IOWA

Maquoketa Subdivision and Drainage Design

May 1st, 2023

Project Team

Ethan Myers Project Manager

Brittany Cunningham

Justin Spiekermann

Robert Yerushalmi

Topics of Discussion

Site Location

Project Scope

Affordable Housing

Effective Drainage

Utilities Plan

Trichloroethylene (TCE)

Legend

Groundwater sample location

TCE Isoconcentration

10 μg/L

<mark> 500 μg/L</mark>

2,000 μg/L

4,000 μg/L

8,000 μg/L

TCE Trichloroethene

µg/L Micrograms per liter

Road Alternatives

Residential One

Residential Two

Industrial/Commercial

Recommended Alternative

Roadway Cross-Sections

COLLECTOR ROADWAY CROSS-SECTION

LOCAL ROADWAY CROSS-SECTION

Housing Alternatives

Town Houses/duplexes

Pre-manufactured Houses

Housing Design

Drainage Alternatives

Alternative #1: Wet Bottom Pond

Alternative #2: Fill Low Points

Alternative #3: Dry Bottom
Detention Basin

Drainage Design

Drainage Plan Benefits

	Flow Entering the Existing Open Channel		
Design Storm	Peak Flow: Existing Conditions (CFS)	Peak Discharge: Post- Development (CFS)	Peak Reduction %
2-yr	56.7	12.7	77.6
10-yr	105	23.4	77.7
50-yr	152.3	48.5	68.2
100-yr	184.5	76.4	58.6
500-yr	217.8	98.9	54.6

Utility Design

Phytoremediation

Willow Trees:

Thrive in a wet environment and will help take up water in the basin while also assisting with phytoremediation for the groundwater plume

Poplar Trees:

Traditionally used in this approach and are planted in rows as an effective barrier to assist with phytoremediation of the groundwater that moves through the area. Will act as a barrier between industrial land to the west and residential development.

Total Cost

Phase 1

Site Work and Paving	\$1,579,500
Storm Sewer	\$514,000
Sanitary Sewer	\$285,000
Water Main	\$409,000
Contingencies	20%
Number of Lots	42
Total Construction Cost Estimate	\$3,268,000
Cost of Infrastructure per lot	\$78,000

Phase 2

Site Work and Paving	\$622,000
Storm Sewer	\$185,500
Sanitary Sewer	\$92,500
Water Main	\$149,000
Contingencies	20%
Number of Lots	21
Total Construction Cost Estimate	\$1,203,000
Cost of Infrastructure per lot	\$57,000

Questions?

