lowable bending stress, Fb:	<i>Fb</i> ≔ 1.6 • √ <i>f'c</i> • <i>psi</i> = 101.193 <i>psi</i>
actor of safety, FS:	$FS \coloneqq \frac{MR}{Fb} = 5.625$
Vidth, b:	b≔12 in
Noment of inertia, I:	$I := \frac{1}{12} \cdot b \cdot t^{3} = (2.744 \cdot 10^{3}) in^{4}$
Section Modulus, Sx:	$Sx \coloneqq \frac{l}{0.5 \cdot t \cdot b} \equiv 392 \frac{\ln^3}{ft}$
tiffness factor, λ :	$\lambda \coloneqq \left(\frac{k \cdot b}{4 \cdot Ec \cdot l}\right)^{0.25} = 0.013 \frac{1}{in}$
Coefficient, B λx	$B\lambda \neq 0.3224$
llowable Wall Load:	$Pc_{allow} \coloneqq 4 \cdot Fb \cdot Sx \cdot \lambda = (2.094 \cdot 10^3) \frac{lbf}{ft}$
	$Pe_{allow} \coloneqq \frac{Fb \cdot Sx \cdot \lambda}{B\lambda x} = (1.624 \cdot 10^3) \frac{lbf}{ft}$
Jsing iterative excel calculation	
tc _{min} ≔13.68 in	center slab or key/dowled joints
te _{min} ≔16.77 in	near free edge of slab

Project: Storage Building Structural Design Section: Slab on Grade Calculations

Excel calculation pictures: CALCULATIONS: Design Parameters: 492.95 MR = 9*SQRT(f 'c) MR = psi Fb = 1.6*SQRT(f 'c) Fb = 87.64 psi FS = 5.625 FS = MR/Fb S = 128.00 in.^3 S = b*t^2/6 3122019 Ec = 57000*SQRT(f 'c) psi Ec = b = 12" (assumed) h = 12.00 in. in.^4 $I = b^{+}t^{-}3/12$ I = 512.00 λ= 0.0208 $\lambda = (k^{+}b/(4^{+}Ec^{+}I))^{*}(0.25)$ Bix = coefficient from "Beams on Elastic Foundations" by M. Hetenyi $B\lambda x =$ 0.3224 Near Center of Slab or Keyed/Doweled Joints: Pc = 933.91 lb./ft. Pc = 4*Fb*S*λ = 12.8*SQRT(f 'c)*t^2*(k/(19000*SQRT(f 'c)*t^3))^(0.25) 933.91 Near Free Edge of Slab: Pe = 724.18 b./ft. Pe = Fb*S*\/B\x 724.18 = 9.9256*SQRT(f 'c)*t^2*(k/(19000*SQRT(f 'c)*t^3))^(0.25) Determine Minimum Slab Thickness for Given Wall Loading: (iterative solutions for t(min)) Eqn. for Pc Eqn. for Pe Iteration # ti 1 -1757.59-1773.171.00 2 -1735.26-1755.86 1.25 3 -1711.77-1737.651.50 4 -1718.66 1.75 -1687.29 5 -1661.91-1698.982.00 6 -1635.72-1678.67 2.25 7 -1608.79-1657.802.50 8 -1581.19-1636.392.75 9 -1552.94 -1614.49 3.00 -1592.12 10 -1524.103.25 11 -1494.70 -1569.33 3.50 12 -1464.77-1546.123.75 13 -1434.34 -1522.524.00 14 -1403.43-1498.554.25 15 -1372.06 -1474.22 4.50 16 -1340.25-1449.554.75 -1308.02 -1424.56 5.00 17 -1275.38-1399.255.25 18 19 -1242.35-1373.645.50 20 -1208.95 -1347.74 5.75 21 -1175.17-1321.556.00 22 -1141.05 -1295.09 6.25 23 -1106.58-1268.366.50 24 6.75 -1071.78-1241.3825 -1036.66 -1214.147.00 26 -1001.22-1186.667.25 27 -965.47 -1158.94 7.50 28 -929.43 -1130.997.75 29 -893.09 -1102.82 8.00 30 -856.47 -1074.428.25 31 -819.57-1045.808.50

Project: Storage Building Structural Design Section: Slab on Grade Calculations

32	-782.39	-1016.98	1	8.75			
33	-744.96	-987.95	9	9.00			
34	-707.25	-958.71	9	9.25			
35	-669.30	-929.28	5	9.50			
36	-631.09	-899.65	5	9.75			
37	-592.64	-869.83	1	0.00			
38	-553.95	-839.83	1	0.25			
39	-515.02	-809.64		10.50			
40	-475.85	-779.27		10.75			
41	-436.46	-748.73		11.00			
42	-396.85	-718.01		11.25			
43	-357.01	-687.12		11.50			
44	-316.96	-656.06		11.75			
45	-276.69	-624.84		12.00			
46	-236.21	-593.45		12.25			
47	-195.53	-561.90		12.50			
48	-154.64	-530.19		12.75			
49	-113.55	-498.33		13.00			
50	-72.26	-466.32		13.25			
51	-30.78	-434.15		13.50			
52	10.89	-401.83		13.75			
53	52.76	-369.37		14.00			
54	94.81	-336.76		14.25			
55	137.05	-304.01		14.50			
56	179.47	-271.12		14.75			
57	222.07	-238.08		15.00			
58	264.84	-204.91		15.25			
59	307.80	-171.61		15.50			
60	350.92	-138.16		15.75			
61	394.22	-104.59		16.00			
62	437.69	-70.88		16.25			
63	481.33	-37.05		16.50			
64	525.13	-3.08		16.75			
65	569.09	31.01		17.00			
66	613.22	65.23		17.25			
67	657.50	99.57		17.50			
68	701.95	134.03		17.75			
69	746.55	168.62		18.00			
t(min):	13.68	16.77					
	13.75	17.00					

TOTATA	Project				Job Ref.	Job Ref.	
	Section				Sheet no./rev.		
					2		
ENGINEERING	Calc. by S	Date 11/12/2020	Chk'd by	Date	App'd by	Date	
1.0D + 1.0L (0.163) 1.0D + 1.0Lr (0.192) 1.0D + 1.0S (0.201) 1.0D + 0.75L + 0.75Lr (0.185) 1.0D + 0.75L + 0.75S (0.192) 1.0D + 0.6W (0.168) 1.0D + 0.75L + 0.75Lr + 0.45W (0.18) 1.0D + 0.75L + 0.75S + 0.45W (0.19) 0.6D + 0.6W (0.102)	38) 5)						
Combination 4 results: 1.0D + 1.05	6						
Forces on foundation							
Force in z-axis		$F_{dz} = \gamma_D * A * (F_{swt} + F_{soil}) + \gamma_D * F_{Dz1} + \gamma_S * F_{Sz1} = 106.3 \text{ kips}$					
Moments on foundation							
Moment in x-axis, about x is 0		$\begin{split} M_{dx} &= \gamma_D * (A * (F_{swt} + F_{soil}) * L_x / 2) + \gamma_D * (F_{Dz1} * x_1) + \gamma_S * (F_{Sz1} * x_1) = \\ \textbf{2338.2 kip_ft} \end{split}$					
Moment in y-axis, about y is 0		M _{dy} = γ _D * (A * kip_ft	(F _{swt} + F _{soil}) * L	y / 2) + γ _D * (F _{Dz1} '	* y ₁) + γs * (F _{sz}	1 * y1) = 212.6	
Uplift verification							
Vertical force		F _{dz} = 106.28 kips					
				PASS - Found	ation is not si	ubject to uplift	
Bearing resistance							
Eccentricity of base reaction							
Eccentricity of base reaction in x-axis		$e_{dx} = M_{dx} / F_{dz} - L_x / 2 = 0$ in					
Eccentricity of base reaction in y-axis	$e_{dy} = M_{dy} / F_{dz} - L_y / Z = 0$ In						
Pad base pressures							
		$q_1 = F_{dz} = (1 - 6 - e_{dx} / L_x - 6 - e_{dy} / L_y) / (L_x - L_y) = 0.604 \text{ kst}$					
		$q_2 = r_{d2} * (1 + 6 * e_{dx} / L_x + 6 * e_{dy} / L_y) / (L_x * L_y) = 0.004$ ksf					
		$q_4 = F_{dz} * (1 + 6 * e_{dx} / L_x + 6 * e_{dy} / L_y) / (L_x * L_y) = 0.604$ ksf					
Minimum base pressure		$q_{min} = min(q_1, q_2, q_3, q_4) = 0.604 \text{ ksf}$					
Maximum base pressure		$q_{max} = max(q_1,$	q ₂ ,q ₃ ,q ₄) = 0.60	04 ksf			
Allowable bearing capacity							
Allowable bearing capacity		$q_{allow} = q_{allow_Gross} = 3 \text{ ksf}$					
	q _{max} / q _{allow} = 0.201						
		PASS - A	llowable bear	ing capacity exc	eeds design	base pressure	
FOOTING DESIGN (ACI318)							
In accordance with ACI318-14							
Material details							
Compressive strength of concrete		f'₀ = 4000 psi					
Yield strength of reinforcement		f _y = 60000 psi					
Compression-controlled strain limit (2	ε _{ty} = 0.00200						
Cover to reinforcement		c _{nom} = 3 in					

	Project				Job Ref.			
IUWA	Section	Section				Sheet no./rev.		
					5			
ENGINEERING	Calc. by S	Date 11/12/2020	Chk'd by	Date	App'd by	Date		
Area of tension reinforcement or	rovided	Δ	R in ²					
Minimum area of reinforcement	(8 6 1 1)	$A_{s,min} = 0.001$	8*l _v *h=17.	107 in ²				
	(0.0.1.1)	, ta.min 0.000	PASS - Area o	of reinforcemen	t provided ex	ceeds minimun		
Maximum spacing of reinforcem	ent (8.7.2.2)	$s_{max} = min(2)$	* h, 18 in) = 18	in				
	PA	SS - Maximum p	ermissible rei	inforcement sp	acing exceeds	actual spacing		
Depth to tension reinforcement		$d = h - c_{nom} -$	φx.bot - φy.bot / 2	= 14.063 in				
Depth of compression block		a = A _{sy.bot.prov}	* f _y / (0.85 * f'c	* L _x) = 0.602 in				
Neutral axis factor	Neutral axis factor							
Depth to neutral axis		$c = a / \beta_1 = 0$	0.708 in					
Strain in tensile reinforcement		ε _t = 0.003 * d	/ c - 0.003 = 0	.05661				
Minimum tensile strain(8.3.3.1)		ε _{min} = 0.004 =	0.00400					
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			PAS	S - Tensile stra	in exceeds mi	nimum required		
Nominal moment capacity		$M_n = A_{sy,bot,pro}$	v * f _v * (d - a / 2	2) = 1238.553 kip	o ft			
Flexural strength reduction facto	Flexural strength reduction factor		$\phi_{\rm f}$ = min(max(0.65 + 0.25 * ($\varepsilon_{\rm t} - \varepsilon_{\rm ty}$) / (0.005 - $\varepsilon_{\rm ty}$), 0.65), 0.9) = 0.900					
Design moment capacity	Design moment capacity		φM _n = φr * M _n = 1114.698 kip_ft					
		Muv.max / φMn	= 0.008	-				
		PASS	- Design mon	nent capacity e	xceeds ultima	te moment load		
Footing geometry factor (13.3.3.	3)	$\beta_f = L_x / L_y =$	11.000					
Area of reinf. req. for uniform dis	tribution (CRSI)	A _{sreg} = (M _{u.v.m}	_{ax} / (oht* fv* (d -	-a/2)))*2*β _f /	$(\beta_f + 1) = 0.262$	2 in ²		
	, , ,		PASS -	Reinforcemen	t can be distri	buted uniformly		
One-way shear design, y direc	tion							
Ultimate shear force		V _{u.y} = 3.156 k	kips					
Depth to reinforcement		$d_v = h - c_{nom}$	φ _{x.bot} - φ _{y.bot} / 2	= 14.063 in				
Shear strength reduction factor	Shear strength reduction factor		$\phi_{v} = 0.75$					
Nominal shear capacity (Eq. 22.	5.5.1)	V _n = 2 * λ * √	(f'c * 1 psi) * L _x	* d _v = 939.196 k	kips			
Design shear capacity	Design shear capacity		$\phi V_n = \phi_V * V_n =$ 704.397 kips					
		$V_{u,y} / \phi V_n = 0$	004					
		1	PASS - Desigr	n shear capacity	v exceeds ultii	mate shear load		
Two-way shear design at colu	mn 1							
Depth to reinforcement		d _{v2} = 14.406	in					
Shear perimeter length (22.6.4)		l _{xp} = 494.406	in					
Shear perimeter width (22.6.4)		l _{yp} = 22.406 i	n					
Shear perimeter (22.6.4)		b _o = 2 * (l _{x1} +	d _{v2}) + 2 * (l _{y1} +	- d _{v2}) = 1033.625	in			
Shear area		$A_p = I_{x,perim} * I_{x}$	y,perim = 11077.7	790 in ²				
Surcharge loaded area		$A_{sur} = A_p - I_{x1}$	$A_{sur} = A_p - I_{x1} * I_{y1} = 7237.790 \text{ in}^2$					
Ultimate bearing pressure at center of shear area Ultimate shear load		a q _{up.avg} = 0.63	$q_{up,avg} = 0.631 \text{ ksf}$					
		$F_{up} = \gamma_D * F_{Dz1} + \gamma_{Lr} * F_{Lrz1} + \gamma_D * A_p * F_{swt} + \gamma_D * A_{sur} * F_{soil} - q_{up,avg} * A_p = 0$						
	-111	8.594 kips	14 + 1 > 5					
Ultimate shear stress from vertic	al load	$v_{ug} = max(F_{ug})$	₀ / (b₀ * d _{v2}),0 p	sı) = 0.577 psi				
Column geometry factor (Table 2	22.6.5.2)	$\beta = I_{x1} / I_{y1} = 0$	50.00					
Column location factor (22.6.5.3)	αs =40						
Concrete shear strength (22.6.5	.2)	$v_{cpa} = (2 + 4)$	β)*λ*√(fc*	1 psi) = 130.707	psi			
		$v_{cpb} = (\alpha_s * d_v)$	2 / b _o + 2) * λ *	√(f'c * 1 psi) = 1	61.751 psi			

ТМ	Project				Job Ref.			
ΤΠΤΑΤΛ								
	Section	Section				Sheet no./rev.		
CIVIL & ENVIRONMENTAL	Calc. by S	Date 11/12/2020	Chk'd by	Date	App'd by	Date		
SLAB ON GROUND (ACI 360R)								
In accordance with Guide to De	sign of Slab-o	on-Ground per A	CI 360R-10					
					Tedds calc	ulation version 1.0.02		
12 in	Slab foundati	on-refer to Section 4.	1 of ACI 360R	-				
Design method								
Design method publisher		Portland Cen	nent Associa	tion				
Materials and site properties Slab thickness Specified compressive strength of Subgrade modulus	fconcrete	h = 12 in f _c = 4000 psi k = 100 lb/in ³						
Wheel specifications								
Axle type		Single-axle						
Number of wheels at end of each axle		Single wheel						
Wheel center to center spacing		S = 40 in						
Loading details								
Load location		Interior						
Axle load		P _a = 30 kips						
Safety factor		FS = 2						
Load contact area per wheel		A _c = 50 in ²						
By iteration assumend trial thickne	ess	$h_{trial} = 10$ in						
The following output is based on t	he use of this	trial thickness in th	ne design chai	rts in Appendi:	x A of ACI 360R			
Effective contact area per wheel (Fig. A1.2)	A _{c_eff} = 61.5 in	1 ²					
Slab thickness design								
Modulus of rupture of concrete		fr = 9 * √(f'c * 1	l psi) = 569.2	psi				
Concrete working stress		$f_{t_{allow}} = f_r / FS$	= 284.6 psi					
Slab stress / 1000 lb axle load		$f_t = f_{L_{allow}} / (P_a / 1 \text{ kips}) = 9.5 \text{ psi}$						
Required slab thickness (Fig. A1.1)		h _{min} = 9.92 in						
		h _{min} / h = 0.82	7					
		PASS - Sla	b thickness is	s adequate to	avoid live load-	induced crack		
Crack control options								
Reinforcement type		Unreinforced	l .					
Concrete type		Typical conc	rete					
Actual joint spacing		Sjoint = 15.0 ft						
Recommended joint spacing (Fig.	6.6)	Sjoint_max = 22.3	3 ft					
		Sjoint / Sjoint_max	= 0.674					

Project				Job Ref.	
Section				Sheet no./rev. 2	
Calc. by S	Date 11/12/2020	Chk'd by	Date	App'd by	Date

PASS - Joint spacing is adequate to avoid live load-induced cracks

Appendix F: Gantt Chart

Appendix G: Bibliography

- AASHTO LRFD bridge design specifications. (2017). Washington, DC: American Association of State Highway and Transportation Officials.
- AISC 15th Edition Interactive Reference List. (n.d.). Retrieved November 20, 2020, from https://www.aisc.org/publications/steel-construction-manual-resources/15-interactivereference-list/
- "ASCE 7-16 Minimum Design Loads and Associated Criteria for Building and Other Structures." (n.d.). American Society of Civil Engineers (ASCE), https://www.asce.org/asce-7/ (Nov. 20, 2020).
- Building code requirements for reinforced concrete (ACI 318-89) and commentary--ACI 318R-89. (1992). Detroit: The Institute.
- "Footings and Foundations." (n.d.). *Food and Agriculture Organization of the United Nations*, FAO Fiat Panis, http://www.fao.org/3/s1250e/S1250E0h.htm> (Nov. 19, 2020).
- "IBC® 2015 Code and Commentary Combo, Vol. 1 & 2." (2015). International Code Council, https://iccsafe.org/2015-ibcr-code-and-commentary-combo-vol-1-2-42682.html (Nov. 20, 2020).
- Iowa DOT Design Manual. (n.d.). Retrieved November 20, 2020, from https://iowadot.gov/design/design-manual
- Iowa Statewide Urban Design and Specifications. (n.d.). Retrieved November 20, 2020, from https://iowasudas.org/
- NDS®, National Design Specification® for wood construction with commentary. (2015). Leesburg, VA: American Wood Council.
- NFPA 70[®]. (n.d.). Retrieved November 20, 2020, from https://www.nfpa.org/codes-and-standards/all-codes-and-standards/list-of-codes-and-standards/detail?code=70
- Pavement Designer. (2018). Retrieved November 20, 2020, from https://www.pavementdesigner.org/
- "Recommended Home Insulation R–Values." (2020). https://www.energystar.gov/campaign/seal_insulate/identify_problems_you_want_fix/div_checks_inspections/insulation_r_values (Nov. 20, 2020).
- Visual Interior Tool. (2020). Retrieved November 20, 2020, from https://www.visual-3d.com/tools/interior/

- SDPWS Special design provisions for wind & seismic with commentary, 2015 edition. (2015). Leesburg, VA: American Wood Council.
- United States Inflation Calculator. (2009, April 15). Retrieved December 03, 2020, from https://www.usinflationcalculator.com/page/18/