

FINAL DELIVERABLE

Title	Marquette Trail Underpass	
Completed By	Max Abbott, Mason Welter, Ben Witzig, and Shimin Xu	
Date Completed	May 2023	
UI Department	Department of Civiil and Environmental Engineering	
Course Name	Project Design and Management CEE:4850	
Instructor	Paul Hanley	
Community Partners	City of Marquette, Driftless Wetlands Center	

This project was supported by the Iowa Initiative for Sustainable Communities (IISC), a community engagement program at the University of Iowa. IISC partners with rural and urban communities across the state to develop projects that university students and IISC pursues a dual mission of enhancing quality of life in Iowa while transforming teaching and learning at the University of Iowa.

Research conducted by faculty, staff, and students of The University of Iowa exists in the public domain. When referencing, implementing, or otherwise making use of the contents in this report, the following citation style is recommended:

[Student names], led by [Professor's name]. [Year]. [Title of report]. Research report produced through the Iowa Initiative for Sustainable Communities at the University of Iowa.

This publication may be available in alternative formats upon request.

Iowa Initiative for Sustainable Communities The University of Iowa 347 Jessup Hall Iowa City, IA, 52241 Phone: 319.335.0032 Email: iisc@uiowa.edu Website: http://iisc.uiowa.edu/

The University of Iowa prohibits discrimination in employment, educational programs, and activities on the basis of race, creed, color, religion, national origin, age, sex, pregnancy, disability, genetic information, status as a U.S. veteran, service in the U.S. military, sexual orientation, gender identity, associational preferences, or any other classification that deprives the person of consideration as an individual. The University also affirms its commitment to providing equal opportunities and equal access to University facilities. For additional information contact the Office of Equal Opportunity and Diversity, (319) 335-0705. Design Proposal Report

PEDESTRIAN TRAIL DEVELOPMENT MARQUETTE, IA

College of Engineering The University of Iowa 103 South Capital St Iowa City, IA 52242

Table of Contents

- Pg. 2 Executive Summary
- Pg. 3 Organization Qualifications and Experience
- Pg. 4 Design Service
- Pg. 6 Constraints, Challenges, and Societal Impact
- Pg. 6 Design Alternatives
- Pg. 10 Final Design Details
- Pg. 14 Engineer's Cost Estimates
- Pg. 16 Appendices

Executive Summary

We are a group of students at the University of Iowa with backgrounds in civil and environmental engineering as well as a variety of experiences with relevant design projects and coursework. This project was facilitated through our senior design capstone course and involved coordination with the City of Marquette, IA, and the Driftless Area Wetland Center.

The City of Marquette expressed interest in expanding their existing trail systems to provide safe alternative transport for pedestrians and bicyclists to and from their downtown area. The city requested three areas be connected via trail: the Driftless Area Wetland Center, Bloody Run Campground, and Timber Ridge Subdivision. Our project to meet Marquette's overall goal of increased connectivity was divided into two separate phases. Phase One involves connecting an existing trail that runs along Edgar Street to the Driftless Area Wetland Center. The key challenge presented during the design of this phase was the crossing of U.S. Highway 18. The design for Phase Two involves connecting the expanded trail from Phase One to the Bloody Run Campgrounds and the Timber Ridge Subdivisions which are located west of the wetland center.

Through our research, consideration of constraints, and coordination with the Iowa Department of Transportation (DOT) and Department of Natural Resources (DNR), we have divided the potential trail routes into segmented alternatives that can accomplish the City's goals. Moreover, through our investigation of potential crossing methods we have identified three viable alternatives. Alternative One utilizes an existing box culvert that =crosses the highway; Alternative Two involves installation of a new box culvert that will function as an underpass; and Alternative Three implements a surface pedestrian crossing. We have utilized 3D modeling to visually compare the alternative routes and compiled cost estimations for financial comparisons/considerations. In addition to this design report, we have provided design drawings, a slide presentation, and a design summary poster.

The challenges we faced during our design process included navigating property ownership and existing utilities around the site, crossing a U.S. highway, and the presence of wetlands along with other challenging terrain. Our constraints included a strict submission deadline and the location of the highway, surrounding railroad network, and wetlands as these cannot be moved.

Design commenced February 6, 2023, and all deliverables were finished and submitted on May 5, 2023. The total project cost will depend on the selected trail segments and crossing method however, we have prepared a recommended comprehensive trail system. The total project cost for our recommended trail route/crossing method is \$757,000.

Organization Qualifications and Experience

Organization and Design Team Description

We are a group of Civil and Environmental Engineering students in the design capstone class at the University of Iowa.

Name: Max Abbott

Team Role: Project Manager Area of Study: Environmental Engineering Lead Category: Coordination and Hydrology

Name: Ben Witzig

Team Role: Technology Service Area of Study: Civil Engineering Lead Category: Transportation design and Water Resources Name: Shimin Xu

Team Role: Report Production (graphics) Area of Study: Civil Engineering Lead Category: Transportation design and practice

Name: Mason Welter

Team Role: Report Production (text) Area of Study: Civil Engineering Lead Category: Structural

Design Services

Project Scope

The overall objective of this project was to provide feasible design alternatives for a trail that connects the downtown area of Marquette, IA ,to three key locations: the Driftless Area Wetland Center (DAWC), the Timber Ridge Subdivision, and the Bloody Run Campground. The routing of the designed trail system is centered around the mandatory crossing of U.S. Highway 18 that is required to connect an existing trail segment that cuts off North of the highway to the DAWC located south of the highway. Key locations are shown in Figure 1.

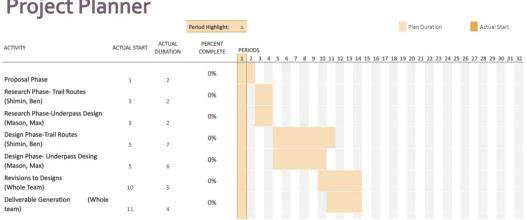


Figure 1: Key locations to increase connectivity in Marguette.

A crucial component of this project was to determine valid methods for accomplishing this crossing. Additionally, we sought to identify permits, potential property acquisitions, and trail features/components required to initiate and accomplish the construction of the designed trail routes.

Work Plan

A time breakdown of the design work phases is shown in Figure 2.

Project Planner

Figure 2: Project work phase breakdown.

Methods and Design Guides

The team used the following guidelines and standards to complete this project:

- Iowa Statewide Urban Design and Specifications •
- **AASHTO Greenbook** •
- Manual on Uniform Traffic Control Devices •
- AASHTO LRFD Bridge design Specification, 8th edition •
- Iowa DOT Precast Box Culvert Standards •

Constraints, Challenges, and Societal Impact

Although the City of Marquette granted the team creative freedom, the project had many constraints and challenges. The project was required to provide an alternative mode of transportation between the city's downtown area and the Driftless Area Wetlands Center (DWAC) that is safe, walkable, bikeable, and cost efficient. The project also needed to expand the existing trail systems around DAWC to connect with the Bloody Run Campground and Timber Ridge Subdivision. Unfortunately, Highway 18 and the Canadian Pacific Railroad runs between the downtown area and the DAWC. This limited the routing possibilities of the proposed trail expansion because the City of Marquette does not have authority to disrupt the highway or railroad. Another challenge presented during this project was the various wetland protected areas at the site. Building a trail through a wetland protected area is difficult because it requires permission from the IDNR and adherence to strict design standards. Our team also had to plan around the existence of a storm sewer network located along Highway 18.

This project has the potential to have a great impact on the people of the surrounding community. Members of the community who utilize the trails will receive many low-cost health benefits from walking and biking. Easier access to the DAWC can help provide people with an educational experience about their local environment. The expanded trail system will also have great impacts on the community's economy. Easy, low-cost access from the downtown area to existing trail systems and subdivisions will increase the flow of commerce, create and support employment, and reduce the cost of commuting within the community. The project may even increase public revenues as trails add value to properties within the community.

Design Alternatives

Because we were not provided with an initial project budget, our group took the approach of designing multiple alternatives to give the city flexibility with the future handling of this project. We have categorized our alternative design concepts based on potential crossing methods. The trail can be linked together using different segments to achieve the City's connectivity goals depending on the selected crossing method. In total there are three potential crossing methods/locations and each crossing alternative presents unique challenges and upsides. The potential crossing methods include utilization of an existing box culvert, construction of a new box culvert, and construction of a pedestrian surface crossing. The location of these crossings will affect the combination of trail segments that connect the trail to key locations. Utilizing the existing culvert will require the trail to run north of Highway 18. The challenges associated with routing the trail using segments north of Highway 18 include navigating a protected wetland, commercially owned property, and utilizing the DOT right of way while still maintaining an appropriate buffer between the road and the trail. The other two crossing

alternatives (new culvert and pedestrian surface crossing) will allow the trail to run south of Highway 18. Challenges associated with the southern oriented trail segments include avoiding the railroad right of way and crossing a small creek. The southern trail routes are favorable due to the avoidance of wetlands and commercially owned property.

Challenges associated with utilizing the existing 10 FT. X 12 FT. culvert include raising the culvert to allow for proper drainage, grading of the trail leading into the culvert to comply with ADA requirements and providing adequate lighting within the culvert for nighttime usage. Because the existing culvert is located roughly 0.3 miles west of the DAWC this crossing alternative would require the trail to backtrack and add additional time of travel for people to access safe crossing to/from the DAWC to the main trail. The location along with an image of the existing culvert and potential ground elevation measures are shown in Figures 3 and 4.

Figure 3: Location of existing culvert.

Figure 4: Existing culvert and proposed ground elevation technique.

Installation of a new culvert will cost the most out of the three alternatives. Depending on the method of installation the highway may need to be shut down. A trenchless installation via hydraulic jacking would not require a complete shutdown but open-cut excavation would require a complete shutdown and detouring of the highway. However, this alternative will allow for the crossing to take place closer to the DAWC than other alternatives. Our selected location for the installation of a new culvert is shown in Figure 5 and an example of what this culvert may look like after construction is presented in Figure 6.

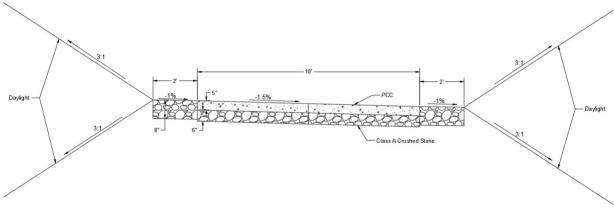
Figure 5: Proposed new culvert location.

Figure 6: Conceptual visual of new culvert.

Using a pedestrian crosswalk to cross the highway will require additional permitting and clearance with the DOT regarding safety concerns. This alternative allows for crossing to take place relatively close to the DAWC. Additionally, the costs associated with this alternative are low compared to other alternatives. We recommend that if this alternative is pursued by the city, a speed limit reduction from 45/55 mph to 35 mph is requested from the DOT. Ultimately, this will be a decision that must be cleared by the DOT but can be initially requested by anyone. The proposed location for the surface crossing is shown in Figure 7 and a visual of what the crossing may look like is shown in Figure 8.

Figure 7: Proposed pedestrian crossing location.

Figure 8: Conceptual visual of new pedestrian crosswalk.


Assuming funding is not a constraint on the trail design, our group recommends Alternative 2, installation of a new box culvert, as the preferred crossing method. We believe this is the most efficient, safe, and viable crossing method.

Final Design Details

Shared Use Trail

Trail

The trail was designed using Civil 3D and following Iowa SUDAS 12B-2 design guidelines. It was considered a Type 3 recreational trail. Figure 9 shows a typical cross section of the trail.

The trail was designed in segments to allow for flexibility in the final routing of the trail. The segment breakdown is given in Figure 10.

Figure 10: Trail segment breakdown.

Depending on the selected crossing alternative, different trail segments can be utilized to assemble a final design route. We have provided a recommended trail route that we think is the safest, most efficient, and most scenic route. This route requires installation of a new box culvert and is shown in Figure 11.

Figure 11: Recommended trail route.

Small Culverts

Utilization of the southern trail segments requires crossing a small stream to get to the Bloody Run Campground. To accomplish this, two small culverts are implemented into the design to allow the trail to cross over the stream without disturbing its flow. The culverts were sized using flow data obtained from StreamStats in combination with the Hydraflow Civil 3D extension. These culverts are considered to be minor project features; thus they were designed using 50% flood flow of 96.6 cfs. After inputting required flow and elevation data Hydraflow returned a necessary culvert diameter of 12' to accomplish the stream crossing without significantly disrupting flow. A safety factor of 1.25 was used to arrive at final culvert diameters of 15'. Corrugated metal culverts were selected for ease of installation.

Highway Crossing

Existing Culvert

The existing culvert is a 10 FT. X 12 FT. box culvert. According to the city, it rarely has consistent water flow. However, to accommodate potential low flow conditions, the trail surface will be raised using galvanized steel safety grate grip struts. Additional lighting is recommended for the existing culvert to promote safety and nighttime trail usage.

New Box Culvert

The installation of a new boxed culvert, allowing pedestrians to travel underneath US Highway 18, involves the use of a trenchless construction method called hydraulic jacking. The proposed design of the culvert is a 10' x 10' pre-cast reinforced concrete boxed culvert that will span 60-70 feet. The dimensions were chosen to allow ample space for both walking and biking. This design follows the Iowa DOT Standard Design for Single Precast Reinforced Concrete Boxed Culverts. A typical cross section of the barrel section design is included in Appendix B, as well as the design dimensions and reinforcement requirements. The final barrel design was developed by following the Barrel and End Section Design Methodology in the Iowa DOT Precast Box

Culvert Standards. A LRFD software for boxed culverts, called Eriksson Culvert, was used for determining and analyzing resistance factors, reinforcing layout, critical sections, reinforcing wire diameter and maximum spacing, strength-level flexural reinforcing requirements, crack control requirements, minimum and maximum reinforcing requirements, and shear capacity. All calculations in the program operate in accordance with AASHTO LRFD Bridge Design Specifications 8th Edition. All physical dimensions, material properties, and loads that were input into the program are pictured in Appendix C. All design analysis is summarized in a report located in Appendix D.

Surface Pedestrian Crossing

The least costly alternative for crossing Highway 18 involves implementation of a pedestrian surface crossing. Our team coordinated with the Iowa DOT to determine the best location for a potential surface crossing and what would be needed to successfully install one. We were informed that the Iowa DOT would cover the cost for signage and handle installation. In total, four signs would be installed. Examples of these signs are shown in Figure 12.

Figure 12: Required dot pedestrian crossing signage.

However, before the DOT approves a new crosswalk, it would need to be painted, meet ADA requirements, and additional coordination with the DOT regarding safety would need to take place. There are two options for additional lighting to increase crosswalk safety and visibility. Option 1: Intersection lighting will require a permit from the DOT and installation and operation (electricity) would have to be paid for by the city (Figure 13).

Figure 13: Conceptual street lighting visual.

Option 2: Rectangular Rapid Flashing Beacon (RRFB) also requires a permit from the DOT and costs for initial purchase, installation, maintenance, and operation (Figure 14).

Figure 14: Example of a Rectangular Rapid Flashing Beacon (RRFB).

Both lighting options, which provide necessary safety, are included in our final design costs.

Permitting Summary

Various permits will be required during the pursuit of trail construction. A summary of required permits is presented in Table 1.

Purpose	Permit	Link	
Construction in and around wetlands/floodpl ains	Joint Application Permit		 Form: <u>https://www.iowadnr.gov/Portals/idnr/uploads/</u> <u>forms/5423234.pdf</u> Fact Sheet: <u>https://www.nrcs.usda.gov/sites/default/files/2</u> <u>022-</u> <u>09/Permit%20Fact%20Sheet%20January%20202</u> 0.pdf
Trail within DOT Right-Of-Way	Form 632007: Application for Use of Highway Right of Way for Recreational Trail Operation	-	https://iowadot.seamlessdocs.com/sc/?size=n 10 n&q= 632007&filters%5B0%5D%5Bfield%5D=type&filters%5B0 %5D%5Btype%5D=any&filters%5B0%5D%5Bvalues%5D %5B0%5D%5B0%5D=Form Search "632007"
Utilities accommodations in Right-Of-Way, including addition of intersection lighting and RRFBs.	Form 810025: Utility Accommodation Permit	-	Search "810025"

Engineer's Cost Estimate

Cost estimates are provided for each potential trail segment and crossing alternative. Additionally, we have provided a cost estimate for our comprehensive recommended trail design which includes the installation of a new box culvert, a southern-based trail route, and other minor features such as small stream crossing culverts and fencing. Our cost data was obtained from Iowa DOT bid tabs, an example cost estimate provided to us by a city engineer from Iowa City, RSmeans cost handbook, and online vendors. Our estimates include materials, equipment, overhead, profit, and labor. The following tables summarize our cost estimate, and the comprehensive cost breakdowns are provided in Appendix A.

Crossing Alternative	Cost
New Underpass	\$261,000
Existing Underpass	\$53,000
Crosswalk	\$15,000

Table 2: Crossing Alternative Cost Estimates

Table 3: Trail Segment Cost Estimates

Trail Segment	Cost
1	\$71,000
2	\$128,000
3	\$85,000
4	\$166,000
5	\$132,000
6	\$51,000

Design Element	Cost
Trail and Trail Elements	\$370,000
New Underpass	\$261,000
Total Project Cost	\$631,000
Total Project Cost (20% Contingency)	\$757,000

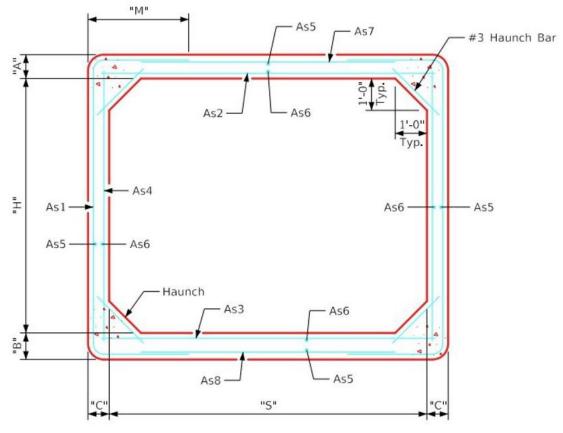
Table 1: Pecommanded Trail Cost Estimate

Appendices

<u>Appendix A</u>

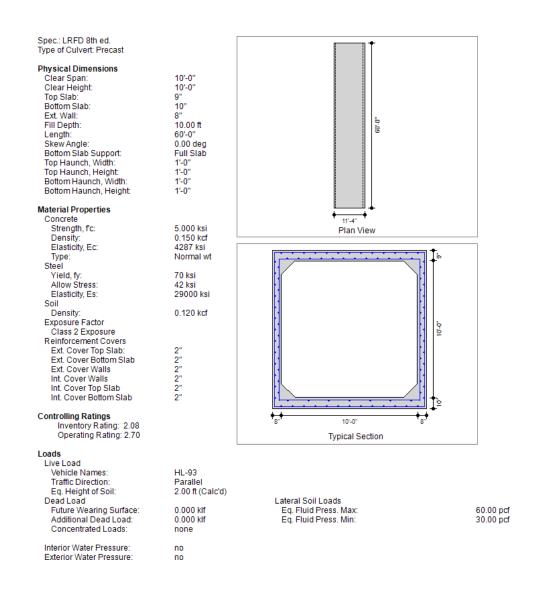
The raw cost data and contributing line items are provided below. Cost data was obtained from lowa DOT bid tabs, an example cost estimate provided to us by a city engineer from lowa City, RSmeans cost handbook, and online vendors.

Northeast Trail Segment	556.18				
Northeast Trail Segment	556.18 Quantity	ft Unit	Unit Price	Total	
Clearing and Grubbing		5 ACRE	\$4,531	\$1,575	
Excavation - class 12					
Cut/fill soll compaction	626.9 20.6		\$48	\$30,070 \$22	
Pavement	20.6	UCY	51	\$22	
5" PCC	617.9	8 SY	\$42	\$25,881	
6" class A crushed stone	272.5		\$32	\$8,675	
Pavement Marking	384.5	2 STA	\$12	\$4,614	
				\$70,837	Subtot
North Central Trail Segment	1599.1	π			
Item	Quantity	Unit	Unit Price	Total	
Clearing and Grubbing	0.6	7 ACRE	\$4,531	\$3,045	
Excavation - class 12					
Cut/fill soil compaction	527.5		\$48	\$25,300 \$63	
Pavement	39.2	sjer	21	203	
5" PCC	1776.7	8 SY	\$42	\$74,411	
6" class A crushed stone	783.5	6 Ton	\$32	\$24,941	
				\$127,761	Subtota
Northwest Trail Segment	1234.09	π			
Northwest Irail Segment Item	Quantity	Unit	Unit Price	Total	
Clearing and Grubbing	0.6	6 ACRE	\$4,531	\$3,000	
Excavation - class 12					
Cut/fill	101.7		\$48	\$4,879	
soil compaction	45.7	I CY	\$1	\$49	
5* PEC	1371.2	1 SY	\$42	\$57,426	
6" class A crushed stone	604.704		\$32	\$19,248	
				\$84,603	Subtota
Southwest Trail Segment	2173.2	ft	and the second		
Clearing and Grubbing	Quantity	Unit 8 ACRE	Unit Price \$4,531	Total \$4,003	
Excavation - class 12	0.0	a Hone	44,551	24,003	
Cut/fill	568.1	5 CY	\$48	\$27,248	
soil compaction	80.4	9 CY	\$1	\$86	
Pavement 5° PCC	2414.6	-	\$42		
6" class A crushed stone	2414.6		\$42	\$101,126 \$33,895	
	2004.00			\$166,358	
South Central Trail Segment	1454.43 Quantity	ft Unit	Unit Price	Total	
Item Clearing and Grubbing	Quantity 0.81	ACRE	\$4,531	Total \$3,689	
Excavation - class 12	0.01	Piche	44,551	44,003	
Cut/fill	738.94	CY	\$48	\$35,440	
soll compaction	53.87	CY	\$1	\$58	
Pavement					
5" PCC 6" class A crushed stone	1616.03 712.6707	SY	\$42 \$32	\$67,679 \$22,684	
Post fence (wood)	261.66	ft	\$8	\$2,084	
i ost initia (inoou)	202100			\$131,643	
Total width	14	ft			
Pavement Width	10	ft			
Soil compaction					
Soll compaction Base depth	0.5	ft.			
Clear zone width	2	ft			
Cross Area		1 sq. ft.			
6" class A crushed stone Depth		5 ft			
Density		s π D Ib/ft^3			
South East Trail Segment	14	ft			
Item	Quantity	Unit	Unit Price	Total	
Clearing and Grubbing	0.14	ACRE	\$4,531	\$653	
Excavation - class 12 Cut/fill	247.00	CY.	\$48	\$11,846	
Cut/fill soil compaction	247.00	CY	\$48	\$11,846 \$0	
Pavement					
5" PCC	441.00	SY	\$42	\$18,469	
6" class A crushed stone	618	Ton	\$32	\$19,671	
Takal usidah	14	4		\$50,639	Subtiot
Total width Pavement Width	14	ft ft			
CARGONIC WORKING	10	in the second se			
Soil compaction					
Base depth	0.5	ft			
Clear zone width	2	ft			
Cross Area		1 sq. ft.			
		1 sq.π.			
6" class A crushed stone					
Cross Area 6" class A crushed stone Depth Density	0.	1 sq. π. 5 ft 0 lb/ft^3			


Marquette Trail Cost Estimate - 4/23 Underpass Alternative Costs

Alt. 1 - Existing Culvert						
Item	Quantity	Unit	ι	Jnit Price		Total
Underpass Lighting	1	LS	\$	9,450.00	\$	9,450.00
24" wide x 2 x 12GA Galvanized Steel Safety Grate / Grip Strut Total	70	EACH	\$	622.00	\$4 \$	13,540.00 52,990
Alt. 2 New Underpass						
Item	Quantity	Unit	ι	Jnit Price		Total
Precast Concrete Box Culvert, 10 FT. X 10 FT.	60	LF	\$	2,200.00	\$1	32,000.00
Precast Concrete Box Culvert Straight End Section, 10 FT. X 10 FT.	2	Each	\$	31,500.00	\$ (53,000.00
Lighting	1	LS		9,450.00		9,450.00
Excavation	250	СҮ	\$	35.00	\$	8,750.00
Temporary Shoring	1	LS	\$	20,000.00	\$2	20,000.00
Anti-Graffiti Coating	300	SY	\$	25.00	\$	7,500.00
Steel Guardrail	200	LF	\$	100.00	\$2	20,000.00
					\$2	60,700.00
Alt. 3 Surface Pedestrian	Crossing					
Item	Quantity	Unit	1	Jnit Price		Total
Rectangular Rapid Flash Beacon		Each		3,680.00	\$	7,360.00
Lighting Poles	2	Each	\$	3,685.00	\$	7,370.00
Paint	1	Sta	\$	250.00	\$	250.00
Total					\$1	14,980.00

Pr	oject Recommend	atior	Cost Esti	mate	
Trail	Total Trail Length = 4183.81	ft			
Item	Quantity	Unit	Unit Price	Total	
Clearing and Grubbing	2.04	ACRE	\$4,531.41	\$9,267	
Excavation - class 12					
Cut/fill	1934.07	CY	\$47.96	\$92,758	
soil compaction	154.96	CY	\$1.07	\$166	
Pavement					
5" PCC	4648.68	SY	\$41.88	\$194,687	
6" class A crushed stone	2050.07	Ton	\$31.83	\$65,254	
Pavement Marking	384.521	STA	\$12.00	\$4,614	
Post fence (wood)	261.6635	ft	\$8.00	\$2,093	
				\$368,838	Subtotal
Small Culverts					
Item	Quantity	Unit	Unit Price	Total	
CULVERT, CORRUGATED METAL ENTRANCE PIPE,					
15 IN. DIA.	28	LF	\$40.00		
				\$1,120	Subtotal
Box Culvert (Underpass)					
Item	Quantity	Unit	Unit Price	Total	
Precast Concrete Box Cul	60	LF	\$ 2,200.00	\$132,000	
Culvert Straight End					
Section, 10 FT. X 10 FT.	2	Each	\$31,500.00	\$63,000	
Underpass Lighting	1	LS	\$9,450.00	\$9,450	
Excavation - class 12	250	CY	\$ 35.00	\$8,750	
Temporary Shoring	1	LS	\$20,000.00	\$20,000	
Anti-Graffitti Coating	300	SY	\$25.00	\$7,500	
Steel Gaurdrail	200	LF	\$100.00	\$20,000	
				\$260,700	Subtotal
			Construction		
			Subtotal	\$630,658	
			Contingencies		
			(10%)	\$126,132	
			Total Project		
			Cost	\$756,790	


Appendix B Typical cross section of the of barrel section design with summary of dimensions and reinforcement strength.

Dimensions								
Size	f'c (KSI)	Fill (FT)	S (IN)	H (FT)	A (IN)	B (IN)	C (IN)	
10'x10'	5	2-11	10	10	9	10	8	

Reinforcement Requirements												
	As1		A	s2	A	s3	As	s 4	As5,	As6	As7/	As8
Area (IN ² /FT)	Length	м	Area (IN ² /FT)	Length	Area (IN ² /FT)	Length	Area (IN ² /FT)	Length	Area (IN ² /FT)	Length	Area (IN ² /FT)	Length
0.54	16'-7"	2'-10"	1.04	10'-6"	1.13	10'-6"	0.2	10'-6"	0.12	10'	0.24	9'-4"

<u>Appendix C</u> Physical dimensions, material properties, and load assumptions utilized in the Eriksson Culvert program for the design of culvert.

Appendix D

Analysis and results for culvert resistance factors, reinforcing layout, critical sections, reinforcing wire diameter and maximum spacing, strength-level flexural reinforcing requirements, crack control requirements, minimum and maximum reinforcing requirements, and shear capacity developed from Eriksson Culvert software.

CULVERT PROPERTIES _____ Type of Culvert: Precast Specification : LRFD 8th Edition Operating Mode : Design **Physical Dimensions** No. of Boxes: 1 Name: BoxCulvert Clear Span : 10.0000 ft Clear Height: 10.0000 ft Fill Depth : 10.00ft Skew Angle : 0.00 deg Clear Height: 10.0000 ft Bottom Slab Support: rute St Length : 60.0000 ft Bottom Slab Support: rute St Haunches: Top, Length: 12.0000 in Height: 12.0000 in Bottom Length: 12.0000 in Height: 12.0000 in Bottom Length: 12.0000 in Height: 12.0000 in Bottom Slab Support: Full Slab Top Slab: 9.0000 in Ext Wall: 8.0000 in Minimum Thicknesses: Bot Slab: 10.0000 in Wall Joint: None Material Properties : 0.150 kcf Elasticity,Ec: 4287 ksi Density Modification Factor : 1.00 : 1.60 Gamma3 : 1.00 (user defined) : 0.60fy Elasticity,Es: 29000 ksi Concrete: Strength, f'c : 5.000 ksi Density Туре : Normal Weight Gamma1 Fr Factor : 0.24 70.00 ksi Steel: Yield, fy fss Limit : : 60.00 ksi : Mesh : 1.000 in Yield, fyv Diameter Туре : 0.120 kcf : 0.5 Slope Factor: 1.000 Soil: Density Poisson's Fe Factor : 1.150 (Maximum for Compacted Fill) Serviceability, Gamma-e: 0.75 Loads Live Load: Vehicle: (AA) HL-93 - Design Vehicle Axle No. Weight(k) Dist. From Previous(ft) 8.00 0.00 1 32.00 2 14.00 3 32.00 14.00 Gage Width: 6.00 ft, Tread Width: 20.00 in, Tread Length: 10.00 in Tandem: Axle 1: 25.00 k, Axle 2: 25.00 k, Axle Spacing: 4.00 ft Lane Load: 0.00 klf, P-Moment: 0.00 k, P-Shear: 0.00 k Combine: Truck + Lane Or Tandem + Lane Inventory Rating Load Factor: 1.75 Operating Rating Load Factor: 1.35 Design Load Combinations: Strength I Override MPF: no Override DLA: no Include Lane Load : no Max. No. of Lanes: Comput Traffic Direction : Lanes Parallel to Main Reinforcement Max. No. of Lanes: Computed by Program Neglect Live Load for Large Fill Depths: no Apply Surcharge at Fill Depths > 2 ft : yes Compute Surcharge Depth: yes Dead Load: Future Wearing Surface : 0.00 klf Add. Dead Load : 0.00 klf Concentrated Loads : none Lateral Soil Loads: Max. Equiv. Fluid Press.: 60.00 pcf Min. Equiv. Fluid Press. : 30.00 pcf Include Additional Uniform Horiz. Load: no Include Additional Uniform Vert. Load: no Buoyancy Check : no Fluid Pressures : Apply Water Press. : no Foundation Model : Uniform Loads Seismic Analysis : Do not include Load and Resistance Factors Max Min DC: 1.250 0.900 DW: 1.500 0.650 EV: 1.300 0.900 0.900 EH: 1.350 WA: 1.000 EQ: 1.000 LL II : 1.350 LL Legal : 1.750 LL Extreme : 0.500 Importance: 1.000 Redundancy. non-earth: 1.800 Parts : 1.750 LL II LL I Ductility: 1.000 Redundancy, non-earth: 1.000 Redundancy, earth: 1.050 Condition: 1.000 System : 1.000 Phi Shear: 0.900 Phi Moment: 1.000 PM Compression: 0.750 PM Tension : 0.900 Load Factor Multipliers, Design Mode: 1.00 Analysis Mode: 1.00

Reinforcement

Wa	p SI	ab:	Exterior 2.0000 in 2.0000 in 2.0000 in		in in	
Design Options						
Member Thickness	:		Slab : Fixed Wall: Fixed			Bottom Slab: Fixed
LL Analysis		Autor Limi Comb Comb Axle Inclu Alway Defle Appro	matically Set t LL Distribut ine Longituding ine Transverse Placement Inc ude Impact on ys Distribute V ection Criteri pach Slab will	ion Widt al Axle Axle Di rement f Bottom S Wheel Lo a : be Useo	th to Culver Distribution for Moving L Slab: yes bad: yes 1/800 d: no	oad Analysis: 20
Reinforcement	1	Dist User Ind. Max. Dist Use Epoxy	Top and Botton As used in Vc ribute Minimum	Provideo tudinal m Slab D Calcs: Reinfor ber Thio no	d: no Steel: no, Design: yes 2.00 in2/ft rcement per cknesses for	Follow Specification Face: yes Min Steel: no
Slenderness	:	Chec		ctor: 2.		
Analysis Modelin						
Critical Section		Shea Use I Incl	r critical sec Max. Moment wi ude depth of ha	tion loo th Max. aunch fo	shear at th	eyond support e Critical Section for Shear: no
Flexure	:		re Axial Thrus Eq. 12.10.4.2.		es Nu Mult	iplier: 1.00
Shear	:		s Check Itera			
Environmental			y duribility f	actors:	no	
Load Combination	IS :	LRFD	min/min: no			

DESIGN RESULTS

Top Slab Thickness = 9.00 in Bottom Slab Thickness = 10.00 in Exterior Wall Thickness = 8.00 in

 Modular Ratio (N) = 6.76
 Max. Steel Ratio = 0.020

 Design Span = 10.67 ft
 Design Height = 10.79 ft

 Design Fill Depth = 10.00 ft
 The second secon

Volume of Concrete: 1.233 cy/ft

Note: Design and analysis results do not include force effects from stipping and handling stages

Reinforcing Steel Schedule

	Mat					As, prv	As,str	Truck
Location	Mark		Sheets	Included	Layers	(in2/ft)(in2/ft)	
Top Slab (int)	A100	(AS2)	Тор		1	0.600	0.515	AA
Bot Slab (int)	A200	(AS3)	Bot		1	0.645	0.541	AA
Top Slab (ext)	A300	(AS7)	L&R		1	0.330	0.240	AA
Bot Slab (ext)	A400	(AS8)	L&R		1	0.330	0.240	AA
Corner Top-U	A1	(AS1)	L&R		1	0.330	0.275	AA
Corner Bottom-U	A2	(AS1)	L&R		1	0.330	0.257	AA
Ext Wall (int)	B1	(AS4)	Тор		1	0.600	0.240	AA
Ext Wall (ext)	B2	(AS1)	T&B		1	0.330	0.240	AA
Top Slab (int- 1)	C100	(AS5)	Тор		1	0.120	0.110	AA
Bot Slab (int- 1)	C200		Bot		1	0.067	0.110	AA
Temperature (1)	C1	(AS6)	L&R		1	0.120	0.110	AA
Temperature (1)	C1	(AS6)	L&R		1	0.120	0.110	AA
Temperature (1)	C1	(AS6)	L&R		1	0.120	0.110	AA
Temperature (1)	C1	(AS6)	T&B		1	0.120	0.110	AA

Note: A denotes flexural steel, B denotes vertical steel, C denotes longitudinal steel

AS Bar Marks

Location		Governing Mode	As Gvrn in2/ft
Transverse Side Wall	 Outside Face (AS1) 	С	0.330
Transverse Top Slab	- Inside Face (AS2)	b	0.600
Transverse Bottom Slab	- Inside Face (AS3)	b	0.645
Transverse Side Wall	- Inside Face (AS4)	с	0.600
Distribution Top Slab	- Inside Face (AS5)		0.120
Distribution Top Slab	 OutSide Face (AS6) 		0.120
Transverse Top Slab	 Outside Face (AS7) 	с	0.330
Transverse Bottom Slab	 Outside Face (AS8) 	С	0.330

Sheet					ine Wire	s			-Cro	oss Wire	s(L,tot	=59-11)-	
Loc.	Mat	Zone	Size		Length					Size	Spac.		Wgt
	Mark			(in)	(ft-in)	in2/ft)	(ft-in)	(ft-in)	Mark		(in)	(in2/ft)	(lbs)
Тор	A100	Base	D10	2.00	21-12	0.600	10 - 4	5-10	C100	D10	10.00	0.120	2934
	B1	Base	D10	2.00	21-12	0.600	10- 4	5-10	C1	D10	10.00	0.120	489
										(1) she	ets, To	tal weight	: 3423
Bot	A200	Base	D21.5	4.00	22- 5	0.645	10- 4	6- 1	C200	D10	18.00	0.067	3087
	B1	Base	D10	2.00	21-12	0.600	10- 4	5-10	C1	D10	10.00	0.120	489
										(1) she	ets, To	tal weight	: 3576

Exterior sheets - 2 sheet layout with laps located in the slab

Sheet					ine Wire	e <mark>s</mark>			-Cr	oss Wire	s(L,tot:	=59-11)-	
Loc.	Mat	Zone	Size	Spac.	Length	Area	H leg	V leg	Mat	Size	Spac.	Area	Wgt
	Mark			(in)	(ft-in)	(in2/ft)	(ft-in)	(ft-in)	Mark		(in)	(in2/ft)	(lbs)
L&R	A300	Base	D5.5	2.00	23-7	0.330	6-2	11- 3	C1	D10	10.00	0.120	1586
	A400	Base	D5.5	2.00	23-7	0.330	6-2	11- 3	C1	D10	10.00	0.120	551
	A1	Base	D5.5	2.00	5-10	0.330	4-0	1-10	C1	D10	10.00	0.120	
	B2	Base	D5.5	2.00	23-7	0.330	6-2	11- 3	C1	D10	10.00	0.120	571
	A2	Base	D5.5	2.00	6-0	0.330	4-1	1-11	C1	D10	10.00	0.120	
										(2) she	ets, To	tal weight	: 5416

Weight of Steel: 207 lb/ft

Total weight of all sheets:12415

Notes:

Epoxy coating may be needed for A1, A300, and some C1 reinforcement, check with governing agency. L&R – left and right, TC – top corner, BC – bottom corner, INT – interior walls, EXT – exterior walls Nested line wires are additive to the base line wires, but nested cross wires replace base cross wires. Adder sheets may require cross wires, check with mesh supplier.

Summary of Ratings Table:

			Flexure				Sł	near		
Truck	Fill	Member	Location	IR	OR	Fill	Member	Location	IR	OR
(AA) HL-93	10.00	2	MID	2.08	2.70	10.00	1	BOT	2.14	2.78

Critical Sections Summary: Flexure

		Design	Corr.		= 8.0					Load Ra	tings		Fill
Loc	Dist.	Moment	A. F.	Mu	ds	Ma		As	Mcr	IR	OR	Truck	Depth
	(in)	(k-ft)	(k)	(k-ft)	(in)	(k-ft)	phi	(in2)	(k-ft)				(ft)
BOT	17.00	-11.79	13.02	10.86	5.87	14.57	1.00	0.33 a	9.16	3.12	4.04	AA	10.00
MID	64.75	5.95	6.96	18.93	5.82	20.74	1.00	0.60 c	9.16	NC	NC	AA	10.00
MID-	64.75	-6.03	13.02	10.86	5.87	14.57	1.00	0.33 c	9.16	6.34	8.21	AA	10.00
TOP	16.50	-12.31	13.02	10.86	5.87	14.57	1.00	0.33 a	9.16	2.56	3.32	AA	10.00
Membe	er 2: (To	op Slab),	Thickn	ess = 9	.00 in								
		Design	Corr.							Load Ra	tings		Fill
Loc	Dist.	Moment	A. F.	Mu	ds	Ma		As	Mcr	IR	OR	Truck	Depth
	(in)	(k-ft)	(k)	(k-ft)	(in)	(k-ft)	phi	(in2)	(k-ft)				(ft)
LT	16.00	-7.53	7.43	12.78	6.87	15.25	1.00	0.33 c	11.59	6.20	8.03	AA	10.00
MID	64.00	19.38	2.87	22.43	6.82	23.31	1.00	0.60 b	11.59	2.08	2.70	AA	10.00
RT	16.00	-7.53	7.43	12.78	6.87	15.25	1.00	0.33 c	11.59	6.20	8.03	AA	10.00
Membe	er 4: (Bo	ottom Sla	b), Thi	ckness =	10.00	in							
		Design	Corr.							Load Ra	tings		Fill
Loc	Dist. (in)	Moment (k-ft)	A. F. (k)	Mu (k-ft)	ds (in)	Ma (k-ft)	phi	As (in2)	Mcr (k-ft)	IR	OR	Truck	Depth (ft)
LT	16.00	-8.87	9.40	14.71	7.87	18.20	1.00	0.33 c	14.31	6.64	8.61	AA	
MID	64.00	23.76	3.59	27.45	7.74	28.67	1.00	0.64 b	14.31	2.16			
RT	16.00	-8.87	9.40	14.71	7.87	18.20	1.00	0.33 c	14.31	6.64			

As Controlled By: a - Flexure, b - Crack Control, c - Minimum Steel, d - Fatigue

 Member 1: (Exterior Wall), Thickness = 8.00 in Design Corr. Corr.

 Loc Dist. Shear (in)
 Moment A. F. Dv phi*Vn Beta (in)

 BOT 10.76
 7.68
 14.8
 13.02
 5.76
 8.79
 2.000
 Vc (k) 9.77 b MID 64.75 MID- 64.75 0.15
 6.0
 6.96
 5.76
 13.94
 3.171
 15.49
 a

 6.0
 13.02
 5.76
 13.18
 2.999
 14.65
 a

 14.9
 13.02
 5.76
 8.79
 2.000
 9.77
 b
 TOP 10.26 -6.46

Critical Sections Summary: Vertical Shear

 Member 2: (Top Slab), Thickness = 9.00 in Design Corr. Corr.
 Max.

 Loc Dist. Shear Moment A. F. Dv phi*Vn Beta Vc
 Vs
 Av
 Spac (in)
 (k)
 (k)
 (in2)
 (in)

 LT
 10.48
 10.81
 11.0
 7.43
 6.87
 15.72
 n/a
 17.47 c
 0.00
 0.00
 0.00

 MID
 64.00
 0.50
 19.4
 2.87
 6.82
 15.62
 n/a
 17.35 c
 0.00
 0.00
 0.00

 RT
 10.48
 10.81
 11.0
 7.43
 6.87
 15.72
 n/a
 17.47 c
 0.00
 0.00
 0.00
 Max. Load Ratings Fill Spac IR OR Truck Depth (ft) 3.82 4.95 AA 30.97 40.15 AA 3.82 4.95 AA 10.00 10.00 10.00 Member 4: (Bottom Slab), Thickness = 10.00 in Design Corr. Corr. Max. Load Ratings Fill

Vs

Av (k) (in2) (in) 0.00 0.00 0.00

0.00 0.00 0.00

0.00

Applied Uniform Bottom Slab Loads: (k/ft)

0.00 0.00 0.00 99.99 99.99

0.00 0.00 0.00 99.99 99.99

Max. Load Ratings Fill Spac IR OR Truck Depth

2.78

3.01 3.90 AA

2.14

(ft)

AA

AA

AA

10.00

10.00

10.00

10.00

LOC	Dist.	Snear	moment	A. F.	DV	pni*vn	Beta	VC	VS	AV	Spac	IK	UK	Iruck	Depth
	(in)	(k)	(k-ft)	(k)	(in)			(k)	(k)	(in2)	(in)				(ft)
LT	11.20	11.85	11.8	9.40	7.87	18.01	n/a	20.01 c	0.00	0.00	0.00	4.61	5.98	AA	10.00
MID	64.00	0.01	23.8	3.59	7.74	17.72	n/a	19.68 c	0.00	0.00	0.00	99.99	99.99	AA	10.00
RT	11.20	11.85	11.8	9.40	7.87	18.01	n/a	20.01 c	0.00	0.00	0.00	4.61	5.98	AA	10.00

Vc Calculation By: a - Iterative Beta, b - Constant Beta, c - Box Culvert, d - Standard/Arema

_____ Design Results: Fill Depth = 10.00 ft

Load Parameters:

Fe = 1.15 Surcharge Depth : 2.00 ft

Applied Horizontal Loads: (k/ft)

Load Description	Bottom of Wall	Top of Wall	Load Description	
Live Load Surcharge	0.120	0.120	Dead Load	0.338
Internal Water Pressu	re 0.000(0.0:	in) 0.000(0.0in)	Vertical Earth	1.380
External Water Pressu	re 0.000(0.0:	in) 0.000(0.0in)	Wearing Surface	0.000
Horizontal Earth Load	1.270	0.623		

M-PT Mdc Member 1: (E: Bottom 1-0 -1.62 1-1 -1.48 1-2 -1.34 1-3 -1.20 1-4 -1.06	Mev -4.60 -4.82 -5.03 -5.24 -5.45	Mdw Wall) 0.00 0.00 0.00 0.00	Meh -7.70 -2.08 2.13	-0.94 -0.30	Mwa 0.00	Mgw 0.00	Vdc	Vev	Vdw	Veh	Vls	Vwa	Vgw
Bottom 1- 0 -1.62 1- 1 -1.48 1- 2 -1.34 1- 3 -1.20	-4.60 -4.82 -5.03 -5.24	0.00 0.00 0.00	-2.08			0.00							
$\begin{array}{rrrr} 1-& 0 & -1.62 \\ 1-& 1 & -1.48 \\ 1-& 2 & -1.34 \\ 1-& 3 & -1.20 \end{array}$	-4.82 -5.03 -5.24	0.00 0.00	-2.08			0 00							
1- 1 -1.48 1- 2 -1.34 1- 3 -1.20	-4.82 -5.03 -5.24	0.00 0.00	-2.08					0 20	0 00	F 07	0 67	0 00	0 00
1-2 -1.34 1-3 -1.20	-5.03 -5.24	0.00		-0.30			0.13	-0.20	0.00	5.87	0.67	0.00	0.00
1-3 -1.20	-5.24				0.00	0.00	0.13	-0.20	0.00	4.54	0.54	0.00	0.00
				0.21	0.00	0.00	0.13	-0.20	0.00	3.27	0.41	0.00	0.00
			5.01	0.58	0.00	0.00	0.13	-0.20	0.00	2.07	0.28	0.00	0.00
		0.00	6.64	0.81	0.00	0.00	0.13	-0.20	0.00	0.95	0.15	0.00	0.00
1-5 -0.92	-5.66	0.00	7.10	0.90	0.00	0.00	0.13	-0.20	0.00	-0.11	0.02	0.00	0.00
1-6 -0.78	-5.87	0.00	6.45	0.85	0.00	0.00	0.13	-0.20	0.00	-1.09	-0.11	0.00	0.00
1-7 -0.64	-6.09	0.00	4.77	0.66	0.00	0.00	0.13	-0.20	0.00	-2.01	-0.24	0.00	0.00
1-8 -0.49	-6.30	0.00	2.15	0.33	0.00	0.00	0.13	-0.20	0.00	-2.86	-0.37	0.00	0.00
1-9 -0.35	-6.51	0.00	-1.36	-0.14	0.00	0.00	0.13	-0.20	0.00	-3.63	-0.50	0.00	0.00
1-10 -0.21	-6.72	0.00	-5.66	-0.75	0.00	0.00	0.13	-0.20	0.00	-4.34	-0.63	0.00	0.00
Тор													
Member 2: (To	op Slab)												
Left	6 72	0 00	E 71	0 75	0 00	0 00	0 73	7 26	0 00	0 00	0 00	0 00	0 00
2-0 -0.21	-6.72	0.00	-5.71 -5.71	-0.75	0.00	0.00	0.73	7.36 5.89	0.00	0.00	0.00	0.00	0.00
2-1 0.43 2-2 0.88	0.34 5.84	0.00 0.00	-5.71	-0.75 -0.75	0.00 0.00	0.00 0.00	0.49 0.36	4.42	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
2-2 0.88	9.76	0.00	-5.71	-0.75	0.00	0.00	0.30	2.94	0.00	0.00	0.00	0.00	0.00
2-3 1.20 2-4 1.39	12.12	0.00	-5.71	-0.75	0.00	0.00	0.24	2.94	0.00	0.00	0.00	0.00	0.00
2-4 1.39 2-5 1.45	12.12	0.00	-5.71	-0.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2-5 1.45 2-6 1.39	12.90	0.00	-5.71	-0.75	0.00	0.00	-0.12	-1.47	0.00	0.00	0.00	0.00	0.00
2- 7 1.20	9.76	0.00	-5.71	-0.75	0.00	0.00	-0.12	-2.94	0.00	0.00	0.00	0.00	0.00
2- 8 0.88	5.84	0.00	-5.71	-0.75	0.00	0.00	-0.24	-2.94	0.00	0.00	0.00	0.00	0.00
2- 0 0.00	0.34	0.00	-5.71	-0.75	0.00	0.00	-0.30	-4.42	0.00	0.00	0.00	0.00	0.00
2-9 0.43	-6.72	0.00	-5.71	-0.75	0.00	0.00	-0.49	-7.36	0.00	0.00	0.00	0.00	0.00
Right	-0.72	0.00	-2.71	-0.75	0.00	0.00	-0.75	-/.50	0.00	0.00	0.00	0.00	0.00

Member 4: (Bottom Slab)		
Left 4-0 -1.62 -4.60 0.00 -7.70 -0.94 0.00 0.0 4-1 0.11 2.46 0.00 -7.70 -0.94 0.00 0.0 4-2 1.46 7.96 0.00 -7.70 -0.94 0.00 0.0 4-3 2.42 11.88 0.00 -7.70 -0.94 0.00 0.0	10 1.44 5.89 0.00 0.00 0.00 0.00 10 1.08 4.42 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
4-4 3.00 14.24 0.00 -7.70 -0.94 0.00 0.6 4-5 3.19 15.02 0.00 -7.70 -0.94 0.00 0.6	0 0.36 1.47 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0	0.00 0.00
	0 -0.72 -2.94 0.00 0.00 0.00 0.00	0.00 0.00
4-8 1.46 7.96 0.00 -7.70 -0.94 0.00 0.0 4-9 0.11 2.46 0.00 -7.70 -0.94 0.00 0.0	0 -1.44 -5.89 0.00 0.00 0.00 0.00	0.00 0.00
4-10 -1.62 -4.60 0.00 -7.70 -0.94 0.00 0.0 Right	0 -1.80 -7.36 0.00 0.00 0.00 0.00	0.00
Unfactored Thrusts due to All Loads: (k)		
Member Pdc Pev Pdw Peh Pls Pwa 1 0.73 7.36 0.00 0.00 0.00 0.00		
2 -0.13 0.20 0.00 4.34 0.63 0.00 4 0.13 -0.20 0.00 5.87 0.67 0.00		
Analysis	ruck, HL-93	
	leight Length Dist. From	
Truck 1 (k/ft) (ft) Previous (ft) .049 10.83	
	0.194 10.83 14.00 0.194 10.83 14.00	
Tandem 1 G	14.83	
***Distributed loads may have been intensified due to	axle overlap between lanes	
Live Load Parameters:		
Traffic Direction is Parallel to Main Reinforcement Distribution Width : 18.27 ft Impact Factor : 1.00 Truck MPF : 1.20 Tandem MPF Lane Load Distribution Width : 0.00 ft	: 1.20	
Lane Load: 0.000 k/ft		
Truck Positions That Cause Maximum Results:		
Maximum +Moment in Top Slab Vehicle Axle Weight Length Dist.From	Maximum -Moment in Top Slab Vehicle Axle Weight Length Dist.From No. (klf) (ft) Left En	
No. (ǩlf) (̈́ft) Left End (ft) Truck 1 0.049 10.83 19.42 2 0.194 10.83 5.42	Truck 1 0.049 10.83 19.95 2 0.194 10.83 5.95	u (IC)
3 0.194 10.83 -8.58 Maximum +Moment : 1.81 k-ft	3 0.194 10.83 -8.05 Maximum -Moment : -0.95 k-ft	
Corresponding Moment at End : -0.95 k-ft Coincident Bottom Slab Load : 0.19 k/ft	Corresponding Moment at Mid : 1.79 k-ft Coincident Bottom Slab Load : 0.18 k/ft	
Maximum +Shear in Top Slab Truck 1 0.049 10.83 19.42	Maximum -Shear in Top Slab Truck 1 0.049 10.83 19.42	
2 0.194 10.83 5.42 3 0.194 10.83 -8.58	2 0.194 10.83 5.42 3 0.194 10.83 -8.58	
Maximum +Shear : 1.03 k Corresponding Shear at Mid : 0.00 k	Maximum -Shear : -1.03 k Corresponding Shear at Mid : 0.00 k	
Coincident Bottom Slab Load : 0.19 k/ft	Coincident Bottom Slab Load : 0.19 k/ft	
Maximum +Moment in Top Slab Tandem 1 0.221 14.83 7.42	Maximum -Moment in Top Slab Tandem 1 0.221 14.83 8.00	
Maximum +Moment : 2.07 k-ft Corresponding Moment at End : -1.08 k-ft	Maximum -Moment : -1.09 k-ft Corresponding Moment at Mid : 2.04 k-ft	
Coincident Bottom Slab Load : 0.22 k/ft	Coincident Bottom Slab Load : 0.21 k/ft	
Maximum +Shear in Top Slab Tandem 1 0.221 14.83 7.42	Maximum -Shear in Top Slab Tandem 1 0.221 14.83 7.42	
Maximum +Shear : 1.18 k Corresponding Shear at Mid : 0.00 k	Maximum -Shear : -1.18 k Corresponding Shear at Mid : 0.00 k	
Coincident Bottom Slab Load : 0.22 k/ft	Coincident Bottom Slab Load : 0.22 k/ft	

M-PT	Mll+	Truck Mll-	Vll+	VII-	Mll+	Tandem Mll-	Vll+	νιι-	Mll+	Lane Mll-	Vll+	VII-
Member 1	: (Exter	ior Wal	ι)									
Bottom										11 22		201022
1- 0		-0.65		-0.04		-0.74		-0.04	0.00	0.00	0.00	0.00
1-1				-0.04		-0.77		-0.04	0.00	0.00	0.00	0.00
1-2	0.00	-0.71	0.01	-0.04		-0.81	0.01	-0.04	0.00	0.00	0.00	0.00
1-3	0.00	-0.74		-0.04	0.00	-0.84		-0.04	0.00	0.00	0.00	0.00
1- 4 1- 5	0.00	-0.77 -0.80	0.01	-0.04	0.00	-0.87	0.01	-0.04	0.00	0.00	0.00	0.00
1 - 5 1 - 6	0.00	-0.83		-0.04		-0.91		-0.04	0.00	0.00	0.00	0.00
1 - 7	0.00	-0.85		-0.04		-0.94		-0.04	0.00	0.00	0.00	0.00
1 - 8	0.00	-0.89		-0.04		-1.01		-0.04	0.00	0.00	0.00	0.00
1 - 9				-0.04		-1.05		-0.04	0.00	0.00	0.00	0.00
1-10	0.01	-0.92		-0.04		-1.09		-0.04	0.00		0.00	0.00
Тор	0.01	0.55	0.01	0.04	0.01	1.05	0.01	0.04	0.00	0.00	0.00	0.00
Member 2	: (Top S	lab)										
Left												
2- 0		-0.95				-1.09		0.00	0.00	0.00	0.00	0.00
2- 1	0.27	-0.22		-0.01	0.30	-0.25		-0.01	0.00	0.00	0.00	0.00
2-2	0.82	0.00	0.66	-0.04	0.94	0.00	0.75	-0.04	0.00	0.00	0.00	0.00
2-3	1.37	0.00		-0.09	1.57	0.00	0.57		0.00	0.00	0.00	0.00
2-4	1.70	0.00	0.37		1.94	0.00	0.42	-0.18	0.00	0.00	0.00	0.00
2- 5	1.81	0.00	0.25	-0.25	2.07	0.00	0.29	-0.29	0.00	0.00	0.00	0.00
2- 6	1.70	0.00	0.16	-0.37	1.94	0.00	0.18	-0.42	0.00	0.00	0.00	0.00
2-7	1.37	0.00		-0.50	1.57			-0.57	0.00	0.00	0.00	0.00
2-8	0.82	0.00		-0.66	0.94	0.00		-0.75	0.00	0.00	0.00	0.00
2- 9 2-10	0.01	-0.22		-0.84		-0.25		-0.96 -1.18	0.00	0.00	0.00	0.00
Right	0.01	-0.95	0.00	-1.05	0.01	-1.09	0.00	-1.10	0.00	0.00	0.00	0.00
Member 4	: (Botto	om Slab)										
Left												
4- 0	0.00	-0.65	1.03	0.00	0.00	-0.74	1.18	0.00	0.00	0.00	0.00	0.00
4- 1	0.35	0.00	0.83	0.00	0.40	0.00	0.94	0.00	0.00	0.00	0.00	0.00
4-2	1.12	0.00	0.62	0.00	1.28	0.00	0.71	0.00	0.00	0.00	0.00	0.00
4-3	1.67	0.00	0.41	0.00	1.91	0.00	0.47	0.00	0.00	0.00	0.00	0.00
4- 4	2.00	0.00	0.21	0.00	2.28	0.00	0.24	0.00	0.00	0.00	0.00	0.00
4- 5	2.11	0.00	0.01	-0.01	2.41	0.00	0.01	-0.01	0.00	0.00	0.00	0.00
4- 6	2.00	0.00	0.00	-0.21	2.28	0.00	0.00	-0.24	0.00	0.00	0.00	0.00
4-7	1.67	0.00	0.00	-0.41	1.91	0.00	0.00	-0.47	0.00	0.00	0.00	0.00
4-8	1.12	0.00	0.00		1.28	0.00	0.00	-0.71	0.00	0.00	0.00	0.00
4-9	0.35	0.00	0.00		0.40	0.00	0.00	-0.94	0.00	0.00	0.00	0.00
4-10	0.00	-0.65	0.00	-1.03	0.00	-0.74	0.00	-1.18	0.00	0.00	0.00	0.00
Right												

Unfactored Moments and Shears due to Truck Loads: (k-ft, k)

Note: Unfactored live load results computed at 10.00 ft and 0 ft fill depths, per LRFD 3.6.1.2.6

Serviceability Check: Crack Control

Bar		Moment	Thrust	Fss	Spacing	Allow
Mark	Location	(k-ft)	(k)	(ksi)	(in)	(in)
A1	Top Corner Bar	-8.7	9.27	41.02	2.00	4.16
A2	Bot Corner Bar	-8.4	9.27	39.23	2.00	4.54
A100	Top Slab (int)	13.6	2.22	41.56	2.00	4.32
A200	Bot Slab (int)	16.8	2.83	41.71	4.00	4.36
B1	Ext Wall (int)	1.4	8.09	0.03	2.00	99.99
B2	Ext Wall (ext)	-4.1	9.27	10.93	2.00	27.35

Strength Limit State at Critical Sections: Flexure

	er 1: (Ex	xterior W	all), Thio	kness	= 8.00	in						
		Design								Loa	ad Ratin	-
Loc	Dist.	Moment		Mu	ds	Ma	nh i	As (in2)	Mcr		IR	OR
вот	(in) 17.00	(k-ft) -11.79	(k) 13.02	(k-ft 10.8			phi 1.00	(in2) 0.33	(k-ft)	16	3.12	4.04
MID	64.75	5.95		18.9			1.00	0.60		16	NC	NC
MID-	64.75	-6.03		10.8			1.00	0.33		16	6.34	8.21
тор	16.50	-12.31	13.02	10.8	6 5.87	7 14.57	1.00	0.33	a 9.	16	2.56	3.32
Membe	er 2: (To	op Slab), Design	Thickness Corr.	= 9.	00 in						ad Ratin	0.6
Loc	Dist.	Moment		Mu	ds	Ma		As	Mcr	LUC		OR
	(in)	(k-ft)	(k)	(k-ft			phi	(in2)	(k-ft)	1		
LT	16.00	-7.53		12.7			1.00	0.33			6.20	8.03
MID	64.00	19.38	2.87	22.4			1.00	0.60			2.08	2.70
RT	16.00	-7.53	7.43	12.7	8 6.87	15.25	1.00	0.33	c 11.	59	6.20	8.03
Membe	er 4: (Bo	ottom Sla Design	b), Thickr Corr.	ess =	10.00 ir	ı				Loa	ad Ratin	as
Loc	Dist.	Moment		Mu	ds	Ма		As	Mcr	LUC		OR
	(in)	(k-ft)	(k)	(k-ft			phi	(in2)		1		
LT	16.00	-8.87		14.7			1.00	0.33		31	6.64	8.61
MID	64.00	23.76		27.4			1.00	0.64			2.16	2.81
RT	16.00	-8.87	9.40	14.7	1 7.87	7 18.20	1.00	0.33	c 14.	31	6.64	8.61
As Co	ontrolled	d By: a -	Flexure,	b – Cr	ack Cont	trol, c - M	linimum	Steel,	d – Fat	igue		
Notes	s: Mu - F	Resisting	moment ur	der pu	re flexu	ure, Ma – A	llowab	le mome	ent under	appli	ied axia	l load
			Critical									
	r 1: (Ext	terior Wal	l), Thickn	ess = 1						Max.	Load Ra	tinas
	r 1: (Ext	terior Wal Design C		ess = l			a Vc	Vs	Av	Max. Spac	Load Ra IR	tings OR
Membe Loc	r 1: (Ext [Dist. 5 (in)	terior Wal Design C Shear Mo (k) (k	l), Thickn orr. Corr ment A. F -ft) (k)	ess = 4 . Dv .(in)	8.00 in phi*Vn (k)	Beta Theta	(k)	(k)	(in2)	Spac (in)	IR	OR
Membe Loc BOT	r 1: (Ext Dist. 5 (in) 10.76	terior Wal Design C Shear Mo (k) (k 7.68	l), Thickn orr. Corr ment A. F -ft) (k) 14.8 13.02	ess = 1 . Dv (in) 5.76	8.00 in phi*Vn (k) 8.79	Beta Theta 2.000 45.00	(k) 9.77	(k) b 0.	(in2) 00 0.00	Spac (in) 0.00	IR 2.14	0R 2.78
Membe Loc BOT MID	r 1: (Ext Dist. 5 (in) 10.76 64.75	terior Wal Design C Shear Mo (k) (k 7.68 0.15	l), Thickn orr. Corr ment A. F -ft) (k) 14.8 13.02 6.0 6.96	ess = 0 . Dv (in) 5.76 5.76	8.00 in phi*Vn (k) 8.79 13.94	Beta Theta 2.000 45.00 3.171 31.8	(k) 9.77 5 15.49	(k) b 0. a 0.) (in2) .00 0.00 .00 0.00	Spac (in) 0.00 0.00	IR 2.14 99.99	0R 2.78 99.99
Membe Loc BOT	r 1: (Ex1 Dist. 5 (in) 10.76 64.75 64.75	terior Wal Design C Shear Mo (k) (k 7.68 0.15 0.15	l), Thickn orr. Corr ment A. F -ft) (k) 14.8 13.02	ess = 0 . Dv (in) 5.76 5.76 5.76	8.00 in phi*Vn (k) 8.79 13.94 13.18	Beta Theta 2.000 45.00	(k) 9.77 5 15.49 3 14.65	(k) b 0, a 0, a 0,) (in2) .00 0.00 .00 0.00 .00 0.00	Spac (in) 0.00 0.00	IR 2.14	0R 2.78
Membe Loc BOT MID MID- TOP	r 1: (Ext Dist. 5 (in) 10.76 64.75 64.75 10.26	terior Wal Design C Shear Mo (k) (k 7.68 0.15 0.15 0.15 -6.46	l), Thickn orr. Corr ment A. F -ft) (k) 14.8 13.02 6.0 6.96 6.0 13.02	ess = 1 . Dv (in) 5.76 5.76 5.76 5.76	8.00 in phi*Vn (k) 8.79 13.94 13.18 8.79	Beta Theta 2.000 45.00 3.171 31.8 2.999 32.5	(k) 9.77 5 15.49 3 14.65	(k) b 0, a 0, a 0,) (in2) .00 0.00 .00 0.00 .00 0.00	Spac (in) 0.00 0.00 0.00	IR 2.14 99.99 99.99	0Ř 2.78 99.99 99.99
Membe Loc BOT MID MID- TOP Membe	r 1: (Ext Dist. 5 (in) 10.76 64.75 64.75 10.26 r 2: (Top	terior Wal Design C Shear Mo (k) (k 7.68 0.15 0.15 -6.46 D Slab), T Design C	l), Thickn orr. Corr ment A. F -ft) (k) 14.8 13.02 6.0 6.96 6.0 13.02 14.9 13.02 hickness = orr. Corr	ess = 1 . Dv (in) 5.76 5.76 5.76 5.76 9.00	8.00 in phi*Vn (k) 8.79 13.94 13.18 8.79 in	Beta Theta 2.000 45.00 3.171 31.81 2.999 32.5 2.000 45.00	(k) 9.77 5 15.49 3 14.65 9 9.77	(k) b 0 b 0 b 0 b 0) (in2) .00 0.00 .00 0.00 .00 0.00 .00 0.00	Spac (in) 0.00 0.00 0.00 0.00 Max.	IR 2.14 99.99 99.99 3.01 Load Ra	0Ř 2.78 99.99 99.99 3.90
Membe Loc BOT MID MID- TOP	r 1: (Ext Dist. 5 (in) 10.76 64.75 64.75 10.26 r 2: (Top Dist. 5	terior Wal Design C Shear Mo (k) (k 7.68 0.15 0.15 -6.46 p Slab), T Design C Shear Mo	l), Thickn orr. Corr ment A. F -ft) (k) 14.8 13.02 6.0 6.96 6.0 13.02 14.9 13.02 hickness = orr. Corr ment A. F	ess = Dv (in) 5.76 5.76 5.76 5.76 9.00 . Dv	8.00 in phi*Vn (k) 8.79 13.94 13.18 8.79 in phi*Vn	Beta Theta 2.000 45.00 3.171 31.8 2.999 32.5	(k) 9.77 5 15.49 3 14.65 9 9.77 a Vc	(k) b 0 b 0 b 0 Vs) (in2) .00 0.00 .00 0.00 .00 0.00 .00 0.00 .00 0.00	Spac (in) 0.00 0.00 0.00 0.00 Max. Spac	IR 2.14 99.99 99.99 3.01	0Ř 2.78 99.99 99.99 3.90
Membe Loc BOT MID MID- TOP Membe Loc	r 1: (Ext Dist. 5 (in) 10.76 64.75 64.75 10.26 r 2: (Top Dist. 5 (in)	terior Wal Design C Shear Mo (k) (k 7.68 0.15 0.15 -6.46 o Slab), T Design C Shear Mo (k) (k	l), Thickn orr. Corr ment A. F -ft) (k) 14.8 13.02 6.0 6.96 6.0 13.02 14.9 13.02 hickness = orr. Corr ment A. F -ft) (k)	ess = 1 (in) 5.76 5.76 5.76 5.76 9.00 . Dv (in)	8.00 in phi*Vn (k) 8.79 13.94 13.18 8.79 in phi*Vn (k)	Beta Theta 2.000 45.00 3.171 31.81 2.999 32.51 2.000 45.00 Beta Theta	(k) 9.77 5 15.49 3 14.65 9.77 a Vc (k)	(k) b 0 b 0 b 0 Vs (k)) (in2) .00 0.00 .00 0.00 .00 0.00 .00 0.00 .00 0.00 Av (in2)	Spac (in) 0.00 0.00 0.00 Max. Spac (in)	IR 2.14 99.99 99.99 3.01 Load Ra IR	0Ř 2.78 99.99 99.99 3.90 tings 0R
Membe Loc BOT MID MID- TOP Membe	r 1: (Ext Dist. 5 (in) 10.76 64.75 64.75 10.26 r 2: (Top Dist. 5	terior Wal Design C Shear Mo (k) (k 7.68 0.15 0.15 -6.46 Design C Shear Mo (k) (k 10.81	l), Thickn orr. Corr ment A. F -ft) (k) 14.8 13.02 6.0 6.96 6.0 13.02 14.9 13.02 hickness = orr. Corr ment A. F	ess = Dv (in) 5.76 5.76 5.76 9.00 Dv (in) 6.87	8.00 in phi*Vn (k) 8.79 13.94 13.18 8.79 in phi*Vn	Beta Theta 2.000 45.00 3.171 31.81 2.999 32.5 2.000 45.00	(k) 9.77 5 15.49 3 14.65 9.77 a Vc (k) 17.47	(k) b 0 a 0 b 0 Vs (k) c 0) (in2) .00 0.00 .00 0.00 .00 0.00 .00 0.00 .00 0.00	Spac (in) 0.00 0.00 0.00 Max. Spac (in) 0.00	IR 2.14 99.99 99.99 3.01 Load Ra	0Ř 2.78 99.99 99.99 3.90
Membe Loc BOT MID TOP Membe Loc LT	r 1: (Ex1 Dist. 5 (in) 10.76 64.75 10.26 r 2: (Top Dist. 5 (in) 10.48	terior Wal Design C Shear Mo (k) (k 7.68 0.15 0.15 -6.46 D Slab), T Design C Shear Mo (k) (k 10.81 0.50	<pre>l), Thickn orr. Corr ment A. F -ft) (k) 14.8 13.02 6.0 6.96 6.0 13.02 14.9 13.02 hickness = orr. Corr ment A. F -ft) (k) 11.0 7.43</pre>	ESS = 1 . Dv (in) 5.76 5.76 5.76 5.76 9.00 . Dv (in) 6.87 6.82	8.00 in phi*Vn (k) 8.79 13.94 13.18 8.79 in phi*Vn (k) 15.72	Beta Theta 2.000 45.00 3.171 31.8 2.999 32.5 2.000 45.00 Beta Theta n/a n/a	(k) 9.77 5 15.49 3 14.65 9 9.77 a Vc (k) 17.47 17.35	(k) b 0 a 0 b 0 Vs (k) c 0 c 0) (in2) 00 0.00 00 0.00 00 0.00 00 0.00 Av) (in2) 00 0.00 00 0.00	Spac (in) 0.00 0.00 0.00 Max. Spac (in) 0.00	IR 2.14 99.99 99.99 3.01 Load Ra IR 3.82	0Ř 2.78 99.99 99.99 3.90 tings 0R 4.95
Membe Loc BOT MID TOP Membe Loc LT MID RT	r 1: (Ext Dist. 9 (in) 10.76 64.75 64.75 10.26 r 2: (Top Dist. 9 (in) 10.48 64.00 10.48 r 4: (Bot	terior Wal Design C Shear Mo (k) (k 7.68 0.15 0.15 -6.46 D Slab), T Design C Shear Mo (k) (k 10.81 0.50 10.81 ttom Slab)	<pre>l), Thickn orr. Corr ment A. F -ft) (k) 14.8 13.02 6.0 6.96 6.0 13.02 14.9 13.02 hickness = orr. Corr ment A. F -ft) (k) 11.0 7.43 19.4 2.87 11.0 7.43 , Thicknes</pre>	<pre>ess = 1 Dv (in) 5.76 5.76 5.76 9.00 Dv (in) 6.87 6.82 6.87 5 = 10.0 </pre>	8.00 in phi*Vn (k) 8.79 13.94 13.18 8.79 in phi*Vn (k) 15.72 15.62 15.72	Beta Theta 2.000 45.00 3.171 31.8 2.999 32.5 2.000 45.00 Beta Theta n/a n/a n/a	(k) 9.77 5 15.49 3 14.65 9 9.77 a Vc (k) 17.47 17.35	(k) b 0 a 0 b 0 Vs (k) c 0 c 0) (in2) 00 0.00 00 0.00 00 0.00 00 0.00 Av) (in2) 00 0.00 00 0.00	Spac (in) 0.00 0.00 0.00 0.00 Max. Spac (in) 0.00 0.00	IR 2.14 99.99 3.01 Load Ra IR 3.82 30.97 3.82	0Ř 2.78 99.99 3.90 3.90 tings 0R 4.95 40.15 4.95
Membe Loc BOT MID- TOP Membe Loc LT MID RT Membe	r 1: (Ext Dist. 5 (in) 10.76 64.75 10.26 r 2: (Top Dist. 5 (in) 10.48 64.00 10.48 r 4: (Bot	terior Wal Design C Shear Mo (k) (k 7.68 0.15 0.15 -6.46 D Slab), T Design C Shear Mo (k) (k 10.81 0.50 10.81 ttom Slab) Design C	<pre>l), Thickn orr. Corr ment A. F -ft) (k) 14.8 13.02 6.0 6.96 6.0 13.02 14.9 13.02 hickness = orr. Corr ment A. F -ft) (k) 11.0 7.43 19.4 2.87 11.0 7.43 , Thicknes orr. Corr</pre>	ESS = Dv (in) 5.76 5.76 5.76 9.00 Dv (in) 6.87 6.82 6.87 5.5 = 10.0	8.00 in phi*Vn (k) 8.79 13.94 13.18 8.79 in phi*Vn (k) 15.72 15.62 15.72 00 in	Beta Theta 2.000 45.00 3.171 31.8 2.999 32.5 2.000 45.00 Beta Theta n/a n/a n/a n/a n/a n/a	(k) 9.77 5.15.49 3.14.65 9.77 9.77 4.65 9.77 (k) 17.47 17.35 17.47	(k) b 0 a 0 b 0 b 0 v 0 c 0 c 0) (in2) 00 0.00 00 0.00 00 0.00 00 0.00 00 0.00 00 0.00 00 0.00 00 0.00	Spac (in) 0.00 0.00 0.00 Max. Spac (in) 0.00 0.00 Max.	IR 2.14 99.99 3.01 Load Ra IR 3.82 30.97 3.82 Load Ra	0R 2.78 99.99 3.90 tings 0R 4.95 40.15 4.95
Membe Loc BOT MID TOP Membe Loc LT MID RT	r 1: (Ext Dist. 5 (in) 10.76 64.75 10.26 r 2: (Top Dist. 5 (in) 10.48 64.00 10.48 r 4: (Bot	terior Wal Design CC Shear Mo (k) (k 7.68 0.15 0.15 -6.46 0 Slab), T Design C Shear Mo (k 10.81 0.50 10.81 ttom Slab) Design C Shear Mo	<pre>l), Thickn orr. Corr ment A. F -ft) (k) 14.8 13.02 6.0 6.96 6.0 13.02 14.9 13.02 hickness = orr. Corr ment A. F -ft) (k) 11.0 7.43 19.4 2.87 11.0 7.43 , Thicknes</pre>	ESS = Dv (in) 5.76 5.76 5.76 9.00 Dv (in) 6.87 6.82 6.87 5.5 = 10.0	8.00 in phi*Vn (k) 8.79 13.94 13.18 8.79 in phi*Vn (k) 15.72 15.62 15.72	Beta Theta 2.000 45.00 3.171 31.8 2.999 32.5 2.000 45.00 Beta Theta n/a n/a n/a	(k) 9.77 5.15.49 3.14.65 9.77 9.77 4.65 9.77 (k) 17.47 17.35 17.47	(k) b 0 a 0 b 0 b 0 b 0 c 0 c 0 c 0 Vs) (in2) 00 0.00 00 0.00 00 0.00 00 0.00 Av) (in2) 00 0.00 00 0.00	Spac (in) 0.00 0.00 0.00 0.00 Max. Spac (in) 0.00 0.00	IR 2.14 99.99 3.01 Load Ra IR 3.82 30.97 3.82	0Ř 2.78 99.99 3.90 3.90 tings 0R 4.95 40.15 4.95
Membe Loc BOT MID TOP Membe Loc LT MID RT Membe Loc LT	r 1: (Ext Dist. 5 (in) 10.76 64.75 64.75 64.75 10.26 r 2: (Top Dist. 5 (in) 10.48 64.00 10.48 r 4: (Bot Dist. 5 (in) 11.20	terior Wal Design C Shear Mo (k) (k 7.68 0.15 0.15 -6.46 0 Slab), T Design C Shear Mo (k) (k 10.81 0.50 10.81 ttom Slab) Design C Shear Mo (k) (k 11.85	<pre>l), Thickn orr. Corr ment A. F -ft) (k) 14.8 13.02 6.0 6.96 6.0 13.02 14.9 13.02 hickness = orr. Corr ment A. F -ft) (k) 11.0 7.43 19.4 2.87 11.0 7.43 , Thicknes orr. Corr ment A. F -ft) (k) 11.8 9.40</pre>	ESS = Dv (in) 5.76 5.76 5.76 5.76 9.00 Dv (in) 6.87 6.82 6.87 5.82 6.87 5.82 6.87 5.75 6.82 0.00 Dv (in) 7.87	8.00 in phi*Vn (k) 8.79 13.94 13.18 8.79 in phi*Vn (k) 15.72 15.62 15.72 00 in phi*Vn (k) 18.01	Beta Theta 2.000 45.00 3.171 31.82 2.999 32.5 2.000 45.00 Beta Theta n/a n/a n/a n/a Beta Theta n/a n/a	(k) 9.77 5.15.49 3.14.65 0.9.77 4.65 0.9.77 (k) 17.47 17.35 17.47 17.35 17.47 20.01	(k) b 0 i a 0 i b 0 b 0 v 0 i c 0 i c 0 v c 0 v c 0 i) (in2) 00 0.00 00 0.00 00 0.00 00 0.00 Av) (in2) 00 0.00 00 0.00 Av) (in2) .00 0.00	Spac (in) 0.00 0.00 0.00 0.00 Max. Spac (in) 0.00 Max. Spac (in) 0.00	IR 2.14 99.99 3.01 Load Ra IR 3.82 30.97 3.82 Load Ra IR 4.61	0R 2.78 99.99 99.99 3.90 tings 0R 4.95 40.15 4.95 tings 0R 5.98
Membe Loc BOT MID TOP Membe Loc LT MID RT Membe Loc LT MID	r 1: (Ext Dist. 5 (in) 10.76 64.75 10.26 r 2: (Top Dist. 5 (in) 10.48 64.00 10.48 64.00 10.48 r 4: (Bot Dist. 5 (in) 11.20 64.00	terior Wal Design C Shear Mo (k) (k 7.68 0.15 0.15 0.15 -6.46 D Slab), T Design C Shear Mo (k) (k 10.81 0.50 10.81 ttom Slab) Design C Shear Mo (k) (k 11.85 0.01	<pre>l), Thickn orr. Corr ment A. F -ft) (k) 14.8 13.02 6.0 6.96 6.0 13.02 14.9 13.02 hickness = orr. Corr ment A. F -ft) (k) 11.0 7.43 19.4 2.87 11.0 7.43 , Thicknes orr. Corr ment A. F -ft) (k) 11.8 9.40 23.8 3.59</pre>	ess = 1 . Dv (in) 5.76 5.76 5.76 9.00 . Dv (in) 6.87 6.82 6.87 5.5 = 10.1 . Dv (in) 7.87 7.74	8.00 in phi*Vn (k) 8.79 13.94 13.18 8.79 in phi*Vn (k) 15.72 15.62 15.72 00 in phi*Vn (k) 18.01 17.72	Beta Theta 2.000 45.00 3.171 31.81 2.999 32.51 2.000 45.00 Beta Theta n/a n/a n/a n/a Beta Theta n/a n/a n/a n/a	(k) 9 9.77 5 15.49 9 14.65 9 9.77 4 Vc (k) 17.47 17.35 17.47 20.01 19.68	(k) b 0 a 0 b 0 b 0 v b 0 v b 0 v c 0 c 0 v c 0 c 0 c 0 c 0 c 0 c 0 c 0 c 0 c 0 c 0) (in2) .00 0.00 .00 0.00	Spac (in) 0.00 0.00 0.00 0.00 Max. Spac (in) 0.00 Max. Spac (in) 0.00 0.00	IR 2.14 99.99 3.01 Load Ra IR 3.82 30.97 3.82 Load Ra IR 4.61 99.99	0R 2.78 99.99 3.90 tings 0R 4.95 40.15 4.95 tings 0R 5.98 99.99
Membe Loc BOT MID TOP Membe Loc LT MID RT Membe Loc LT	r 1: (Ext Dist. 5 (in) 10.76 64.75 64.75 64.75 10.26 r 2: (Top Dist. 5 (in) 10.48 64.00 10.48 r 4: (Bot Dist. 5 (in) 11.20	terior Wal Design C Shear Mo (k) (k 7.68 0.15 0.15 0.15 -6.46 D Slab), T Design C Shear Mo (k) (k 10.81 0.50 10.81 ttom Slab) Design C Shear Mo (k) (k 11.85 0.01	<pre>l), Thickn orr. Corr ment A. F -ft) (k) 14.8 13.02 6.0 6.96 6.0 13.02 14.9 13.02 hickness = orr. Corr ment A. F -ft) (k) 11.0 7.43 19.4 2.87 11.0 7.43 , Thicknes orr. Corr ment A. F -ft) (k) 11.8 9.40</pre>	ESS = Dv (in) 5.76 5.76 5.76 5.76 9.00 Dv (in) 6.87 6.82 6.87 5.82 6.87 5.82 6.87 5.75 6.82 0.00 Dv (in) 7.87	8.00 in phi*Vn (k) 8.79 13.94 13.18 8.79 in phi*Vn (k) 15.72 15.62 15.72 00 in phi*Vn (k) 18.01	Beta Theta 2.000 45.00 3.171 31.82 2.999 32.5 2.000 45.00 Beta Theta n/a n/a n/a n/a Beta Theta n/a n/a	(k) 9.77 5.15.49 3.14.65 0.9.77 4.65 0.9.77 (k) 17.47 17.35 17.47 17.35 17.47 20.01	(k) b 0 a 0 b 0 b 0 v b 0 v b 0 v c 0 c 0 v c 0 c 0 c 0 c 0 c 0 c 0 c 0 c 0 c 0 c 0) (in2) 00 0.00 00 0.00 00 0.00 00 0.00 Av) (in2) 00 0.00 00 0.00 Av) (in2) .00 0.00	Spac (in) 0.00 0.00 0.00 0.00 Max. Spac (in) 0.00 Max. Spac (in) 0.00 0.00	IR 2.14 99.99 3.01 Load Ra IR 3.82 30.97 3.82 Load Ra IR 4.61	0R 2.78 99.99 99.99 3.90 tings 0R 4.95 40.15 4.95 tings 0R 5.98

28

Load	Combination	Results	at	Tenth	Points:	(k-ft,	k)

	acton Result	cs at renth	10111031 (K	ic, k/		
M-PT	+Moment	-Moment	+Axial	-Axial	+Shear	-Shear
Member 1: Bottom	(Exterior W	Wall)				
1- 0	-13.260	-22.167	10.953	13.019	9.438	3.594
1- 1	-8.934	-13.250	6.961	13.019	7.318	2.736
1- 2	-2.133	-8.584	6.961	13.019	5.297	1.922
1- 3	2.547	-6.902	6.961	13.019	3.375	1.153
1- 4	5.206	- <mark>6.</mark> 025	6.961	13.019	1.553	0.429
1- 5	5.951	-5.906	6.961	13.019	-0.152	-0.301
1- 6	4.890	-6.494	6.961	13.019	-0.786	-1.926
1-7	2.129	-7.743	6.961	13.019	-1.375	-3.452
1-8	-2.225	-9.603	6.961	13.019	-1.920	-4.878
1- 9	-8.071	-13.334	6.961	13.019	-2.419	-6.205
1-10	-13.065	-20.688	10.953	13.019	-2.873	-7.434
Тор						

	(Top Slab)					
Left 2- 0	-13.094	-20.754	2.873	7.434	13.019	6.961
2- 1	-2.137	-8.841	2.873	7.434	10.317	5.484
2- 2	7.034	-3.616	2.873	7.304	7.796	4.109
2- 3	13.894	0.037	2.873	7.304	5.323	2.739
2- 4	18.010	2.228	2.873	7.304	2.892	1.370
2- 5	19.382	2.959	2.873	7.304	0.504	-0.504
2- 6	18.010	2.228	2.873	7.304	-1.370	-2.892
2- 7	13.894	0.037	2.873	7.304	-2.739	-5.323
2- 8	7.034	-3.616	2.873	7.304	-4.109	-7.796
2- 9	-2.137	-8.841	2.873	7.434	-5.484	-10.317
2-10	-13.094	-20.755	2.873	7.434	-6.961	-13.019
Right						
	(Bottom Slab)				
Member 4: Left 4- 0	(Bottom Slab -13.260) -22.167	3.594	9.405	14.368	7.932
Left			3.594 3.594	9.405 9.438	14.368 11.495	7.932 6.346
Left 4- 0	-13.260	-22.167				
Left 4- 0 4- 1	-13.260 -0.755	-22.167 -10.353	3.594	9.438	11.495	6.346
Left 4- 0 4- 1 4- 2	-13.260 -0.755 9.969	-22.167 -10.353 -4.430	3.594 3.594	9.438 9.438	11.495 8.621	6.346 4.759
Left 4- 0 4- 1 4- 2 4- 3	-13.260 -0.755 9.969 17.633	-22.167 -10.353 -4.430 -0.200	3.594 3.594 3.594	9.438 9.438 9.438	11.495 8.621 5.747	6.346 4.759 3.173
Left 4- 0 4- 1 4- 2 4- 3 4- 4	-13.260 -0.755 9.969 17.633 22.230	-22.167 -10.353 -4.430 -0.200 2.339	3.594 3.594 3.594 3.594	9.438 9.438 9.438 9.438 9.438	11.495 8.621 5.747 2.874	6.346 4.759 3.173 1.586
Left 4- 0 4- 1 4- 2 4- 3 4- 4 4- 5	-13.260 -0.755 9.969 17.633 22.230 23.763	-22.167 -10.353 -4.430 -0.200 2.339 3.185	3.594 3.594 3.594 3.594 3.594	9.438 9.438 9.438 9.438 9.438 9.438	11.495 8.621 5.747 2.874 0.012	6.346 4.759 3.173 1.586 -0.012
Left 4- 0 4- 1 4- 2 4- 3 4- 4 4- 5 4- 6	-13.260 -0.755 9.969 17.633 22.230 23.763 22.230	-22.167 -10.353 -4.430 -0.200 2.339 3.185 2.339	3.594 3.594 3.594 3.594 3.594 3.594	9.438 9.438 9.438 9.438 9.438 9.438 9.438	11.495 8.621 5.747 2.874 0.012 -1.586	6.346 4.759 3.173 1.586 -0.012 -2.874
Left 4- 0 4- 1 4- 2 4- 3 4- 4 4- 5 4- 6 4- 7	-13.260 -0.755 9.969 17.633 22.230 23.763 22.230 17.633	-22.167 -10.353 -4.430 -0.200 2.339 3.185 2.339 -0.200	3.594 3.594 3.594 3.594 3.594 3.594 3.594	9.438 9.438 9.438 9.438 9.438 9.438 9.438 9.438	11.495 8.621 5.747 2.874 0.012 -1.586 -3.173	6.346 4.759 3.173 1.586 -0.012 -2.874 -5.747
Left 4- 0 4- 1 4- 2 4- 3 4- 4 4- 5 4- 6 4- 7 4- 8	-13.260 -0.755 9.969 17.633 22.230 23.763 22.230 17.633 9.969	-22.167 -10.353 -4.430 -0.200 2.339 3.185 2.339 -0.200 -4.430	3.594 3.594 3.594 3.594 3.594 3.594 3.594 3.594	9.438 9.438 9.438 9.438 9.438 9.438 9.438 9.438	11.495 8.621 5.747 2.874 0.012 -1.586 -3.173 -4.759	6.346 4.759 3.173 1.586 -0.012 -2.874 -5.747 -8.621

Right