

FINAL DELIVERABLE

Title	Maquoketa Green Space Redevelopment	844 1445 844
Completed By	Jamie Trentz, Jackson Stephens, Jacob Murphy, and Amanda Guerra	
Date Completed	May 2023	
UI Department	Project Design and Management CEE:4850	
Course Name	Course Number and Name – Example: SRM:6255:0001 Capstone Project	
Instructor	Paul Hanley	
Community Partners	City of Maquoketa	197

This project was supported by the Iowa Initiative for Sustainable Communities (IISC), a community engagement program at the University of Iowa. IISC partners with rural and urban communities across the state to develop projects that university students and IISC pursues a dual mission of enhancing quality of life in Iowa while transforming teaching and learning at the University of Iowa.

Research conducted by faculty, staff, and students of The University of Iowa exists in the public domain. When referencing, implementing, or otherwise making use of the contents in this report, the following citation style is recommended:

[Student names], led by [Professor's name]. [Year]. [Title of report]. Research report produced through the Iowa Initiative for Sustainable Communities at the University of Iowa.

This publication may be available in alternative formats upon request.

Iowa Initiative for Sustainable Communities The University of Iowa 347 Jessup Hall Iowa City, IA, 52241 Phone: 319.335.0032 Email: iisc@uiowa.edu Website: http://iisc.uiowa.edu/

The University of Iowa prohibits discrimination in employment, educational programs, and activities on the basis of race, creed, color, religion, national origin, age, sex, pregnancy, disability, genetic information, status as a U.S. veteran, service in the U.S. military, sexual orientation, gender identity, associational preferences, or any other classification that deprives the person of consideration as an individual. The University also affirms its commitment to providing equal opportunities and equal access to University facilities. For additional information contact the Office of Equal Opportunity and Diversity, (319) 335-0705.

MAQUOKETA GREEN SPACE REDEVELOPMENT

DESIGN REPORT | May 5, 2023

Prepared for: The city of Maquoketa

Prepared By:

Jamie Trentz, Jackson Stephens, Jacob Murphy, & Amanda Guerra

Table of Contents

Section I: Executive Summary
Section II: Organization Qualifications and Experience4
 Name of Organization
Section III: Design Services
1. Project Scope 5 2. Work Plan 6
Section IV: Constraints, Challenges, and Impacts
 Constraints
Section V: Phasing of Alternatives9
Section VI: Final Design Details14
Section VII: Engineer's Cost Estimate
Section VIII: Reference Attachments
Appendix A: Bibliography Appendix B: Design Renderings and Models Appendix C: Stage Design Calculations Appendix D: Restroom Phase One Design Calculations Appendix E: Restroom Phase Two Design Calculations Appendix F: Restroom Phase Three Design Calculations

SECTION I

Executive Summary

The following design report was submitted for the City of Maquoketa's Green Space Redevelopment project. This project aimed to transform the northeast corner of South Main Street and East Pleasant Street in Maquoketa, IA, into a place for the community to gather for concerts and other events. Working on behalf of the University of Iowa Department of Civil and Environmental Engineering are fourth year civil engineering students Jamie Trentz, Jackson Stephens, Jacob Murphy, and Amanda Guerra. Throughout our time at the University, we have studied both the structural and architectural aspects of civil engineering. In addition to our studies, our team has gained an assortment of experience working with major engineering companies like Shive-Hattery Architecture and Engineering, Kimley-Horn, and Sevan Multi-Site Solutions. We have combined our experiences and worked alongside professional civil, environmental, and structural engineers to design a new green space for the city of Maquoketa that will bring more activity to its downtown.

Figure 1.1. Southwest view of the existing site during a typical event Taken by Sarah Jones, 2022. Concert Showing sun and shade from west side Buildings. Used with permission.

The existing green space is already home to a variety of events with turnouts reaching anywhere from 50 to 2,000 people. During these events, a temporary stage platform is set up and the community gathers around the performer, sitting on blankets, lawn chairs, and surrounding picnic benches.

For larger events at this space, the city must order portable restrooms. Due to the frequency of events held in the space, this rental is an unnecessary reoccurring cost.

Maquoketa aims to take this empty plot of land and transform it into a more defined space. We have implemented a restroom structure and a permanent stage into our design that will match the downtown's red brick aesthetic while also bringing in a contemporary aesthetic through the incorporation of exposed steel beams.

Summer performances are typically scheduled in the space during late afternoons and evenings, which subjects the audience to harsh summer sun from the west. Consequently, crowds tend to

gather in the small strip of shade provided from the buildings across South Main Street. This is a major issue as it creates a lot of empty space between the audience and performer, making the overall experience for both parties less enjoyable. It is also important to note that the space exists due to a fire that burned down several storefronts located on the site. Therefore, the city would like to have this history recognized in the design. Our team has proposed painting a mural along the south side of the restroom structure that commemorates the storefronts that used to belong on this corner. Not only does this satisfy the need for historic remembrance, but it creates an opportunity for more community engagement. We strongly suggest Maquoketa turns to its own residents for mural ideas; creating a historical mural contest would get the whole community invested, informed, and involved in the project.

Storage is another substantial issue for the site and items related to the entertainment events held here. We have designated 450-square feet of the restroom building to storage.

Having a permanent stage, restroom structure, adequate shade, and storage are all high priority requests. Just as important is incorporating lighting and a sidewalk network to provide more accessibility and safety at night. Thus, we have incorporated lighting bollards into our design to provide adequate lighting for the sidewalk connecting the existing parking lot to the stage, restroom, and surrounding sidewalks. More features requested but not considered top priority were solar panels, a concession stand, and a gathering space.

There was not a budget given for the Maquoketa Green Space Redevelopment. Instead, the city of Maquoketa wanted to take a rendering-based approach where they could present the designs and gather appropriate funding. For that reason, we split the project into three phases in order to spread the overall cost into smaller, more manageable increments. This also provides down time between construction to apply for more funding to continue construction of the subsequent phase. We have designed the phasing so that Phase 1 contains all top priority features and can stand alone if more funding isn't available for the project. In the case that there is sufficient funding, Phases 2 and 3 can be implemented as additions to the previous phases. These phases integrate the more expensive secondary features into the design, which will in turn elevate the overall atmosphere of the site.

Phase 1 is the foundation for both phases that follow. This initial design contains the essential items requested by the client: a permanent stage on the east side of the parcel, a concrete pad in front of the stage, a public restroom at the south end of the parcel with built in storage, shade from the west, lighting for the site, a sidewalk that connects the parking lot to the restrooms, water fountains, an informational kiosk, and landscaping. This phase was designed to accommodate all future phases, meaning all structural elements will support the loads of all future phases to avoid having to resize members or perform unnecessary and costly demolitions.

Phase 2 contains all elements from its previous phase, with the addition of an ADA compliant ramp and railing system to transform the roof of the restroom structure into an usable space.

Figure 1.2. Proposed green space for Phase Three

Phase 3 is comprised of all previously mentioned elements, along with the addition of a permanent steel roof covering, shading the entirety of the roof. This covering is designed to be able to withstand the load of an array of solar panels that span the length of the roof covering. Additionally, a concession stand is integrated into the storage room through the addition of a partition wall dividing the spaces.

The overall total cost for design, administration, and construction of the project if built straight to completion (Phase 3) has been estimated as \$1,153,500. The estimated cost break-down for Phases 1, 2, and 3 are \$774,500, \$276,000, and \$103,000, respectively.

The deliverables of the Maquoketa Green Space Redevelopment project include a written report, construction drawings of the proposed site and structures, project poster with renderings of the site, as well as a phasing plan and a construction cost estimate breakdown. Although we have designed Phase 1 to be able to exist on its own, our team strongly encourages the city of Maquoketa to follow through with the construction of both subsequent phases. In the end, the proposed structures will not only complement the aesthetic of downtown, but they will also complement the community-based nature of the city of Maquoketa. The roof overlooking the green space will likely bring new interest in the space that might attract families to gather even on days where there are no events planned for the space. We believe that by generating this excitement, more people will be drawn into the green space. This will further build Maquoketa's community feel, educate people on the site's history, and increase overall event attendance.

<u>SECTION II</u> Organization Qualifications and Experience

Organization Location and Contact Information

103 S. Capitol St. Iowa City, IA 52242

Project Manager: Jamie Trentz

Organization and Design Team Description

The team is a group of students who participated in the senior design class required of all final semester students within the Department of Civil and Environmental Engineering at the University of Iowa. Jamie Trentz is a Civil Engineering major with a focus in structures. He was the project manager and ensured all deadlines were met and that we were working effectively during all portions of the project. Jacob Murphy is a Civil Engineering major with a focus in structures. He was the text editor and revised documents so they could be read with ease. Amanda Guerra is a Civil Engineering major with a focus in architecture. She was the graphics editor and performed renderings for designs. She also assisted in the creation of the graphics used in reports and presentations. Jackson Stephens is a Civil Engineering major with a focus in structures. His role was technology support and he created and edited presentations that can be easily followed and communicated the proper information. All members also used knowledge learned from previous design classes to ensure all building and city codes were followed and were documented throughout the process.

• Description of Experience with Similar Projects

Jamie Trentz has taken courses at the University of Iowa such as Principles of Structures, Civil Engineering Materials, Design of Wood Structures, Foundations of Structures, Design of Steel Structures, and Design Optimization. Jamie has also worked as a structural engineering intern with Shive-Hattery Engineering and Architecture for two summers. During his time there, Jamie has helped produce structural construction documents, using Revit for industrial platforms, new buildings, building additions, and a pedestrian bridge. Jamie also worked in the structural reference detail library, refining the details used across all the Shive-Hattery locations. He also has experience in structural analysis programs and designing steel connections.

Jacob Murphy has had internships with the Iowa DOT and Shive-Hattery Engineering and Architecture. The Iowa DOT internship gave Jacob the skills to navigate through specification books, interpret engineering plans, and document progress throughout a project. The Shive-Hattery internship gave him the experience of performing structural calculations for buildings and platform systems in RISA 3D. Jacob also evaluated results by performing hand calculations and produced structural drawings in Revit. Many courses at the University of Iowa prepared Jacob for those internships and this project. Some of those courses were Design of Steel Structures, Design of Concrete Structures, Foundations of Structures, Civil Engineering Materials, and Principles of Transportation Engineering. Amanda Guerra has taken structural courses as well as design-intensive courses at the University of Iowa. Amanda's design courses allowed her to familiarize herself with the software package Autodesk 3dsMax. Using this program, she was able to design and produce high quality renderings of a library, pavilion, and a bus stop shelter. This past summer, Amanda worked as a solar engineering intern with Kimley-Horn. Through this internship, she gained experience drafting solar field layouts and preparing construction documents using AutoCAD Civil3D. To accomplish these tasks, Amanda had to read and follow county the solar zoning ordinances, and import utility line, road network, property line, FEMA, and wetland data into Civil 3D drawings.

Jackson Stephens has taken various structural engineering courses at the University of Iowa to prepare him for this project. Some of those include Design of Steel Structures, Design of Wood Structures, Design of Concrete Structures, Foundations of Structures, Civil Engineering Materials, and Resilient Infrastructure. These classes helped Jackson to learn how to use design manuals and software like Revit and Civil3D to assist him in the project. For the latter half of 2022, Jackson worked as a project management intern with Sevan Multi-Site Solutions. He worked with the Walgreens team and assisted in the construction process of the parking lot, roof, and LED efficiency teams. This exposed him to the bidding process and overall budgeting of projects. He became familiar with Smartsheet, PowerPoint, and Excel during his time.

SECTION III

Design Services

1. Project Scope

Our design will redevelop the Maquoketa Green Space into a place that can host a variety of events in addition to daily use. Some of these events include the Summer Concert Series, Maqtoberfest, Fireball, Art in the Park, and the Farmer's Market. The city of Maquoketa wishes to use this space to further expand community involvement. With the inclusion of the following aspects, the city hopes the structures provide a strong foundation for overall growth in the community. At the utmost importance, these gatherings require a permanent stage that accommodates lighting and sound equipment, public restrooms, storage, shade, site lighting, sidewalks, as well as landscaping. Additional features to be included in budget permitting design renders include a water fountain with bottle filling ability, a dog-level water fountain, an informational kiosk, a historical marker, and low maintenance plantings. All high priority and inexpensive features were incorporated in Phase One while the expensive secondary features were incorporated into the other two phases accordingly.

For the three phases, the following items will be presented: project report, construction drawings, 3D rendering of the site, and a design summary poster.

2. Work Plan

The schedule for our design team is shown in Figures 3.1-3.7.

Maquoketa Greenspace Redevelopment

	•		Jan	18	- Jar	ı 21		Ja	n 2	2 - J	an 2	27	
			18	19	20	21	22	23	24	25	26	27	28
Tasks	Start	End	W	Т	F	S	S	М	Т	W	Т	F	S
Task 1: Project Kickoff and Data Collection	18-Jan	27-Jan											
Design Teams' Role Designations and Understanding of Project (All)	18-Jan	20-Jan											
Initial Client Contact and Meeting Setup (Jamie)	19-Jan	24-Jan											
Data Collection of Similar Previous Projects (All)	20-Jan	25-Jan											
Introductory Meeting and Gathering Client Input (All)	25-Jan	27-Jan											

Figure 3.1. Project kickoff and data collection Gantt chart

			F	eb 5	- Fe	b 11			Fel	b 12	- Fe	b 18			Feb	19 -	- Feb	25	
			56	7	8 9	ə 10	11	12	13	14 :	15 :	16 1	7 18	3 19	20 2	21 2	2 23	24	25
Tasks	Start	End	S M	I T 1	N 1	ΓF	S	S	M	Т	W	TF	FS	S	M	Т۷	VТ	F	S
Task 3: Design Concept Development	11-Feb	22-Feb																	
Generate Guiding Conceptual Designs (All)	11-Feb	17-Feb																	
Narrow Down Conceptual Designs Based on Field and Client Criteria (All)	14-Feb	18-Feb																	
Develop Drawings/Sketches to Illustrate Design Options (All)	17-Feb	21-Feb																	
Discuss Advantages and Disadvantages of Each Design (All)	19-Feb	21-Feb																	
Client Meeting to Discuss and Choose 3 Levels of Design Options (All)	22-Feb	22-Feb																	

Figure 3.3. Design concept development Gantt chart

					Feb 19	- Feb	25			Fet	26-	Mar	ch 4		Ma	rch 5	5 - M	arch	11		Ma	ch 1	2 - Ma	rch 1	8
			19	20	21	22 2	23 24	4 2	5 26	27	28	1	2 3	4	56	7	8 9	9 10) 11	12	13	14	15 1	6 1	7
Tasks	Start	End	S	М	Т	W	TF	FS	s s	М	Т	W	ΤF	S	s M	T	WI	T F	S	S	М	Т	W	F	
Task 4: Design	23-Feb	19-Apr																							
Develop Prelimary Site Design that Includes Grading/Sidewalks/Seating (Amanda)	23-Feb	25-Mar																							
Develop Prelimary Stage Design (Jacob)	23-Feb	25-Mar																							
Develop Preliminary Bathroom Structure Design (Jamie)	23-Feb	25-Mar																							
Develop Preliminary Shading and Lighting Design (Jackson)	23-Feb	25-Mar																							
Develop Civil 3D Model/Drawings of Site (Amanda and Jackson)	5-Mar	1-Apr																							
Develop Revit Models/Drawings of Stage and Bathroom Structure (Jacob and Jamie)	5-Mar	1-Apr																							
Finalize Site Design that Includes Grading/Landscape/Sidewalks/Seating (Amanda)	26-Mar	1-Apr																							
Finalize Stage Design (Jacob)	26-Mar	1-Apr																							
Finalize Bathroom Structure Design (Jamie)	26-Mar	1-Apr																							
Finalize Shading and Lighting Design (Jackson)	26-Mar	1-Apr																							
Develop Cost Estimate/Quantity Takeoff/Phasing Plan (All)	26-Mar	1-Apr																							
Draft Initial Design Report (All)	2-Apr	7-Apr																							
Draft Initial Presentation (All)	2-Apr	7-Apr																							
Draft Initial Poster (All)	2-Apr	7-Apr																							
Make Revisions to Design Drawings, Report, Presentation, and Poster (All)	8-Apr	19-Apr																							

Figure 3.4. Design Gantt chart part 1

			Marc	:h 19 -	March	25	Marcl	h 26 -	- Apri	il 1	April	2 -	April	8	Ар	il 9 -	April	15	A	pril 10) - Ap	oril 22
			19 20) 21 2	2 23 24	1 25	26 27	28 #	; # #	ŧ 1 2	234	5	67	8	9 10	11 1	2 13	14 1	5 16	17 18	19 2	20 21 22
Tasks	Start	End	SM	T V	/ T F	S	S M	T V	V T F	S S	5 M T	W	ΤF	S	5 M.	T \	√ T.	F 3	S S	ΜT	W^{-1}	TFS
Task 4: Design	23-Feb	19-Apr																				
Develop Prelimary Site Design that Includes Grading/Sidewalks/Seating (Amanda)		25-Mar																				
Develop Prelimary Stage Design (Jacob)	23-Feb																					
Develop Preliminary Bathroom Structure Design (Jamie)	23-Feb																					
Develop Preliminary Shading and Lighting Design (Jackson)	23-Feb	25-Mar																				
Develop Civil 3D Model/Drawings of Site (Amanda and Jackson)	5-Mar	1-Apr																				
Develop Revit Models/Drawings of Stage and Bathroom Structure (Jacob and Jamie)	5-Mar	1-Apr																				
Finalize Site Design that Includes Grading/Landscape/Sidewalks/Seating (Amanda)	26-Mar	1-Apr																				
Finalize Stage Design (Jacob)	26-Mar	1-Apr																				
Finalize Bathroom Structure Design (Jamie)	26-Mar	1-Apr																				
Finalize Shading and Lighting Design (Jackson)	26-Mar	1-Apr																				
Develop Cost Estimate/Quantity Takeoff/Phasing Plan (All)	26-Mar	1-Apr																				
Draft Initial Design Report (All)	2-Apr	7-Apr																				
Draft Initial Presentation (All)	2-Apr	7-Apr																				
Draft Initial Poster (All)	2-Apr	7-Apr																				
Make Revisions to Design Drawings, Report, Presentation, and Poster (All)	8-Apr	19-Apr																				

Figure 3.5. Design Gantt chart part 2

				A	pril 1	6 - A	pril 2	2			A	oril 2	23 - A	pril 2	29			April	I 30 -	May	6
			16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	1	2 3	34	5 6
Tasks	Start	End	S	M	Т	W	Т	F	S	S	M	Т	W	Т	F	S	S	М	тν	νт	F S
Task 5: On Campus Presentations	20-Apr	30-Apr																			
Rehearse for On Campus Presentation (All)	20-Apr	23-Apr																			
Present On Campus (All)	24-Apr	28-Apr																			
Make Revisions to Design Drawings, Report, Presentation, and Poster (All)	29-Apr	30-Apr																			

			_				_				
			A	pril 3	30 - I	May	6	M	ay 7 -	- May	/12
			30	1 2	23	4 5	5 G	78	9	10 1	.1 12
Tasks	Start	End	S	М.	ΓW	ΤF	f S	SIN	1 Т	W T	ΓF
Task 6: Client Presentations and Final Product	1-May	12-May									
Client Presentation (AII)	1-May	12-May									
Finalize Design Report, Design Drawings, Presentation, and Poster as Indicated by Advisor (All)	1-May	12-May									

Figure 3.7. Client presentation and final product Gantt chart

<u>SECTION IV</u> Constraints, Challenges, and Impacts

1. Constraints

The Maquoketa Green Space Redevelopment needed to match the existing aesthetic of the downtown area. The buildings in the area are built out of a mixture of brick, concrete, and limestone. Wood was avoided for construction of the stage or bathroom in order to decrease the amount of eventual maintenance. The stage needed to stand three-feet or higher off the ground to allow for a good line of sight from the audience. The stage was designed to maintain a line of sight from Main Street due to the events that flow over into the downtown area. This restricted stage placements to either the north or east side of the parcel. The existing north sidewalk must remain. Shade must be provided from the west due to events occurring mostly in the late afternoon. If any seating was provided, it must also be removable. Lastly, the project was limited to the current parcel area; no land acquisitions were possible. Budget was not a constraint for this project.

2. Challenges

The Maquoketa Green Space only has five inches of topsoil due to existing basements being filled with limestone. This creates challenges to either plantings or foundation installation. Foundations need to be installed by excavating existing limestone and replacing it with soil fill. Another challenge was creating a line of sight for the crowd that allows people in the back to see the stage with ease but also allows the people towards the front to not strain their necks.

3. Societal Impact within the Community and/or State of Iowa

The societal impact of this project was notable. Activities that will be held on this site will greatly impact the City of Maquoketa for the better. The overall look of the site will be enhanced and will allow for the history and aesthetic of the town to be improved. Events will bring more people from the area to Maquoketa. This influx of visitors will allow local businesses to prosper from more people. The new structures and new layout of the site will allow for more daily activities to be held on the site. This allows people to be outside more during the warm weather, which in turn leads to better health, wellness, and happiness. The additions will provide greater accessibility, lowering the risk of health and safety concerns. New bathrooms will allows residents to have cleaner and more accessible locations for their use, improving community needs and sanitation. This addition means there is no need for public portable restrooms, lowering community costs for each event and allowing for the downtown to have a more natural feel and appeal.

SECTION V Phasing of Alternatives

We are proposing three designs for the Green Space Redevelopment Project in the form of three phases. Phase One incorporates all important baseline features the City of Maquoketa expects to be included in every design alternative. The subsequent two phases are meant to be constructed as additions to the previous phase. Phases Two and Three both incorporate secondary features the city requested but noted were not as high priority as the features in Phase One.

Using phasing reduces the initial cost by not immediately incorporating expensive lower priority features. All phases were designed to be able to withstand the load of the subsequent phase so there will be no major demolition or replacement of structural members needed when construction of the next phase begins. Every phase can be constructed at Maquoketa's discretion, which provides extra time during the funding process for each update.

1. Phase One - Site Layout and Proposed Structures

Figure 5.1. Phase One schematic design

SITE LAYOUT:

Phase One of the Green Space Redevelopment is displayed in Figure 5.1. This schematic outlines the location of the proposed structures and sidewalk network on the parcel. The green path is the proposed sidewalk that connects the restroom entrance, storage entrance, stage, and northeast parking lot to the existing surrounding sidewalks.

The permanent stage, shown in orange, has been placed on the east side of the parcel and faces west. This stage orientation proved to be the most optimal arrangement as it keeps the audience in closer proximity to the performers, while simultaneously providing more lines of sight along the length of the parcel. Occasionally, South Main Street gets blocked off for larger events, so having the stage face west results in optimal performance visibility.

In contrast, East Pleasant Street does not get shut down; therefore, we believe it was most appropriate to locate the restroom structure (in blue) on the south end, closer to existing water hookups.

Also depicted in the graphic above is the relocation of the informational kiosk as well as the locations of proposed trees that will provide shade on the site. Additionally, the picnic benches and sculpture shown in the aerial are subject to relocation prior to construction.

Figure 5.2. Stage design for all phases

STAGE DESIGN:

As shown in Figure 5.2, our team has proposed a permanent stage composed mainly of CMU blocks with a red brick façade. The brick in combination with the exposed steel beams, metal deck roof, and concrete slab performance area all work together to compliment the aesthetic of Maquoketa's downtown architecture. Additionally, this model features an ADA compliant ramp, as well as a staircase leading up to the stage. Both entrance points have north access locations. This configuration provides the most direct route to the parking lot, which is essential for loading and unloading heavy equipment. Other features of the design include approximately 735 square-feet of performance space, three box trusses for lighting, and sound equipment. Due to the green space's vital need for a permanent performance area, the stage was designed to its fullest potential in Phase One and will remain unchanged in the subsequent phases.

RESTROOM STRUCTURE DESIGN:

Figure 5.3. Phase One restroom building design - view from S Main St

Figure 5.4. Phase One restroom building floor plan

Like our proposed stage design, the restroom (pictured in Figure 13) is comprised of a masonry interior with a brick façade exterior. The front and back wall feature six columns that aesthetically add a sense of depth to the building. More importantly, they are required to be able to structurally withstand the loads of the following phases. The garage door entrance to the storage room, as well as the entrance to the men and women's restrooms, are located on the north facing wall to allow for the most direct access to people occupying the green space. The east wall, (left-most wall in Figure 5.4), features a secondary entrance to the storage area and a concession garage window. Although these features are not essential for Phase One, it is more cost efficient to incorporate them prematurely rather than performing a demolition in later phases when these features become a necessity. Furthermore, assuming there will be longer bathroom lines during bigger events, the design features a four-foot front overhang to protect from rain and provide additional shading.

From left to right, the floorplan in Figure 5.4 exhibits the 450-square foot storage area, men's restroom, and women's restroom. Both restrooms are equipped with two sinks, two hand dryers, and two ADA compliant stalls. Additionally, the women's restroom features four standard stalls, while the men's features one standard stall and four urinals. Stall amounts were calculated assuming an average event attendance of 390 people.

2. Phase Two - Site Layout and Proposed Structures

SITE LAYOUT:

For this phase, the sidewalk network and permanent stage location remain the same as Phase One. The restroom structure, however, increases in width by 13-feet to accommodate a ramp into the design.

STAGE DESIGN:

Remains the same as shown in Phase One (See Figure 5.2).

RESTROOM STRUCTURE DESIGN:

To further create more lines of sight to the stage, we have proposed that Phase Two will include an occupiable roof. This is possible through the addition of an ADA compliant ramp and railing system. The ramp entrance was strategically placed facing east where food trucks tend to park during major green space events. This allows for fast access to rooftop picnic bench seating, subsequently minimizing overall foot traffic on the site. Since shading is a major issue for the site, our team strongly encourages the use of picnic table umbrellas as a cost efficient and temporary solution to provide shade during the transition period between Phase Two and Three.

Figure 5.5. Phase two schematic design

Figure 5.6. Phase Two ramp and occupiable roof design

3. Phase Three - Site Layout and Proposed Structures

SITE LAYOUT:

All major changes in this phase happen within the bounds of the previous phase's site layout. Therefore, the Phase Three layout remains the same with the only exception being the division of storage area into two separate spaces. Figure 5.7 exhibits this division.

STAGE DESIGN:

Remains the same as shown in Phase One (See Figure 5.2).

RESTROOM STRUCTURE DESIGN:

The main upgrade for this phase is the construction of a permanent metal deck roof for the occupiable roof that is held up by exposed steel beams. Overtop, we are proposing solar panels along the length of the permanent roof. The east to west panel placement allows them to experience the longest duration of direct sunlight possible.

On the interior, a partition wall is proposed to divide the storage room to accommodate a concession stand on the far east end of the building. Of course, this room will also have water and electricity hookups readily available for all necessary appliances.

Figure 5.7. Phase Three schematic design

Figure 5.8. Phase Three permanent roof restroom structure

All things considered, although each phase can stand without its subsequent phases, our team encourages following through to the construction of Phase Three. Due to this phase's incorporation of solar energy, the design will require a significant initial capital expenditure but will result in reduced costs in terms of energy and maintenance expenses over time.

SECTION VI Final Design Details

SITE DESIGN

The design was based off the site's most up to date Lidar scans and was done using Civil3D. Both the bathroom and stage structures were set at an even elevation of 707.5 ft. This allowed for the most effective grading and allowed the sidewalk network to best meet ADA requirements. Grading goes from west to east, with the stage being used as a divider, grading away from the stage to reduce ponding. This follows the previous grading of the site, with most of the flow heading to the northeast and southeast corners of the parcel. The sidewalk network follows the perimeter of the stage and restroom structures, with a larger pad being inserted at the front and east of the stage and another at the west end of the bathroom structure. Connections were made to existing sidewalk networks on the southwest, southeast, and northeast ends of the parcel. Fill will be needed for the site to accommodate the raised elevation of the stage. Cut will be needed for the bathroom structure. The existing structure and pavement on the south side of the parcel will be removed, along with the existing kiosk being moved to the north end concrete pad. An overall site layout plan is located on sheet C2.01.

STAGE DESIGN

Design Loads:

Wind and roof snow loads were calculated using ASCE 7-22. The wind loads were calculated assuming the Main Wind Force Resisting System (MWFRS) and using the Directional Procedure (Minimum Designs, Chapter 26 and 27). The snow loads were using the horizontal projection of the roof. The ground snow load was found to be 25 psf. and the sloped roof snow load on the roof was found (Minimum Designs, Chapter 7). All final design loads were calculated using Load and Resistance Factor equations (Minimum Designs, Chapter 2).

Layout:

The layout of the stage was thoroughly analyzed. Shading, line-of-sight, dimension constraints, and access were all factors for the layout of the stage. The stage is placed on the east side of the parcel so that the audience does not get blinded or overheated by the setting sun. The stage was elevated about 4 feet off grade due to no elevation of seating. The stage was also placed on the east side so people can watch performances from Main St. The required dimensions of the stage were 24 feet wide and 20 feet deep. An ADA ramp was required for access to the stage, and it provides an easy way to roll equipment onto the stage. The ramp has a slope of 1/12 which is the maximum allowed and the width is 5 feet (ADA). The ramp is orientated to the north for easy access from the parking lot.

Roof:

The roof was designed using a Nucor Vulcraft metal deck. The use of wood and shingle materials were not considered in the roof design due to the required maintenance over the years. Concrete on top of the metal deck was not needed for strength or added weight to

resist uplift, but this alternative was considered. The metal deck was required to hold a gravity load of 29.21 psf., an uplift load of 9.605 psf., and a span length of 6 ft. The metal deck chosen was a 22 Gage 1.5B-36 Grade 50 with a 36/4 connection pattern using #12 screws. The metal deck has a fire rating of 1.5 hours per International Building Code (IBC). The metal deck is topped with a metal standing seam sheet that provides drainage of water to the east. The quantity of these two roofing materials is 880 sf. The roof can be seen on the elevation views of the drawing set. These views are on sheet S1.04.

Box Truss:

The box trusses span horizontally between beams in the roof framing. This means the box trusses span 6 ft. The desired box truss size was an 8 in. x 8 in. truss. The truss was designed to support a load of lights, speakers, banners, etc. A 10 ft, 8 in. x 8 in. box truss can support a distributed load of 90 lb./ft. or a point load of 600 lb. at mid span per Applied Truss and Electronics (8 in. x 8 in.). Our span is only 6 ft, so these numbers are conservative. This truss provides more than enough strength for the intended use. The stage design requires 12 8 in. x 8 in. x 6 ft. box trusses.

Beams:

Standard steel ASTM A992 grade 50 wide-flange hot-rolled shapes were used for the beams. Loads from the dead load of the roof and box trusses, wind load, and snow load were all accounted for in the design of the roof beam. The roof beam was designed against shear, flexure, and deflection. Capacities were found in the AISC Steel Construction Manual as well as the International Building Code. The beam shape selected for the roof was a W10x12. Five W10x12 beams with a length of 33 ft. and 9 in. are required for the stage design. These beams are cantilevered over the front of the stage to allow for a good line-of-sight from all directions around the front of the stage. All analysis was done in Robot Structural Analysis Professional 2023. The beam connecting the two masonry walls above the entrance of the stage was designed to be a W8x10 that is 24 ft long. This beam is not load-bearing and is purely for aesthetics. Therefore, no calculations were performed. The beams are shown on the stage framing plan, located on sheet S1.03.

Moment Frame:

Standard steel ASTM A992 grade 50 wide-flange hot-rolled shapes were used for the girder and columns in the moment frame. The moment frame was designed to resist lateral loads as well as all the loads coming down through the roof beams. The span of the girder is 24 ft. and was sized as a W12x40. The columns are W12x40 and are at a height of 14 ft. and 6 in. The girder was designed based on strength and deflection and the column was designed based on strength and story drift. Combined axial load and moment was also checked. Capacities were found in the AISC Steel Construction Manual as well as the International Building Code. One girder and two columns are needed for the stage design. A design detail of the moment frame is located on sheet S1.03 as well as a general elevation view located on sheet S1.04.

Slab on Grade:

The slab covers the entire stage surface as well as the ramp. It was designed to be the same throughout since there is a 150 psf live load for stage floors (Minimum Designs, Chapter 4). The slab was designed using a resource called Industrial Slabs on Grade. After using a load factor, the design load was 240 psf. The stage and ramp slab are both 6 inches. Portland Cement Concrete (PCC) slabs that have one layer of reinforcement 2 inches from the top of the slab. The layer of reinforcement is a 6x6 6/6 welded wire fabric. The quantity of reinforced PCC is 20 cy. The concrete slab on grade detail is located on sheet S1.01.

Cast-in-Place Stairs:

This component of the stage is placed on the north side of the stage. The stairs are designed to access the stage while maintaining a 5 ft clearance. The stairs will be designed for strength and deflection. A detailed section of the stairs is located on sheet S1.05.

Railing:

The stage utilizes a railing called a pipe guardrail. The length of the railing on the ramp is 74 lf. This aluminum railing is located on sheet S1.05.

Brick Veneer:

The brick veneer is a typical 4 in. nominal red brick masonry unit. These units are purely architectural and supported wall ties that are spaced at 16 in. on center. A detail of a typical wall section is located on page S1.02.

Concrete Masonry Unit (CMU) Wall Design for Cantilever Retaining Wall:

The masonry wall was designed with 8 in. CMU blocks. This wall retains 7 ft. 1 in. in the most critical location of the stage boundary. Based off table 2 in section 15-7 B of National Concrete Masonry Association TEK, the wall needs vertical reinforcement of size No. 4 rebar @ 16 in. on center. The CMU reinforcement design detail is on sheet S1.05.

Concrete Masonry Unit (CMU) Wall Design for East Stage Walls:

These walls were designed to resist combined axial load and moment. The critical location is at the stage level right before the soil pressure aid to support the wall laterally. The reinforcement was designed using the National Concrete Masonry Association TEK. The details of the wall section are located on sheet S1.05.

Strip Footing Design for all CMU Walls:

The retaining wall footing was designed as a continuous footing with a width of 3 ft. 6 in. The footing was checked to satisfy a factor of safety (F.S.) of 1.5 for sliding and overturning, a F.S of 3 for bearing, and a maximum settlement of 0.5 in. Terzaghi's Bearing Capacity equation was used for bearing failure and Boussinesq's Simple Elastic Settlement Method was used for settlement failure. The quantity of reinforced PCC for the footings is 24 cy. Sheets S1.01 and S1.05 of the drawing set contain all strip footings with various foundation walls.

CMU Column:

A CMU column was required for axial support underneath the W-shape steel columns. The column is concentrically loaded and is required to be a 12 in x 16 in column to fit the size of a W12x26. The strength is more than adequate which is shown in Table 2 of 17-03A of National Concrete Masonry Association TEK. The required vertical reinforcement is four No. 4 bars, and the horizontal reinforcement is shown in Figure 2 of the same resource. The CMU column is shown on sheet S1.05.

Isolated Footing for Columns:

The CMU column footing was designed as an isolated footing with a width of 3 ft. 6 in. and a length of 3 ft. 6 in. The footing was checked to satisfy a factor of safety (F.S.) of 1.5 for sliding and overturning, a F.S of 3 for bearing, and a maximum settlement of 0.5 in. Vesic's Bearing Capacity equation was used for bearing failure and Boussinesq's Simple Elastic Settlement Method was used for settlement failure. There are two isolated footings required for the design of the stage and the detailed drawing of the footing is located on sheet S1.05.

PHASE ONE RESTROOM STRUCTURE DESIGN

Overall Structure Dimensions:

The first assumption made when designing the Phase One restroom structure was assuming the client is going to implement all three phases of this project. This means specifying a building length that will completely contain Phase Two length of the ramp within the building walls. This is further discussed in the section: Phase Two Restroom Design. A building length of 78 ft. was determined for a ten ft tall building. We decided on a concrete masonry unit (CMU) structure, to minimize cost, with 8 in. x 8 in. x 16 in. blocks. This is a typical CMU block size. The length of the wall needed to be in a multiple of 8 in., and 78 ft. satisfies this constraint. The minimum clear height needed for a bathroom, in accordance with the 2012 International Building Code (IBC) section 1207.2, is 7 ft. For the occupiable rooftop, we set our clear height at 10 ft. to enhance the lines of to the stage and account for the thickness of the roof slab, insulation, and mechanical, electrical, and plumbing (MEP) equipment. Ten ft. is also a multiple of 8 in., which is the height of the CMU blocks. A plan view of the Phase One restroom is located on sheet A1.01. Interior elevations and exterior elevations are located on sheets A1.01 and A1.02 of the drawing set, respectively.

Room Partitions:

We categorized the site as an auditorium without permanent seating and designed the restroom for 390 people in accordance with IBC table 2902.1. Traditional events at this green space host between 300 and 400 people. For 390 people, these are the conditions that need to be met for a female restroom: 6 water closets and 2 lavatories. These conditions need to be met for a male restroom: 3 water closets and 2 lavatories. We decided on 4 urinals in the men's restroom as well for convenience. Two ADA accessible water closets are provided in each restroom to exceed the ADA water closet requirements.

ADA required water closet dimensions and typical water closet dimensions dictated the length of each restroom. We determined the dimensions of each restroom to be roughly 16'-8" from outside wall face to outside wall face and roughly 21 ft. in length from inside face of wall to inside face of wall. This left roughly 30 ft. for Phase One storage. We designed the structure to contain all openings which included two restroom doors, a door to the storage, a garage door to the storage, and a window to the Phase Three concession stand. All openings were included in Phase One to minimize future phase costs. A plan view of the Phase One restroom and interior elevations are located on sheet A1.01.

Design Loads:

Wind and roof snow loads were calculated using ASCE 7-16 and ASCE 7-22. The wind loads were calculated assuming the Main Wind Force Resisting System (MWFRS) and using the Directional Procedure (Chapter 26 and 27). We assumed the roof as flat, so the snow load found did not have to be projected (Chapter 7). All final design loads were calculated using Load and Resistance Factor equations (LRFD) (Chapter 2). The load calculations can be found in Appendix D.

Occupiable Roof:

The roof was designed using a Nucor Vulcraft composite deck. This style of deck was chosen because of its ability to perform under large loads, such as the live load. The composite deck was required to hold a superimposed dead load of 18.5 psf., a live load of 100 psf., a balanced snow load of 36 psf., a negligible positive wind load, and a wind uplift force of 14 psf., and accommodate a span length of 16 ft. The slab acts as a oneway slab, spanning between North and South walls, because the length of the slab is much larger than the width. The slab was modeled as a simply supported beam in Robot and load combinations were applied. Max shear, positive moment, negative moment, and reaction forces were checked. A special load case of live load only applied to the fourfoot overhang was checked to make sure the negative moment did not exceed the capacity. All checks were satisfied, and there was no net uplift at the reactions. Deflection was not a concern because the span table conditions were satisfied. The metal deck chosen was a 16 Gage 3VLI-36 Grade 50 and the concrete used was a normal weight (145 pcf.) with 4D 65/60BG Bekaert Dramix Fibers, 15 pcy. There was an additional layer of concrete on top of the composite deck for sloping purposes. This layer was also a normal weight concrete (145 psf.). The concrete layer is 1 in. thick at the South edge of the roof and 0 in. thick at the north edge of the roof, resulting in a 0.4% slope. In addition, a clear waterproofing membrane adhesive was applied to the top surface of the concrete.

The high-performance deck slab diaphragm strength tool was used to determine how many shear studs were required along the walls of the structure. The calculations for the roof composite deck are shown in Appendix D. Details of the occupiable roof are located on sheet A1.03.

Occupiable Roof/Wall Connection:

A continuous A36 plate was placed along the entire length of the walls to weld the shear studs to the wall. This plate was not treated as a bearing plate because the floor load is

distributed along the entire length of the plate. Thus, there was not a significant load for the plate to act as a bearing plate. The compressive strength of the CMU block and the A36 steel plate are far greater than the distributive reaction force. An anchor screw, to connect the base plate to the wall, was chosen from the Simpson Strong Tie website. The TNTW25134TF Anchor Screw was picked. The screws don't resist tension since there was no net uplift. In plane and out of plane shear were checked for. The calculations for this connection are shown in Appendix D. Details of this connection are located on sheets A1.03 and S1.08.

Concrete Masonry Unit (CMU) Wall Design for Simply Supported Condition:

The masonry wall was designed with 8 in. CMU blocks, which are a standard size. The 10 ft. wall resists a 155 ft-lb/ft moment and a 735-kip axial force. The walls for the restroom structure are treated as simply supported at the slab and at the roof diaphragm. Based on figure 1 in section 14-11B of National Concrete Masonry Association (NCMA) TEK, the wall needed vertical reinforcement of size No. 4 @ 16 in. and lateral reinforcement was provided for the serviceability limit state. This was to prevent cracking of the CMU. The lateral reinforcement selected was a 220 Ladder-Mesh from Hohmann and Barnard Inc. website. It is recommended to be spaced between each CMU brick vertically and specified as Galvanized Steel. The calculations for the walls are shown in Appendix D. Details of the wall are located on sheets A1.03 and S1.08.

Partition Walls:

The partition walls are non-loadbearing. Expansion layers are provided at the ends of the walls to prevent transfer of force, and a gap was left at the top of the wall to enable MEP to be run from room to room. Sections of the partition walls are located on sheet A1.03.

Lintel:

A precast lintel size 8 in. x 16 in. was chosen to adequately support the moment and shear experienced due to the loading above the lintels. The lintel was designed for the longest span, and the same one was used for each opening. One #6 reinforcement bar was placed at the bottom of the lintel to resist moment. This lintel was sized using table 4 in NCMA Tek 17-02A. Lintel calculations are shown in Appendix D. A section cut of the lintel will be located on sheet S1.08.

CMU Column:

A CMU column is required for axial support underneath the W-shape steel columns from the future Phase Three roof. The column is concentrically loaded, and the column was sized using Table 2 of 17-03A of the NCMA TEK. The required vertical reinforcement is 8 No.4 bars, and the horizontal reinforcement is 0.25 in. diameter ties every 8 in. The calculations for the column are shown in Appendix D. A section view of the CMU column is shown on sheet S1.08.

Brick Veneer:

The brick veneer is a typical 4 in. red brick masonry unit. These units are purely architectural and are supported by wall ties 16 in. x 16 in. on center. The Hohmann and Barnard Inc. website recommends an embedment of 3 in. for a Concrete 2-Seal Tie for an

insulation thickness of 3 in. NCMA Tek 16-01A figure 1 recommends a maximum vertical and horizontal tie spacing of 16 in. on center for adjustable ties, which is what we chose. Our cavity width is 4 in. and the maximum cavity width for this condition is 4.5 in. Control joints are spaced every 15 ft. and under stress concentrations in the brick veneer to prevent cracking of the veneer. This is specified in NCMA Tek 10-04. The calculations for the walls are shown in Appendix D. Brick veneer details are located on sheets A1.03 and A2.02.

Insulation:

Closed cell spray foam insulation was chosen for the roof insulation because it must adhere to the roof. The roof slab was treated as a mass floor slab in climate zone 5, so an R value of 14.6 was needed, as specified in the 2018 International Energy Conservation Code in table C402.1. A thickness of 2.5 in. closed cell insulation was determined. For the wall insulation, a mass wall was determined and an R value of 11.4 was needed. An insulation board was chosen, and a thickness of 3 in. was determined. The calculations for the insulation are shown in Appendix D. Cross sections of the insulation are located on sheet A1.03.

Slab on Grade:

The slab covers the area of the restroom structure from outside face of wall to outside face of wall. It was designed to be the same throughout since there is a 60 psf live load for public restrooms (Chapter 4). The slab was designed using a resource called Industrial Slabs on Grade. After using a load factor, the design load was 96 psf. The slab is 5 in. Portland Cement Concrete (PCC) slab and has one layer of reinforcement 2 in from the bottom of the slab. The layer of reinforcement is a 6 in. x 6 in. 6/6 welded wire fabric. A slab on grade detail is located on sheet S1.07.

Strip Footing Design for all CMU Walls:

The wall footing was designed as a continuous footing with a width of 3 ft. 0 in. The footing was checked to satisfy a factor of safety (F.S.) of 1.5 for sliding and overturning, a F.S of 3 for bearing, and a maximum settlement of 0.5 in. Terzaghi's Bearing Capacity equation was used for bearing failure and Boussinesq's Simple Elastic Settlement Method was used for settlement failure. Sheet S1.07 of the drawing set contains the detail for this footing. The calculations for the wall footing are shown in Appendix D.

Isolated Footing for Columns:

The CMU column footing was designed as an isolated footing with a width of 4 ft. 4 in. and a length of 5 ft. The footing was checked to satisfy a factor of safety (F.S.) of 1.5 for sliding and overturning, a F.S of 3 for bearing, and a maximum settlement of 0.5 in. Vesic's Bearing Capacity equation was used for bearing failure and Boussinesq's Simple Elastic Settlement Method was used for settlement failure. There are 12 isolated footings required for the design of the restroom structure and the detailed drawing of the footing is located on sheet S1.07. The calculations for the isolated column footings are shown in Appendix D.

PHASE TWO RESTROOM STRUCTURE DESIGN

Ramp Dimensions:

The maximum grade of a ramp, in accordance with the 2010 Americans with Disabilities Act (ADA) section 405.6, to have a maximum ramp rise of 30 in. is 1:12. Once there is a rise of 30 in. and a run of 30 ft., there is a need for a 6 ft. long landing according to ADA section 405.7.3. We set the clear height of the building at 10 ft from the top of floor slab to the top of the roof slab. To climb a vertical distance of 10 ft., four runs of ramp and four landings are required. This results in a ramp of length of 144 ft. This exceeds the width of the site, so we decided upon a double-back ramp resulting in a ramp length of 72 ft. Therefore, the 72 ft. Phase Two ramp is contained within the entire 78 ft. length of the building. A plan view, elevations views, and a section cut are located on sheet A2.02.

Design Loads:

Wind and roof snow loads were calculated using ASCE 7-16 and ASCE 7-22. The wind loads on the ramp walls were calculated assuming the Main Wind Force Resisting System (MWFRS) and using the Directional Procedure (Chapter 26 and 27). The snow load was projected onto the horizontal (Chapter 7). All final design loads were calculated using Load and Resistance Factor equations (LRFD) (Chapter 2). The load calculations can be found in Appendix E.

Concrete Masonry Unit (CMU) Wall Design for Cantilever Wall:

The masonry wall was designed with 8 in. CMU blocks. Based off table 2 in section 15-7B of NCMA TEK, the wall needs vertical reinforcement of size No. 5 @ 16 in. The calculations for the walls will be shown in Appendix E. A plan view of the walls and a section cut are located on sheets S2.01 and A2.02, respectively.

Strip Footing Design for CMU Walls:

The wall footing was designed as a continuous footing with a width of 3 ft. 8 in. The footing was checked to satisfy a factor of safety (F.S.) of 1.5 for sliding and overturning, a F.S of 3 for bearing, and a maximum settlement of 0.5 in. Terzaghi's Bearing Capacity equation was used for bearing failure and Boussinesq's Simple Elastic Settlement Method was used for settlement failure. Sheet S2.01 of the drawing set contains the detail for this footing. The calculations for the wall footing are shown in Appendix E.

Composite Floor Slab:

The roof was designed using a Nucor Vulcraft composite deck. This style of deck was chosen because of its ability to perform under large loads, such as the live load. The composite deck was required to accommodate a span length of 5 ft. The slab acts as a one-way slab, spanning between north and south ramp walls, because the length of the slab is much larger than the width. The metal deck chosen was a 3VLI-36 Grade 50 and the concrete used was a normal weight (145 pcf.) with 4D 65/60BG Bekaert Dramix Fibers, 45 pcy. The calculations for the composite floor slab will be shown in Appendix E. A detail of the composite floor slab and connections is located on sheet S2.01.

Railing:

The stage utilizes a railing called a pipe guardrail. The length of the railing is 135 ft. An elevation and section cut of the railing is located on sheet A2.01. A plan view of the railing is located on sheet A2.01 as well.

PHASE THREE RESTROOM STRUCTURE DESIGN

Design Loads:

Wind and roof snow loads were calculated using ASCE 7-16 and ASCE 7-22. The wind loads were calculated assuming the MWFRS and Directional Procedure (Chapter 26 and 27). The snow loads were using the horizontal projection on the roof. The ground snow load was found to be 25 psf. and the snow load acting on the roof was found to be 19 psf. Design loads were calculated using LRFD equations (Chapter 2). The calculations for the design loads are shown in Appendix F.

Metal Deck:

The metal decking on the roof was designed using Nucor Vulcraft metal deck. The use of other materials was not considered in this design. The metal deck was designed to support metal sheets, to provide water runoff, and solar panels. Uplift was calculated ignoring the weight of solar panels and was found to be 4.369 psf. The metal deck must also support a gravity load of 45.45 psf. An 18 gage 1.5B-36 Grade 50 deck with 36/4 connection pattern of #12 screws was chosen for a span of 8 ft. The metal deck connects to the joists. The metal deck in total covers an area of 1575 sf. The calculations for the metal deck are shown in Appendix F. Metal deck details are shown on sheet S3.01.

Joists:

Standard ASTM A992 grade 50 wide-flange hot-rolled shapes were used for the joists. The only load the joists will be supporting is that of the metal deck, so they were designed using 45.45 psf. The joist was designed against flexure and deflection. Capacitates were found using AISC Steel Manual and the IBC. The size of the joist was decided at W10x12 with a length of 14 ft 9 in. The joists are located at each column, as well as halfway between column spans, with the largest being 8 feet. The joists that are spaced halfway between columns are connected to the girders and are singly coped at the top side of the joist. A cope of 4.5 in. long and 2 in. deep was used during calculations and was the coped size that was used. The calculations for the joists are shown in Appendix F. Joist details and elevations are shown on sheet S3.01.

Girders:

Standard ASTM A992 grade 50 wide-flange hot-rolled shapers were used for the girders. The girders support the single coped joists and were designed against flexure and deflection. Capacitates were found using AISC Steel Manual and the IBC. The loads that the girder supports come from the ends of the joists at the midspan of the girder. The size of the girder was determined to be W12x14. The size was decided to have adequate connections within the web. Girders span between columns, with the longest being 16 ft. The calculations for the girders are shown in Appendix F. Girder details and elevations are shown on sheet S3.01.

Columns:

Standard ASTM A992 grade 50 wide-flange hot-rolled shapes were used for the columns. The columns support the girders within the flanges and the joists within the web. Exterior columns support one girder and one joist, while interior columns support two girders and one joist. The columns were designed against flexure and deflection. Capacitates were found using AISC Steel Manual and the IBC. The column size was found to be W12x14. The columns were spaced throughout the length of the occupiable roof, with the longest span being 16 ft. The north side columns have a length of 9.5 ft, while the south side columns have a length of 8.5 ft. The columns are anchored to the deck, with an 8 by 12-inch section being cut from the bathroom structures composite roof deck and filled with normal weight concrete. The calculations for the columns are shown in Appendix F. Girder details and elevations are shown on sheet S3.01.

SECTION VII Engineer's Cost Estimate

STAGE															
Line Number	Item	Quantity	Unit	Unit Price	Material		Labor		Total	Сс	ontingency		O & P		Total
B2010 130 5200	Brick Veneer/Metal Stud Backup	1100	SF	Ś 7.30	\$ 8.030.00	Ś	21.285.00	Ś	29.315.00	Ś		Ś	5.863.00	Ś	38,109,5
B2010 132 1200	Brick Face Composite Wall - Double Wythe	1310	SF	\$ 10.90	\$ 14.279.00	Ś	32.750.00	Ś	47.029.00	Ś	4,702.90	Ś	9,405.80	\$	61,137.7
	A992 Steel	2.17	ton	\$1,500.00	\$ 3,255.00	Ś	7,595.00	Ś	10,850.00	Ś	1,085.00	Ś	2,170.00	ŝ	14,105.0
	A36 Steel Plate (8x18x0.5)	5	each	\$ 50.00	\$ 250.00	Ś	125.00	Ś	375.00	Ś	37.50	Ś	75.00	Ś	487.5
	A36 Steel Plate (4x8x0.5)	5	each	\$ 19.00) \$ 95.00	Ś	125.00	Ś	220.00	Ś	22.00	Ś	44.00	Ś	286.0
	Box Trusses	12	each	\$ 300.00	\$ 3,600.00	Ś	3,600.00	Ś	7,200.00	Ś	720.00	Ś	1,440.00	ŝ	9,360.0
C2010 110 0470	Cast-in-place stairs	0.58	flight		\$ 875.00	Ś	1.472.92	\$	2.347.92	\$	234.79	Ś	469.58	\$	3.052.2
A1030 120 4480	Concrete Slab on Grade	1080	SF	\$ 3.59		Ś	3,769.20		7,646.40	Ś		Ś	1,529.28	ŝ	9,940.
A1010 105 1780	Foundation Walls	190	LF	\$ 35.00	\$ 6,650.00	\$	12.255.00	\$	18,905.00	\$	1.890.50	Ś	3,781.00	\$	24,576.
A1010 210 7200	Isolated Footing	2	each	\$ 68.00		Ś	266.00	Ś	402.00	Ś	40.20	Ś	80.40	ŝ	522.
	Metal Deck	880	SF	\$ 12.00		ŝ		Ś		Ś		Ś	2.816.00	ŝ	18,304.0
	Metal Seam Sheet	880	SF	\$ 11.60	\$ 10,208.00	Ś	5.764.00	Ś	15,972.00	Ś	1.597.20	Ś	3,194.40	Ś	20,763.
	Aluminum Railing	74	LF	\$ 110.00		Ś	5,920.00	Ś		Ś		Ś	2,812.00	\$	18,278.0
A1010 110 4700	Strip Footing	200	LF	\$ 39.00	\$ 7,800.00	\$	7,600.00	\$	15,400.00	\$	1,540.00	\$	3,080.00	\$	20,020.0
									,						, i
	Subtotal							\$	183,802.32	\$	18,380.23	\$	36,760.46	\$	238,943.0
ESTROOM PHASE :	1 Foundation Walls	240	LF	\$ 35.00) \$ 8.400.00	Ś	15.480.00	Ś	23.880.00	Ś	2,388.00	Ś	4.776.00	Ś	31.044.
A1010 110 3300	Strip Footing	240	LF	\$ 39.00		ې S	9,120.00	ې غ	-	ې غ	1,848.00	ŝ	3,696.00	\$ \$	24,024.
D2010 110 2120	Water Closet Systems, Floor Mount	240	each	\$ 885.00	+ -/	ې \$				ې \$		ş Ś		ې \$	20,533.
D2010 110 2120 D2010 210 2000	Urinals	4		\$ 600.00		s S	3,620.00	ş Ş	6,020.00	Ş Ş		ş Ş	3,159.00 1,204.00	\$ \$	7,826.
D2010 210 2000	Sinks	4	each	1.1			1 C C C C C C C C C C C C C C C C C C C			ې \$	722.00	ş Ś		ې \$	
D2010 310 2040 D2010 810 1920		4	each	1.00		\$			7,220.00	ş Ş		ş S	1,444.00	ş Ş	9,386. 4,888.
C1030 110 400	Drinking Fountains Toilet Partitions, Painted Metal	2	each each	\$ 1,350.00 \$ 615.00		\$ \$			3,760.00 8.370.00	ş S		ş Ś	752.00 1.674.00		
C1030 110 400	Toilet Partitions, Plastic Laminate	3	each	\$ 227.00	1 A A A A A A A A A A A A A A A A A A A	ې S	2,835.00		1,149.00	ş Ş		ş S	229.80	\$ \$	10,881. 1,493.
C1030 110 1330		3 4	each	\$ 227.00		ş Ş	468.00 624.00		1,149.00	\$ \$		ş Ş	324.80	\$ \$	2,111.
02020 220 2250	Hand Dryer	4								ş Ş		ş Ś			
B2030 220 3350	Exterior Doors	3 1	each	\$ 2,500.00		\$ \$	-		8,550.00	ş Ş		ş Ş	1,710.00	\$ \$	11,115. 2,190.
C1020 102 5000	Garage Door	1	each	1.00		ş S	895.00	- 1	1,685.00	s s		ş Ś	337.00	ş Ş	2,190. 822.
B2020 106 6700 B2010 132 1200	Exterior Windows 3rick Face Composite Wall - Double Wythe	1581	each SF	\$ 395.00 \$ 10.90		ş Ş	238.00 39.525.00	ş Ş	633.00 56.757.90	ş Ş	63.30 5.675.79	ş S	126.60 11,351.58	1.1	822. 73,785.
B2010 152 1200		99		- C			988.13					ş Ś		\$	7,707.
	Rigid Insulation, 3"	99 1362	each LF	\$ 50.00 \$ 2.00		\$ \$		\$ \$	5,928.75 16,344.00	\$ \$		ş Ş	1,185.75 3,268.80	\$ \$	21,247.
	Spray Foam Insulation, 2.5"	1362	each	\$ 2.00			450.00			\$ \$	1,634.40	ş Ş	3,268.80	\$ \$	1,247.
	A36(Length of wall, 10'x8"x0.5")	18	each pack	\$ 30.00		\$ \$	450.00	- 1	990.00 340.00	s S	99.00 34.00	ş Ś	68.00	ş Ş	1,287. 442.
	0.75" Screws(200 count)	4	pack each	\$ 240.00		s S	100.00		340.00 628.00	s S	34.00 62.80	ş Ş	125.60	ş Ş	442 816
B3010 610 0050	Liquid Applied Waterproofing Membrane Gutters	4 80	each LF	\$ 132.00	• • • • • • • • • • • • • • • • • • • •	ş S	488.00		752.80	s S	62.80 75.28	ş Ś	125.60	ş Ş	810. 978.
B3010 610 0050 B3010 620 0100		80 20	LF	\$ 3.3		Ş Ş			102.00	s S	10.20	ş Ś	20.40	ş Ş	978
	Downspouts		LF									ş Ş			
B3010 420 2800	Roof Edge, Sheet Metal	202		\$ 18.50		\$			6,120.60	\$			1,224.12	\$	7,956.
B1010 217 3700	Cast in Place Slab, One Way	1613	SF	\$ 6.90		\$		\$		\$		\$	5,564.85	\$	36,171.
C1010 102 2000	Cocrete Block Paritions - Regular Weight	545	SF	\$ 3.13	+ -/	\$	4,305.50		6,011.35	\$		\$	1,202.27	\$	7,814.
2111-8174100	Subgrade	1362	SF	\$ 11.02		\$	-	\$		\$		\$	3,952.52	\$	25,691
50 17 11 0500	MEP (Mixed Use)	1362	SF	\$ 30.00	1 N N N N N N N N N N N N N N N N N N N	\$		\$		\$		\$	13,620.00	\$	88,530.
A1030 120 4480	Concrete Slab on Grade	1362	SF	\$ 3.59	\$ 4,889.58	\$	4,753.38	\$	9,642.96	\$	964.30	\$	1,928.59	\$	12,535.
	Subtotal							ć	292.591.23	ć	29,259.12	Ś	58.518.25	Ś	411.412.
	Subtotal							Ş	292,391.23	Ş	23,233.12	Ş	38,318.25	Ş	411,412.

RESTROOM PHASE	2												
A1010 110 3300	Strip Footing	175	LF	\$ 39.00	\$ 6,825.00	\$ 6,650.00	\$	6,825.00	\$	3,962.62	\$	7,925.24	\$ 18,712.86
	Foundation Walls	167	LF	\$ 35.00	\$ 5,845.00	\$ 10,771.50	\$	16,616.50	\$	1,661.65	\$	3,323.30	\$ 21,601.45
	Railing	319	LF	\$ 110.00	\$ 35,090.00	\$ 25,520.00	\$	60,610.00	\$	6,061.00	\$	12,122.00	\$ 78,793.00
B1010 217 2800	Cast in Place Slab, One Way	770	SF	\$ 5.30	\$ 4,081.00	\$ 7,815.50	\$	11,896.50	\$	1,189.65	\$	2,379.30	\$ 15,465.45
B2010 130 5200	Brick Veneer/Metal Stud Backup	1740	SF	\$ 7.30	\$ 12,702.00	\$ 33,669.00	\$	46,371.00	\$	4,637.10	\$	9,274.20	\$ 60,282.30
B2010 132 1200	3rick Face Composite Wall - Double Wythe	1740	SF	\$ 10.90	\$ 18,966.00	\$ 43,500.00	\$	62,466.00	\$	6,246.60	\$	12,493.20	\$ 81,205.80
	Subtotal						\$	204,785.00	\$	23,758.62	\$	47,517.24	\$ 276,060.86
RESTROOM PHASE	3												
	Metal Deck	1576	SF	\$ 12.00	\$ 18,912.00	\$ 48.00	\$	18,960.00	\$	1,896.00	\$	3,792.00	\$ 24,648.00
	Solar Panels	40	each	\$ 350.00	\$ 14,000.00	\$ 8,750.00	\$	22,750.00	\$	2,275.00	\$	4,550.00	\$ 29,575.00
C1010 102 2000	Cocrete Block Paritions - Regular Weight	272.5	SF	\$ 3.13	\$ 852.93	\$ 2,152.75	\$	3,005.68	\$	300.57	\$	601.14	\$ 3,907.38
B3010 135 5000	Standing Seam Formed Metal	1576	SF	\$ 11.10	\$ 17,493.60	\$ 64.38	\$	17,557.98	\$	1,755.80	\$	3,511.60	\$ 22,825.37
	Connections(Plate and Screw)	40	each	\$ 30.00	\$ 1,200.00	\$ 750.00	\$	1,950.00	\$	195.00	\$	390.00	\$ 2,535.00
	Refridgerator	1	each	\$ 3,000.00	\$ 3,000.00	\$ 890.00	\$	3,890.00	\$	389.00	\$	778.00	\$ 5,057.00
D2010 310 2040	Sink	1	each	\$ 915.00	\$ 915.00	\$ 890.00	\$	1,805.00	\$	180.50	\$	361.00	\$ 2,346.50
	A992 Steel	1.83	ton	\$ 1,500.00	\$ 2,746.88	\$ 6,409.38	\$	9,156.25	\$	915.63	\$	1,831.25	\$ 11,903.13
	Subtotal						Ş	79,074.91	Ş	7,907.49	Ş	15,814.98	\$ 102,797.38
SITE													
	Lighting	7	each	\$ 200.00	\$ 1,400.00	\$ 24.43	\$	1,424.43	\$	142.44	\$	284.89	\$ 1,851.76
2610-0000120	Trees	3	each	\$ 470.00	\$ 1,410.00	\$ 300.00	\$	1,710.00	\$	171.00	\$	342.00	\$ 2,223.00
2552-0000140	Excavation for Tree Growth	75	CY	\$ 35.00	\$ 2,625.00	\$ 1,500.00	\$	4,125.00	\$	412.50	\$	825.00	\$ 5,362.50
2107-0425020	Fill	375	CY	\$ 23.00	\$ 8,625.00	\$ 1,308.75	\$	9,933.75	\$	993.38	\$	1,986.75	\$ 12,913.88
2552-0000140	Cut	82	CY	\$ 35.00	\$ 2,870.00	\$ 286.18	\$	3,156.18	\$	315.62	\$	631.24	\$ 4,103.03
	New Benches	3	each	\$ 1,000.00	\$ 3,000.00	\$ 600.00	\$	3,600.00	\$	360.00	\$	720.00	\$ 4,680.00
	Picnic Tables	6	each	\$ 1,000.00	\$ 6,000.00	\$ 1,200.00	\$	7,200.00	\$	720.00	\$	1,440.00	\$ 9,360.00
2401-6745650	tructure Removal(Sculpture, tables, kiosk	2	each	\$ 350.00	\$ 700.00	\$ 500.00	\$	1,200.00	\$	120.00	\$	240.00	\$ 1,560.00
2510-6745850	Pavement Removal	47	SY	\$ 11.00	\$ 517.00	\$ 164.03	\$	681.03	\$	68.10	\$	136.21	\$ 885.34
2111-8174100	Subgrade	2888	SF	\$ 11.00	\$ 31,768.00	\$ 10,079.12	\$	41,847.12	\$	4,184.71	\$	8,369.42	\$ 54,401.26
A1030 120 4480	Concrete Slab on Grade	2888	SF	\$ 3.59	\$ 10,367.92	\$ 10,079.12	\$	20,447.04	\$	2,044.70	\$	4,089.41	\$ 26,581.15
	Subtotal						\$	20,447.04	\$	2,044.70	\$	34,879.89	\$ 123,921.92

STAGE, PHASE 1, AND SITE TOTAL	\$	774,500.00
STAGE, PHASE 1 AND 2, AND SITE TOTAL	<u></u> \$:	1,050,500.00
ALL PHASES AND SITE TOTAL	Ś	1,153,500.00

SECTION VIII Appendix A: Bibliography

ACI 318–19 Building Code Requirements for Structural Concrete. American Concrete Institute, June 2019

ADA Accessibility Details: Based on 2010 ADA. Builders Book, Inc., 2014.

International Building Code @ 2018. International Code Council, Inc., 2018.

- International Energy Conservation Code® 2021. International Code Council, Inc., 2021
- Iowa Statewide Urban Design and Specifications 2023 Edition. Iowa State University, 2023
- Market, H. & B. (n.d.). *Hohmann & Barnard, Inc., we anchor the world!* Hohmann & Barnard, Inc., We Anchor the World! Retrieved April 7, 2023, from https://www.h-b.com
- Minimum Design Loads and Associated Criteria for Buildings and Other Structures: ASCE/SEI 7-22. American Society of Civil Engineers, 2022.

Nucor Vulcraft. Vulcraft Steel Roof & Floor Deck Manual, 2018.

"Simpson Strong-Tie." *Simpson Strong-Tie Site*, Retrieved April 7, 2023, from https://www.strongtie.com/.

Square Foot Costs with RSMeans Data 2019 40th Annual Edition. Gordian, 2019.

Steel Construction Manual. American Institute of Steel Construction, 2022.

TEK Index. National Concrete Masonry Association, 2023.

8" x 8" Ultra lite box " applied electronics. (n.d.). Retrieved April 7, 2023, from https://www.appliednn.com/products/8x8-ultra-lite-box/

Appendix B: Design Renderings and Models

PHASE ONE

Figure 8B.1. Phase One overall site design - S Main St view

Figure 8B.2. Phase One overall site design - Person point of view

Figure 8B.3. Phase One overall site design with trees omitted.

Figure 8B.4. Stage design for all phases - Angled view

Figure 8B.5. Stage design for all phases – Front view

Figure 8B.6. Stage design for all phases - Side view

Figure 8B.7. Phase One restroom structure – Front view

Figure 8B.8. Phase One restroom structure - Side view

Figure 8B.9. Phase One restroom structure - Back view

PHASE TWO

Figure 8B.10. Phase Two overall site design with trees omitted

Figure 8B.11. Phase Two restroom structure - Front angled view

Figure 8B.12. Phase Two restroom structure – Back side view

PHASE THREE

Figure 8B.13. Phase Three overall site design - S Main St and E Pleasant St intersection view

Figure 8B.14. Phase Three overall site design with trees omitted

Figure 8B.15. Phase Three overall site design – Back aerial view from E Pleasant St

Figure 8B.16. Phase Three restroom structure - Front view

Figure 8B.17. Phase Three restroom structure - Front angled view

Figure 8B.18. Phase Three restroom structure – Back angled view

Figure 8B.19. Phase Three restroom structure - Occupiable roof view

Figure 8B.20. Phase Three restroom structure - Concession stand view

PHASE THREE AT NIGHT

Figure 8B.21. Nighttime Phase Three overall site design - S Main St view

Figure 8B.22. Nighttime Phase Three overall site design - From north looking south view

Figure 8B.23. Nighttime Phase Three overall site design - Northeast parking lot view

Figure 8B.24. Nighttime Phase Three restroom structure - Occupiable roof view

FLOORPLAN MODELS

Figure 8B.25. Phase One floorplan

Figure 8B.26. Phase Two floorplan

Figure 8B.27. Phase Three floorplan

UOKETA GREENSPACE REDEVELOPMENT STAGE CALCULATION REPORT:

LOAD CALCULATIONS:

bad Parameters:		
osure Category:	В	(ASCE 7-22: Section 26.7.3)
Category:	п	(ASCE 7-22: Table 1.5-1)
ortance Factor:	<i>I</i> := 1	(ASCE 7-22: Table 1.5-2)
c Wind Speed:	$V \approx 108 \ mph$	(ASCE 7-22: Figure 26.5-1B)
d Directionality Factor:	$K_d \coloneqq 0.85$	(ASCE 7-22: Figure 26.6-1)
graphic Factor:	$K_{zt} \coloneqq 1$	(ASCE 7-22: Section 26.8.1)
nd Elevation Factor:	$K_e \coloneqq 1$	(ASCE 7-22: Table 26.9-1)
Effect Factor:	<i>G</i> ≔ 0.85	(ASCE 7-22: Section 26.11.1)
osure Classification:	Building Open	(ASCE 7-22: Section 26.2)

DESIGN WIND PRESSURES FOR THE ROOF

bof	Hei	ght:											
		0	<i>in</i> 1	7 ft 2 ii	9	. \			c				
1.	20	ft + 3	111 + 1	7 <i>ft</i> + 2 <i>ir</i>	ι÷	ın	= 18 	.638 J	t		(H	leight Modele	ed on Revit)
2		4			16	/							

Pressure Exposure Coefficient:	$K_h \coloneqq 0.61$	(ASCE 7-22: Table 26.10-1)

Pressure:

	$\cdot K_h \cdot K_{zt} \cdot K_d \cdot V^2 \cdot I = 15.4823 \ psf$	(ASCE 7-22: Equation 26.10-1)
mph ²		
from the east:		
80		

angle is <7.5%, use values for 0%... which means wind loads will be a horizontal projection

1.2	Net pressure coefficient			(ASCE	7-22: Fig	gure 27.3-4)

$a_h \cdot K_d \cdot G \cdot C_N = 13.4232 \ psf$

DESIGN WIND PRESSURES FOR THE WALLS:

7 "16'1–1/2" = 16.125 *ft*

Pressure Exposure Coefficient: $K_z \coloneqq 0.58$ (ASCE 7-22: Table 26.10-1)

Pressure:

 $0.00256 \frac{psf}{mph^2} \cdot K_z \cdot K_{zt} \cdot K_d \cdot V^2 \cdot I = 14.7209 \ psf$ (ASCE 7-22: Equation 26.10-1) q_z

Loads EW:

Pressure Coefficients	$GC_{pi_l} \coloneqq 0.18$	<i>GC_{pi_2}</i> = -0.18	(ASCE 7-22: Section 26	5.13; Table 26.13-1)		
ssure Coefficients	$C_{p_WW} \coloneqq 0.8$	$C_{p_SW} = -0.7$	Wall Pressure Coeffic	cients, Cp		
			Surface	L / B	C_p	Use with
	$L \coloneqq 3.25 ft$	$B \coloneqq 32.5 ft \qquad \begin{array}{c} L \\ = 0.1 \\ B \end{array}$	Windward wall	All values	0.8	q_z
	<i>C_{p LW}</i> ≔–0.5			0-1	-0.5	q_h
			Leeward wall	2	-0.3	q_h
				≥4	-0.2	q_h
$K_d \cdot G \cdot C_p - q_i \cdot K_d \cdot$	$(\langle GC_{pi} \rangle)$		Sidewall	All values	-0.7	q_h
			Parapet	All values	See Section 27.3.4 for GC_{pn}	q_p
			(ASCE 7-22: Table 27.3)-1)		
$q_z \cdot K_d \cdot G \cdot C_{p_WW}$	$\cdot q_i \cdot K_d \cdot (\langle GC_{pi_l} \rangle)$)) = 6.2564 <i>psf</i>				
$q_h \cdot K_d \cdot G \cdot C_{p_LW}$ -	$q_i \cdot K_d \cdot (\langle GC_{pi_l} \rangle)$) = -7.8453 psf				
$q_h \cdot K_d \cdot G \cdot C_{p_SW} - q$	$V_i \cdot K_d \cdot (\langle GC_{pi_l} \rangle)$	=-10.0825 <i>psf</i>				
$q_z \cdot K_d \cdot G \cdot C_{p_WW}$ -	$q_i \cdot K_d \cdot (\langle GC_{pi_2} \rangle)$) = 10.761 <i>psf</i>				
$q_h \cdot K_d \cdot G \cdot C_{p_LW}$ -	$q_i \cdot K_d \cdot (\langle GC_{pi_2} \rangle)$) =-3.3407 <i>psf</i>				
$q_h \cdot K_d \cdot G \cdot C_{p_SW} - q_b$	$V_i \cdot K_d \cdot (\langle GC_{pi_2} \rangle)$	=-5.5779 <i>psf</i>				
$= p_{WW2} = 10.761 p_s$	sf Dnegatis	$v_{ve} \coloneqq p_{SWI} = -10.0825 \ psf$	· · · · · · · · · · · · · · · · · · ·			
· · · · · - · · · · · · · · · · · · · ·						
Loads NS:						
Pressure Coefficients	$GC_{pi_l} \coloneqq 0.18$	$GC_{pi_2} = -0.18$				

ressure coefficients	$0 C_{pl_1} = 0.10$	$0 C p_{l_2^2} = 0.10$
ssure Coefficients	$C_{p_{-WW}} \coloneqq 0.8$	$C_{p_SW} \approx -0.7$
	L = 32.5 ft B	
	$L \approx 32.5 ft$ b	$5 = 3.25 \pi = 10$

NOW LOAD CALCULATIONS:

load: use the horizontal projection

al area:	<i>L</i> ∣≔ 33.9271 <i>ft</i>	$W \coloneqq 26 ft$	$A \coloneqq L \cdot W = 882.1046 ft^2$	
	0	J. J		
psf	ground snow load			

oad Parameters:

e Category:	Fully Exposed	(ASCE 7-22: Table 7.3-1 footnotes)
Roughness:	B	(ASCE 7-22: Section 26.7.2)
e Factor:	$C_e \coloneqq 0.9$	(ASCE 7-22: Table 7.3-1)
Factor:	$C_t \coloneqq 1.2$	
	$C_s \coloneqq 1$	(ASCE 7-22: Table 7.3-2)
ctor		(ASCE 7-22: Table 7.4-1c)
tegory:	II	(ASCE 7-22: Table 1.5-1)
n Snow Load:	$p_{m_max} \coloneqq 30 \ psf$	(ASCE 7-22: Table 7.3-4)
$n(\langle p_g, p_{m_{max}} \rangle) = 25 \ psf$		(ASCE 7-22: Section 7.3.3)
$\cdot C_e \cdot C_t \cdot p_m = 18.9 \ psf$	(flat roof snow load)	(ASCE 7-22: EQ 7.3-1)
$C_s \cdot p_f = 18.9 \ psf$	(sloped roof snow load)	(ASCE 7-22: EQ 7.4-1)
DECK:		
Jniform Load:		22 Gage 1.5B-36 Grade 50 Uniform Design Load Table, LRFD (psf)
psf		For End Lapped Deck 36 / 4 Connection Pattern to Supports with Support Member A992 GR50
$now = 18.9 \ psf$		#12 Screw 0.21 ≤ t ₂ (in.) ≤ 0.5
=13.4232 <i>psf</i>		↑ ↑ ↑ ↑ ↑ ↑ Outward -or- -or- ↓ ↓ ↓ ↓ ↓ ↓
		1.5B-36 Roof Deck
$(1.6I \text{ or } 1.0S \text{ or } 1.6R) \pm (I.c)$	Load Combinations	$ \rightarrow 4.00 \leftarrow \rightarrow 4.00 \leftarrow $

N GRADE:		
Occupancy **	Min. Slab Thickness	Reinforcement ‡
bs under other slabs	2"	None
tic or light commercial d less than 100 psf)	4"	One layer 6 x 6 10/10 welded wire fabric, minimum for ideal conditions: 6 x 6 8/8 for average conditions.
ercial—institutional—barns d 100-200 psf)	5″	One layer 6 x 6 8/8 welded wire fabric or one layer 6 x 6 6/6.
rial (loaded not over 400-500 d pavements for industrial gas stations, and garages	6"	One layer 6 x 6 6/6 welded wire fabric or one layer 6 x 6 4/4.
$oors \coloneqq 150 \ psf$ (ASCE 7-22: $\cdot LL_{stagefloors} = 240 \ psf$	Table 4.3-1)	
	well as the ran	np. One layer of 6x6 6/6 welded wire fabric will be used for reinforcement
ATING FOR ROOF:		
ck fire rating: 1.5 hours		
fire rating: none		

USS:

ww.appliednn.com/ /8x8-ultra-lite-box/

DESIGN:

or flexure, deflection, and shear at supports)

 $ft \qquad q_{roof} = 3 \ psf$

ction: <u>W10x12</u>

	•									•			
					*				71.69	•	• •		
				£					197				
				4				2586.54				0.00	
								-258	3805.2				
									-38				
omono fo	or an interior	mofham (lhf)	-				1				11	
		1001 beam (i											
¥.			•/1 - 13									0	
			*	. !		A				*:		0.7959	
2								N				0 	
								428				ZN,	
•		*	•	2				Ŷ			/		
				358				ZN		A			
			18 8		• •			/		*			
				ZN	• • •							· 11	
on diagra	am for an int	erior roof be	am (in.)										
paramet	ters for a W1	0x12 beam:											
Strength	n due to yield	ling: LTB do	besn't apply	because	$EL_b \leq L_p$								
	-												
_{vable} ≔	$\phi_b \cdot F_y \cdot Z_x$	= 47.25 <i>k</i> i	ip · ft		$M_{max} \coloneqq$	18 <i>kip</i>	• ft	OK					
						-							
le deflec													
le ≔ L 24	, = 1.6964 0	1 <i>in</i>			$\Delta_{max} \coloneqq 1$	1.36 <i>in</i>	1	OK					

NT FRAME	DESIGN						
	DESIGN.						
moment fra	me:						
oads:							
7	1	$V_{max} = 2.0$	in				
$T_{max} = 5.8$	R_{ext}	$t := \frac{V_{max}}{2} = 2.9 k$					
oads NS:	$b_f = 6.49 \ in$	$t_{roof} \coloneqq \begin{bmatrix} 13\\ 12 \end{bmatrix}$	ft				
$= p_{WW2} = 1$	0.761 <i>psf</i>	$p_{negative} = p_S$	$W_{l} = -10.0825$	psf			
$p_{positive} \cdot b_{f}$	= 0.0058 <i>kip</i> <i>ft</i>	$w_{neg} \coloneqq p_{negative}$	$b_{ve} \cdot b_f$ =-0.005	5 kip ft			
1			_ 1				
$f \coloneqq t_{roof}$	$f \cdot L \cdot p_{positive} = 0.19$	78 <i>kip</i>	$P_{roof_neg} \coloneqq$ 2	$\cdot t_{roof} \cdot L \cdot p_{negative}$	_{ive} =-0.1853 <i>kip</i>		
	0.0	I I I I I I I	1 1 1 1 1				
io	0,0 5.	.0	15,0			30.0 .	
		FZ=-5.14	FZ=-5.14	FZ=5.14			
	FX=0.20				FX=0.18		
	FZ=-2.57				FZ=-2.57		
· · · [· · · · · ·		<u></u>	1 2 1 a 1 a 1	· · · ·		
9 A 8 🕂			8 8 8 8 8 8	A A A V V P	· · · · ·	v a <mark>a</mark> a u	A VVUAAC
					• • • • • • • •		
	x=0.01				pX=0.01		
				MARA AL			A A B V B B
							N N N N A A ST
			a ar 10 13 13		i i 🗖 📩 i i i i i		· · · · · 8-
	🚔 1 1 1 1 1						
🗖				****			
· · · +	<u></u>			1 2 3 4 4 10 1	·		
<u>L</u>					· · · · · · ·		
							↓ kip/ft
i ^o i i i	i ^e ri i i i i i	1 ⁹⁰ ; ; ; ¹ 90	i i i i ¹ 90	;;;; ² 1°;	i i i ² 1º i i	; ³ 90 ;	Cases: 4 (COMB1) 30.0
R DESIGN (CAPACITIES:						
000 <i>ksi</i>	$F_y \coloneqq 50 \ ksi$	$L \coloneqq 24 ft$	$\phi_b \coloneqq 0.9$	$L_b \coloneqq 6 ft$			

COLUMN DESIGN CAPACITIES (A3 and C3):

y drift

.348 *in*

N SIZE: W12x26

Strengt	ths																											
Suchg																												
						÷																						•
47						2	.00] ·								2.00	0		11	.04								· ·
	2		- 12 - 12			-	-			1.0					_													15.0
* *																			. ,									
2																												
8																												
*																												10.0
*																												
																												5.0
05	2																		11	.62	 		. L	F	x+c lax= lin-	Fx =11	-t 21 .62 0	(ip
											*																	
· •	n xz	Y = 0.00). Dft		5 0			A 🔻		10.0			15.0				20	.0				2		ses	5:4	(CC	OMB	(1) . View
ce diag	ram foi	r the	morr	ent f	rame																							
= 527	kip					OK																						
$e_c = 48$	80.31	49 k	cip			ОК																						
7.90																						•						
-1.8	0			4																2.	18							
-				-	-				+					-		4			+									15.0
																					<mark>-8.4</mark>	7						
																		(*)	•									
																												-

																			-32	.23			
5.42		4																		32.2	3		-
			-	•		•	*	35	. 72							-							10.0
																					• •	•	
								•									•						
							*					*						•					
								•															
			·					*);	*														• •
																							0.0
			,					•				*										•	
								*															
-0.00																			-0.0	0	с N	MV 20	kinft
																		. ,			N	lax=3	kipft 5.72 32.23
											с		*				3				N	/lin=-3	2.23
												1						4		Cas	es 4	(COM	(B1)
∩ x7 ¥=0.00 #	5 0				, 1	0.0	1			15	.0	i.			20.0				25.	0		(CON	30.0
noment diagram	n for the r	nomen	t fran	ne																			
=213.75 <i>kip</i> ·	ft		OK																				
190.791 <i>kip</i>	· ft		OK																				
J = 0.0880		LI:= (0.234	19							•	·П	= 0 3	2237	7		. L	J = 0.	0863				1.5
J = 0.0880		U =	0.234	49	• •	· ·	U	= 0.3	3302		•	U	= 0.2	2237	7			J = 0.	0863	1	· ·		15.0
J = 0.0880		U = (0.234	49	• •	· ·	U	= 0.3	3302		•	U	= 0.2	2237	7	•		J = 0.	0863	- - -	• •		15.0
J = 0.0880		U = (0.234	49	•	· ·	۰ U ۰	= 0.(3302	•	•	U	= 0.2	2237	7	•		J = 0.	0863		· ·		15.0
J = 0.0880		U =	0.234	49		· · ·	- U - - - - - - - - - - - - - - - - - -	= 0.(3302	-	•	U	= 0.2	2237	7	•		J = 0.	0863				15.0
J = 0.0880		U = (0.234	49	· · ·	· · ·	- U - - - - - - - - - - - - - - 	= 0.(3302		•	U	= 0.1	2237	7	•		J = 0.	0863	• • •	· ·		· ·
J = 0.0880		U =	0.234	49			- - - - - - - - - - - - - - - - - - -	= 0.3	3302			U	= 0.:	2237	7	•		J = 0.	0863				15.0 10.0

d axial load and mom	ent check (NOT INCLUDING OUT-	-OF-PLAIN MOMENT):
$\frac{P_r}{P_c} \ge 0.2$		
	$\left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}}\right) \le 1.0$	
$\frac{P_r}{P_c} < 0.2$		
	$\left(\frac{M_{rx}}{M_{cx}} + \frac{M_{ry}}{M_{cy}}\right) \le 1.0$	For design according to Section B2.1 (LRED):
$owable_c \qquad P_r \coloneqq$	11.67 <i>kip</i>	For design according to Section B3.1 (LRFD): P_r = required axial strength, determined in accordance with Chapter C, us
M_{n_c} $M_r \coloneqq$	33 kip · ft	LRFD load combinations, kips (N) $P_c = \phi_c P_n$ = design axial strength, determined in accordance with Chapter kips (N)
243 Use (b)		M_r = required flexural strength, determined in accordance with Chapte using LRFD load combinations, kip-in. (N-mm) $M_c = \phi_b M_n$ = design flexural strength determined in accordance with Chapt
$\binom{M_r}{M_c} = 0.1851$	ОК	kip-in. (N-mm) ϕ_c = resistance factor for compression = 0.90
(<i>M_c</i>)		ϕ_b = resistance factor for flexure = 0.90
$P_n g \qquad P_r \coloneqq$	2 <i>kip</i>	For design according to Section B3.1 (LRFD):
M_{n_g} $M_r \coloneqq$	2 kip 36 kip · ft	P_r = required axial strength, determined in accordance with Chapter C, u LRFD load combinations, kips (N)
		$P_c = \phi_t P_n$ = design axial strength, determined in accordance with Section kips (N)
038 Use (b)		M_r = required flexural strength, determined in accordance with Chapter C, u LRFD load combinations, kip-in. (N-mm)
$\binom{M_r}{=} 0.1703$	ОК	$M_c = \phi_b M_n$ = design flexural strength, determined in accordance with Chapter kip-in. (N-mm)
(M_c)		ϕ_t = resistance factor for tension (see Section D2) ϕ_b = resistance factor for flexure = 0.90

eria:				
mess:	$t_{cmu} \coloneqq FIF$ "8"	$t_{brick} \coloneqq FIF$ "4"	$t_{air} \coloneqq FIF$ "1" USE SOLID GROUT	
ght:	$\gamma_{fill} \coloneqq 120 \ pcf$	$\gamma_{brick} \coloneqq 120 \ pcf$	$\gamma_{cmu} \approx 130 \ pcf$	$\gamma_{conc} \coloneqq 150 \ pcf$
afety:	$FS_{overturning} \coloneqq 1.5$	$FS_{sliding} \coloneqq 1.5$	$FS_{bearing} \coloneqq 3$	
wall:	$H_{total} \coloneqq FIF$ "7' "	$H_{wall} \coloneqq FIF$ "4"	" Need an extra	1 3 ft of height due to frost line
s of footing/	<i>tg</i> ≔ <i>FIF</i> "1' 8""	$t_s \coloneqq 6 in$		
ooting:				
ooting:	$B \coloneqq FIF ``3' 8''$ $D_f \coloneqq 3 ft + t_f \qquad D$	UE TO FROST LINE AT 4 ft		
th Pressure:				
$K_a \coloneqq$	$\tan\left(\frac{\pi}{4} - \frac{\phi'}{2}\right)^2 = 0.3333$			
y _{fill} · (∖H _{tota}	$(t+t_f)^2 \cdot K_a = 1.5022 $ ft			
ng Moment:				
$P_a := P_a \cdot$	$ \begin{array}{c} (H_{total} + t_f) \end{pmatrix} & kip \cdot f \\ \hline 3 & = 4.3398 \\ 3 & ft \end{array} $	t		
Moment:				
t weights:				moment arms:
И	$T_m := (\langle t_{cmu} \rangle) \cdot (\langle H_{wall} \rangle) \cdot \gamma_{cmu}$	- $\left(\left(t_{brick} \cdot \left(\left(H_{wall}\right)\right) \cdot \gamma_{brick}\right)\right)$ =	=0.5067 <i>kip</i> <i>ft</i>	$r_m \coloneqq \frac{B}{2} = 1.8333 ft$
И	$V_e \coloneqq \begin{pmatrix} B \\ 2 \end{pmatrix} - \begin{pmatrix} 0.5 \cdot (t_{cmu} + t_{brick}) \end{pmatrix}$	$(j) = \frac{1}{2} \left(\frac{1}{2} 1$	ip ft	$r_{e} \coloneqq B - 0.5 \left(\begin{matrix} B \\ -0.5 \\ 2 \end{matrix} \right) \left(\begin{matrix} t \\ -t \end{matrix} \right) \left(\begin{matrix} t \\ brick \end{matrix} \right) \right)$
wall: <i>W</i>	$V_{wall} \coloneqq \left(\left(t_{brick} + t_{cmu} + t_{air} + 1 \right) \right)$	in) · (($H_{total} - H_{wall}$)) · γ	$v_{conc} = 0.525 \frac{kip}{ft}$	$r_{wall} \coloneqq \frac{B}{2} = 1.8333 \ ft$
				B = 1.8333 ft

Pressure:
10 psf

$$2W + LL$$
 $\left(\frac{B}{2} - \frac{t_{erral}}{2}\right)_{= 933,0909} psf$
 B
aspacity:
's continuous foundation equation:
psf
 $\phi \cdot \frac{180}{\pi} = 51.5662 B = 3.6667 ft$ $y' = y_{DH} = 120 pcf$
 2 $N_q = 22.5$ $N_r = 20.1$
 $D_r \cdot y_{AH} = 560 psf$
 $\therefore N_c + \alpha'_{2D} \cdot N_q + 0.5 \cdot y' \cdot B \cdot N_r = 17022 psf$
 $Aud = -18.126$
grave
 $\Rightarrow FS_{boorning}$ OK
OK
or Settlement Failure: Boussinesq's Simple Flastic Settlement method
 $VH = -20 \circ 0^{-1} B - 3.6667 ft$ $H = 5 \cdot B - \mu_r = 0.3 \quad \alpha = 4$ (Footing Center) $E_r = 750 \frac{rouf}{f^2}$ $\delta_{out} = 0.5 \ln \frac{1}{f^2}$
 $\frac{L}{2} = 0.5 ft$ $B' = \frac{B}{2} = 1.8333 ft$
 $\frac{L'}{B'} = 5.4545 N = \frac{H}{B'}$

$$\frac{1}{1} \cdot \left(\frac{1}{M \cdot \ln \left(\left(1 + \sqrt{M^{2} + 1} \right) \cdot \sqrt{M^{2} + N^{2}} \right) + \ln \left(\left(M + \sqrt{M^{2} + 1} \right) \cdot \sqrt{1 + N^{2}} \right) \right)}{1 + \ln \left(M + \sqrt{M^{2} + N^{2} + 1} \right) \cdot \sqrt{1 + N^{2}} \right)} = 0.7624$$

$$\frac{\pi}{1} \cdot \left(\frac{M \cdot \left(1 + \sqrt{M^{2} + N^{2} + 1} \right) - \left(M + \sqrt{M^{2} + N^{2} + 1} \right) \right)}{1 + \ln \left(M + \sqrt{M^{2} + N^{2} + 1} \right)} = 0.7624$$

$$\frac{N}{2} \cdot \pi \cdot \frac{1}{N} \cdot \sqrt{M^{2} + N^{2} + 1} = 0.0759$$

e Correction Factor:

-

$$r \cdot \operatorname{atan} \begin{pmatrix} L \cdot B \\ r \cdot r_{3} \end{pmatrix} = 3.1522 fl$$

$$\beta_{1} \cdot Y_{1} + \beta_{2} \cdot Y_{2} + \beta_{3} \cdot Y_{3} + \beta_{5} \cdot Y_{5}$$

$$\begin{pmatrix} (\beta + \beta_{2}) \cdot Y \\ 1 + \beta_{2} \end{pmatrix} \cdot Y_{1}$$
ing Pressure:
$$s = 939.0909 psf$$

$$= (D_{2}\lambda) \cdot y_{pll} - 560 psf$$

$$= q_{gross} - \sigma'_{so} = 379.091 psf$$
idation Settlement:
$$\begin{pmatrix} q - ((1 - \mu^{-k})) \\ K \\ K \end{pmatrix}$$

$$he = 0.012 in$$

$$r = 0.93 \cdot \delta_{Reribbe} = 0.011 in$$

$$OK$$

$$r = 0.93 \cdot \delta_{Reribbe} = 0.011 in$$

$$OK$$

$$r = 0.93 \cdot \delta_{Reribbe} = 0.011 in$$

$$OK$$

$$r = 0.93 \cdot \delta_{Reribbe} = 0.011 in$$

$$r = 0.93 \cdot \delta_{Reribbe} = 0.011 in$$

$$r = 0.93 \cdot \delta_{Reribbe} = 0.011 in$$

Reinforcement:	Table 2—Strength Design: Vertical Reinforcement for Cantilever Retaining Walls ^{a,b}									
$= K_a \cdot \gamma_{fill} = 40 \ pcf$	Wall thickness, in. (mm) 8 (203)	H, ft (m)	lb/ft²/ft (kN/m²/m), of:							
Image: state	8(203)	4.7 (1.4) 5.3 (1.6) 60(1.8)	No.4 @ 88 in. No.4 @ 56 in. No.4 @ 32 in.	No.4 @ 56 in. No.4 @ 32 in. No.4 @ 24 in.	No.4 @ 40 in. No.4 @ 24 in.					

er Retaining Wall Footing Design for Stage Solid Backwall (East side - grid 5):

riteria:	

ckness:	tcmu:= FIF "8"		$t_{air} = FIF$ "1" USE SOLID GROUT		
ight:	<i>γmt</i> = 120 <i>pcf</i>	<i>Pbrtck</i> = 120 <i>pcf</i>	$\gamma_{cmu} \approx 130 \ pcf$	$\gamma_{conc} = 150 \ pcf$	
safety:	<i>ES_{overturning}</i> = 1.5	$FS_{sliding} = 1.5$	$FS_{bearing} \coloneqq 3$		
f wall:	$H_{wall} = FIF$ "16' "	$H_{total} = FIF "3" +H$	wall $H_s \coloneqq FIF$	' "6' 4"	Need an extra 3 ft of height due to frost lin
s of footing/	$t_f = FIF "1' 8""$	$t_s = 6$ in			
footing:	$B \coloneqq FIF$ "3' 8"				
f Footing:	$D_f = 3 ft + t_f$ DUE	ГО FROST LINE AT 4 ft.			
oads:	$D_{f} \coloneqq 3 \ ft + t_{f} \qquad \text{DUE} T$ $P \coloneqq 2.65 \ kip \qquad P_{beam}$	$= \frac{P}{b_{trib}} = 0.4417 \frac{kip}{ft}$			
oads:					
arth Pressure: $K_a \coloneqq tar$	$n\left(\frac{\pi}{4}-\frac{\phi'}{2}\right)^2=0.3333$				
$\cdot \gamma_{fill} \cdot (\langle H_s + t_f \rangle^2$	$\cdot K_a = 1.28$ ft				
$(p_{positive} - p_{negative})$	$(H_{total} - H_s - t_s) = 0.2$	2536 ft			
ing Moment:					
$\stackrel{(\ H_s}{=} P_a \cdot \frac{1}{3}$	$(+t_f) - (H_{total} - H_s) + P_{wind} + 2$	$-t_{s}$ $+t_{s}+H_{s}+t_{fj} =7.11$	$kip \cdot ft$ 16 ft		
g Moment:					
ent weights:				moment arms:	
r: [₩m]=	$\left(\left(t_{cmu}\right)\right)\cdot\left(\left(H_{wall}\right)\right)\cdot\gamma_{cmu}+\left(\left(2\right)\right)$	$2 \cdot t_{brick} \cdot ((H_{wall})) \cdot \gamma_{brick}) =$	=3.9467 <i>kip</i> <i>ft</i>	$r_m := \frac{B}{2} = 1.8333 ft$	

$$W_{m} + W_{r} + W_{f} + W_{h} + W_{wolf} = 6.9133 \frac{kip}{ft}$$

$$= \frac{2W - \tan \phi'}{P_{a}} = 3.1183 FS_{biolog} = 1.5$$

$$> FS_{statorg} OK$$
Pressure:
$$= 0.0pf$$

$$2W + I.I. - ((B - t_{ons} - 2 t_{brick} - 2 \cdot t_{ab})) + ((H_{oosd} - H_{wall})) + (\frac{B}{2} - \frac{c_{orw}}{2} - t_{brick} - t_{ab}))^{2} \gamma_{BH} - 2061.3636 psf$$

$$= 3pacity:$$
Scontinuous foundation equation:
$$= mf - 18.0667 ft + H_{1} = 5 \cdot B = m_{1} = 0.3 = n - 4 \quad (Footing Center) = E_{2} - 750 \frac{tonf}{ft} = 0.5 m$$

$$= 16.2003 ft = B^{1} - 1.8333 ft$$

$$\int_{A}^{A} = 8.8409 \qquad \qquad N \coloneqq \frac{H}{B'}$$

er Reta	ining V	Wall]	Footin	g Desi	ign for	Stag	e Split	Backy	valls	(East	side -	grid 4):	

riteria:

kness:	$t_{cmu} = FIF$ "8"	$t_{brick} = FIF $ "4"	$t_{air} = FIF$ "1" USE SOLID GROUT		
ght:	$\gamma_{fill} = 120 \ pcf$	$\gamma_{brick} = 120 \ pcf$	$\gamma_{cmu} = 130 \ pcf$	$p_{conc} = 150 \ pcf$	
safety:	$FS_{overturning} = 1.5$	$FS_{sliding} \coloneqq 1.5$	$FS_{bearing} \coloneqq 3$		
f wall:	$H_{wall} = FIF$ "16'"	$H_{total} = FIF$ "3"" +	H_{wall} $H_s \coloneqq FIF$	"6' 4"	Need an extra 3 ft of height due to frost line
s of footing/	<i>€f</i> ^{:=} <i>FIF</i> "1' 10""	$\overline{t_s} \coloneqq 6 in$			
footing:	B = FIF "3' 8" Overde	esigned for consistent footing	size		
Footing:	$D_f = 3 ft + t_f$ DU	JE TO FROST LINE AT 4 ft.			
.oads:					

arth Pressure:

$$K := \tan \left(\frac{\pi}{4} - \frac{\phi'}{2} \right)^2 = 0.3333$$

$$fill \left(s + t \right)^2 = 0.3333$$

$$kip$$

$$K = 1.3339$$

$$ft$$

$$(p_{positive} - p_{negative}) \cdot ((H_{total} - H_s - t_s)) = 0.2536 \frac{kip}{ft}$$

ing Moment: $= P \cdot \left((H_s + t_f) \right) + P_{wind} \cdot \left(H_{total} - H_s - t_s \right) + H_s + t_f = 7.2449$ ft

g Moment:

$$V_{m} + W_{c} + W_{f} + W_{vall} = 5.9967 \frac{kp}{ft}$$

$$= \frac{\Sigma W + \tan \phi' + P_{p}}{P_{e}} = 11.5956 FS_{totore} = 1.5$$

$$> FS_{totore} = 0.5$$

$$Presure: 0 psf$$

$$2W + LL \cdot ((B - t_{cons} + 2 - t_{orick})) = 1885.4545 psf$$

$$B$$
apocity:
s continuous foundation equation:
$$Psf = \phi - \frac{180}{\pi} = 51.5662 B - 3.6667 ft e^{t} = 7.66 - 120 pcf$$

$$2 - N_{p} = 22.5 N_{p} = 20.1$$

$$2 - N_{p} = 22.5 N_{p} = 20.1$$

$$2 - N_{p} = 22.5 N_{p} = 20.1$$

$$2 - N_{p} = 25.667$$

$$N_{e} + 0.5 \cdot \gamma' \cdot B \cdot N_{p} = 17472 psf$$

$$4ut = -9.2667$$

$$roota$$

$$r ettement Failure:$$

$$Th' - 9^{m} = B = 3.6667 ft ft = 5 \cdot B \quad (\mu = 0.3 \quad (\mu = 4 \text{ (Footing Center)}) \quad (E_{p} = 750 \quad \frac{tonf}{ft}) \quad (\mu = 0.5 \cdot t)$$

$$\frac{1}{t} = -4 \int B = \frac{B}{t} = \frac{B}{t} = 1.833 ft$$

Depth Correction Factor, If: $\cdot D_f = 9.6667 ft$ $\sqrt{L^2 + r^2} = 12.5477 \ ft$ $r_2 := \sqrt{B^2 + r^2} = 10.3387 \ ft$ $r_3 := \sqrt{L^2 + B^2} + r^2 = 13.0724 \ ft$ $\overline{r_4} \coloneqq \sqrt{L^2 + B^2} = 8$ $L \cdot \ln \left| \begin{pmatrix} r_4 + B \\ L \end{pmatrix} + B \cdot \ln \left| \begin{pmatrix} r_4 + L \\ B \end{pmatrix} - \frac{r_{4^3} - L^3 - B^3}{3 \cdot L \cdot B} \right| = 7.7639 \text{ ft}$ $\begin{pmatrix} r_3 + B \\ L \cdot \ln \begin{pmatrix} r_1 \end{pmatrix} + B \cdot \ln \begin{pmatrix} r_3 + L \\ r_2 \end{pmatrix} - \begin{matrix} r_{3^3} - r_{2^3} - r_{1^3} + r^3 \\ 3 \cdot L \cdot B &= 4.2737 \text{ ft}$ $\begin{array}{cccc} r^{e} & \left(\left((B+r_{2})\right)\cdot r_{1}\right) & r^{e} & \left(\left((L+r_{1})\right)\cdot r_{2}\right) \\ L & \left(\left(B+r_{3}\right)\right)\cdot r & + & \left(\left(L+r_{3}\right)\right)\cdot r & = 2.0344 \ ft \end{array}$ $\frac{r^{e} \cdot \left(\left(r_{1}+r_{2}-r_{3}-r\right)\right)}{L \cdot B} = 0.4692 \ ft$ $r \cdot \operatorname{atan} \begin{pmatrix} L \cdot B \\ r \cdot r_3 \end{pmatrix} = 2.2049 \ ft$ $\beta_{1} \cdot Y_{1} + \beta_{2} \cdot Y_{2} + \beta_{3} \cdot Y_{3} + \beta_{4} \cdot Y_{4} + \beta_{5} \cdot Y_{5}$ $(\langle \beta_{1} + \beta_{2} \rangle) \cdot Y_{1} = 0.6704$ ing Pressure: _s=1885.4545 *psf* = 560 *psf* $= q_{gross} - \sigma'_{zo} = 1325.455 \ psf$ dation Settlement: $\begin{array}{c} \left(q_{net} \cdot \left(\left(1 - \mu_s^2 \right) \right) \right) \\ b_{le} \coloneqq \alpha \cdot I_s \cdot I_f \cdot \left| \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \right| \cdot B' \\ \left(\begin{array}{c} E_s \end{array} \right) \end{array}$ _{ble}=0.032 *in* $= 0.93 \cdot \delta_{flexible} = 0.03$ in OK 0.5 *in*

ilever Retaining Wall Vertical Reinforcement Design for Stage Split Backwalls (East side - grid 4):

f Masonry Columns for Steel Columns to Transfer Load into foundation:

Figure 2—Additional Requirements for Column forcement in Buildings Assigned to SPC C, D and E

2—Allowable Column Compressive Force for ntrically Loaded Concrete Masonry Columns up to 20 ft (6.1 m) High¹

Column	Allowable column compressive
ze, in. (mm)	force, kip (kN)
8 (203x203)	18 ² (80)
16 (203x406)	37 ^{2,3} (165)
24 (203x610)	56 ^{2,4} (249)
16 (254x406)	46 ⁵ (205)
24 (254x610)	716 (316)
12 (305x305)	42 (186)
16 (305x406)	56 (249)
24 (305x610)	85 (378)
32 (305x813)	114 (507)
16 (406x406)	76 (338)
24 (406x610)	115 (511)
32 (406x813)	154 (685)
24 (610x610)	174 (773)
32 (610x813)	233 (1030)
40 (610x1016)	292 (1300)

le assumes the element is in pure compression, i.e., that the ad falls within the center one-third of the section, under a um design eccentricity of 0.1*t* for each axis as required by the The designer must ensure the section is in compression prior g the table. $f'_m = 1500$ psi (10.3 MPa). $F_s = 24,000$ psi (165

SLENDERNESS LIMITATIONS:

 $P_{axial} = 11.6 \ kip$

Due to beam depth being 12 in., 12 x 16 masonry column is required.

4

No. 4

 $H_{wall} \coloneqq H_s = 6.3333 \ ft$

Number of bars:

Bar Size:

² The maximum allowable height for 8 in. columns is 15.9 ft

Height ft (m)	Number of bars	Bar	Maximum kips (kl
15.1-15.9 (4.6-4.8)	4	No. 4 (M13)	34(151
14.0-15.9(4.3-4.8)	4	No. 4 (M13)	48(213
15.1-15.9 (4.6-4.8)	6	"	52 (231
15.3-15.9 (4.6-4.8)	4	No. 5 (M16)	53 (236
18.6-20(5.6-6.1)	4	No. 4 (M13)	42(186
16.9-18(5.1-5.5)	4	No. 4 (M13)	67 (298
18.0-20(5.5-6.1)	4	"	60 (266
18.2-20(5.5-6.1)	6		64 (284
19.3-20(5.9-6.1)	8		68 (302
18.3-20(5.6-6.1)	4	No. 5 (M16)	64 (284
19.7-20(6.0-6.1)	6	"	70(311
19.7-20(6.0-6.1)	4	No. 6 (M19)	69(307

Isolated Footing Design (B3 and C3):

esign Parameters:

$F "3" B" = 3 ft B_{col} = FIF "1" 4" \quad f_f = FIF "1" 8" \quad P_{des} = 11 kip$

 $ft + t_f$

 $H + t_f = 4.6667 ft$

or Bearing Failure:

Equation for Bearing Capacity:

 $\cdot N_c \cdot s_c \cdot d_c \cdot i_c \cdot b_c \cdot g_c + \sigma'_z \cdot N_q \cdot s_q \cdot d_q \cdot i_q \cdot b_q \cdot g_q + 0.5 \cdot \gamma_{backfill} \cdot B' \cdot N_\gamma \cdot s_\gamma \cdot d_\gamma \cdot i_\gamma \cdot b_\gamma \cdot g_\gamma$

Capacity Factors:

le of bearing capacity factors for $\phi' = 30$ degrees and using Vesic's Equation:

3.4 $N_{\gamma} = 22.4$

Inclination Factors:

level ground, therefore, ground inclination factors are equal to 1:

clination Factors:

 $i_{\gamma} \coloneqq 1$

 $g_{\gamma} \coloneqq 1$

lination Factors:

is not inclined, therefore the base inclination factors are equal to 1:

 $b_{\gamma} \coloneqq 1$

R

For continuous footings, $B/L \rightarrow 0$, so s_c , s_q , and s_γ become equal to 1. This means factors may be ignored when analyzing continuous footings.

In line with continuous footing

		28					
actors:							
$s_{\gamma} \coloneqq 1$							
actors:							
D_f							
-2 · '·	\cdot tan ϕ'	· 1 – sir	ר ϕ' =	= 1.3674	$d_{v} \coloneqq$	1	

or Settlement Failure:

$$B = 3.6667 \text{ ft} \qquad H \coloneqq 5 \cdot B \qquad \mu_s \coloneqq 0.3 \qquad \alpha \coloneqq 4 \quad \text{(Footing Center)} \qquad \delta_{all} \coloneqq 0.5 \text{ in}$$
$$= 1.8333 \text{ ft} \qquad B' \coloneqq B = 1.8333 \text{ ft} \qquad M \coloneqq L' = 1 \qquad N \coloneqq H = B'$$

e Factors:

T

$$\begin{pmatrix} M \cdot \ln \left(\begin{pmatrix} 1 + \sqrt{M^2 + 1} \end{pmatrix} \cdot \sqrt{M^2 + N^2} \\ M \cdot \left(1 + \sqrt{M^2 + N^2} + 1 \right) \end{pmatrix} + \ln \left(\begin{pmatrix} M + \sqrt{M^2 + 1} \end{pmatrix} \cdot \sqrt{1 + N^2} \\ M + \sqrt{M^2 + N^2} + 1 \end{pmatrix} \right) = 0.4979$$

$$\pi + \operatorname{atan} \begin{pmatrix} M \\ M \\ N \cdot \sqrt{M^2 + N^2 + 1} \end{pmatrix} = 0.0158$$

orrection Factor:

$$\begin{pmatrix} 1-2 \cdot \mu_s \\ 0 \\ 1-\mu_s \end{pmatrix} \cdot I = 0.5069$$

th Correction Factor, If:

$$4 \cdot \mu_s \qquad \beta_2 \coloneqq 5 - 12 \cdot \mu_s + 8 \cdot \mu_s^2 \qquad \beta_3 \equiv -4 \cdot \mu_s \cdot ((1 - 2 \cdot \mu_s)) \qquad \beta_4 \coloneqq -1 + 4 \cdot \mu_s - 8 \cdot \mu_s^2 \qquad \beta_5 \equiv -4 \cdot ((1 - 2 \cdot \mu_s))^2$$

 $D_{f} = 9.3333 \, ft$

 $L^2 + r^2 = 10.0277 \, ft$

 $B^2 + r^2 = 10.0277 ft$

 $L^2 + B^2 + r^2 = 10.6771 \, ft$

 $L^2 + B^2 = 5.1854 ft$

$$\ln \left| \begin{pmatrix} r_{4} + B \\ L \end{pmatrix} + B \cdot \ln \left| \begin{pmatrix} r_{4} + L \\ B \end{pmatrix} - \frac{r_{4^{3}} - L^{3} - B^{3}}{3 \cdot L \cdot B} \right| = 5.4509 \text{ ft}$$

$$\begin{array}{c} \left(\begin{array}{c} r_{3} + B \\ r_{1} \end{array} \right) + B \cdot \ln \left(\begin{array}{c} r_{3} + L \\ r_{2} \end{array} \right) - \begin{array}{c} r_{3^{3}} - r_{2^{3}} - r_{1^{3}} + r^{3} \\ 3 \cdot L \cdot B \end{array} = 2.2895 \ ft$$

$$\frac{\left(\left(\left(L+r_{2}\right)\right)\cdot r_{1}\right) \quad r^{e}}{\left(\left(L+r_{3}\right)\right)\cdot r_{2}} = 1.2086 ft$$

$$\frac{\left(\left(L+r_{3}\right)\right)\cdot r_{2}}{\left(\left(L+r_{3}\right)\right)\cdot r_{2}} = 1.2086 ft$$

1.

of Rebar in Continuous Foundation For Stage and Ramp Retaining Walls:

riteria:

$t_{cmu} \coloneqq FIF$ "8"	$t_{brick} \coloneqq FIF$ "4"	$t_{air} \coloneqq FIF$ "1"	$B_{wall} \coloneqq 8$ in
		USE SOLID GROUT	
$\gamma_{fill} \coloneqq 120 \ pcf$	$\gamma_{brick} \coloneqq 120 \ pcf$	$\gamma_{cmu} \coloneqq 130 \ pcf$	$\gamma_{conc} \coloneqq 150 \ pcf$
$FS_{overturning} \coloneqq 1.5$	$FS_{sliding} \coloneqq 1.5$	$FS_{bearing} \coloneqq 3$	
$H_{total} \coloneqq FIF$ "7' 1'	, $H_{wall} \coloneqq FIF$ "4' 1"	Need an ext	ra 3 ft of height due to frost line
$t_f = FIF$ "1' 8""			
$B \coloneqq FIF$ "3' 8"			
$D_f \coloneqq 3 ft + t_f$	DUE TO FROST LINE AT 4 ft.		
$f'_c \approx 4000 \ psi$	$f_y \coloneqq 60 \ ksi$		
	$\gamma_{fill} \coloneqq 120 \ pcf$ $FS_{overturning} \coloneqq 1.5$ $H_{total} \coloneqq FIF "7' 1'$ $t_{f} \coloneqq FIF "1' 8""$ $B \coloneqq FIF "3' 8"$ $D_{f} \coloneqq 3 \ ft + t_{f}$	$\gamma_{fill} := 120 \ pcf$ $\gamma_{brick} := 120 \ pcf$ $FS_{overturning} := 1.5$ $FS_{sliding} := 1.5$ $H_{total} := FIF$ "7' 1" $H_{wall} := FIF$ "4' 1" $t_f := FIF$ "1' 8"" $B := FIF$ "3' 8" $D_f := 3 \ ft + t_f$ DUE TO FROST LINE AT 4 ft.	$\gamma_{fill} := 120 \ pcf$ $\gamma_{brick} := 120 \ pcf$ USE SOLID GROUT $\gamma_{cmu} := 130 \ pcf$ $FS_{overturning} := 1.5$ $FS_{sliding} := 1.5$ $FS_{bearing} := 3$ $H_{total} := FIF$ "7' 1" $H_{wall} := FIF$ "4' 1"Need an ext $t_f := FIF$ "1' 8"" $B := FIF$ "3' 8" $D_f := 3 \ ft + t_f$ DUE TO FROST LINE AT 4 ft.

APPENDIX B-STEEL REINFORCEMENT INFORMATION

aid to users of the ACI Building Code, information on sizes, areas, and weights of various steel reinforcement is .

TANDARD REINFORCING BARS

Bar size, no.	Nominal diameter, in.	Nominal area, in. ²	Nominal weight, lb/ft
3	0.375	0.11	0.376
4	0.500	0.20	0.668
5	0.625 0.31		1.043
6	0.750	0.44	1.502
7	0.875 0.60		2.044
8	1.000	0.79	2.670
9	1.128	1.00	3.400
10	1.270	1.27	4.303
11	1.410	1.56	5.313
14	1.693	2.25	7.65
18	2.257	4.00	13.60

ne-Way Shear Strength:

e depth of footing:

inuous footings, effective depth d is measured from the top of the footing to the center of the lateral bars. linal bars are designed separately:

a 3in clear cover, #6 rebars:

 $D_{\#6} \coloneqq 0.75 \ in$

 $= c + D_{\#6} = 3.375 in$

t (Long dimension. Use 1 ft analysis strip)

(short dimension)

l (width of wall)

 $W_{m} + W_{wall} = 1.0047 \ klf$

 $= P_{u} \cdot \begin{pmatrix} B - c - 2 \cdot d \\ B \end{pmatrix} = 0.0628 \, klf$

$$V_{ay} \coloneqq \begin{pmatrix} 0.75 \cdot \left(2 \cdot \lambda \cdot \int_{c} f' \cdot psi \cdot L_{2} \cdot d\right) \\ \sqrt{c} = 69.3962 \ klf \\ 1 \ ft \end{pmatrix}$$

= if $V_{uOneWay} < \phi V_{cOneWay}$ ""The footing has adequate shear strength"

else

 $\|$ "The footing has inadequate shear strength"

1

="The footing has adequate shear strength"

lexural Strength:

c = 1.6667 ft

 $\begin{aligned} u \cdot l^2 & kip \cdot ft \\ = 0.381 & (required flexural resistance) \\ ft & ft \end{aligned}$

0.0018

$$\rho_{min} \cdot d \cdot \begin{vmatrix} 12 & in \\ 1 \cdot ft \end{vmatrix} = 0.3591 \frac{in^2}{ft}$$

Rebars: $A_{\#6} = 0.44 \ in^2$

 $A_{\#6} = 0.44 \ in^{2}$

1 #6 bar is adequate

Concrete Compression block:

$$f_s \cdot f_y = 0.1765 in$$

$$5 \cdot f_c \cdot b$$

ft

8806 *kip · ft*

$$f_{y} \cdot \begin{pmatrix} d - a \\ 2 \end{pmatrix} = 36.3809 \ kip \cdot ft$$

$$\begin{array}{ccc} 0.9 \cdot M_n & & kip \cdot ft \\ 1 \ ft & & ft \end{array}$$
(flexural strength)
$$\begin{array}{ccc} ft & \\ ft & \\ \end{array}$$

= if $M_u < \phi M_n$

" "The footing has adequate flexural strength" else

 $^{||}_{||}$ "The footing has inadequate flexural strength $^{||}_{||}$

="The footing has adequate flexural strength"

evelopment Length of Flexural 180 degree Hooked Rebars:

rvative assumptions:

$$\psi_r \coloneqq 1.0$$
 $\psi_o \coloneqq 1.0$ $\psi_c \coloneqq 0.6 + \frac{f'_c}{15000 \text{ psi}} = 0.8667 \quad d_{bar} \coloneqq D_{\#6}$

ĺ

I

"There is adea develop the booked

$$xuralHooks := (((D_{\#6} \cdot 6)) + ((2 \cdot D_{\#6}))) + D_{\#6} = 6.75 in$$

ar + r = 3 *in* (distance required for hook)

 $depth_{FlexuralHooks} = 6.75$ in

= if $h_{min} < t_f$

" "The footing thickness is adequate to accomodate the hooked bar"

else

"The footing thickness is not adequate to accomodate the hooked bar"

ł

T

Т

T

I

="The footing thickness is adequate to accomodate the hooked bar"

earing Capacity of Column at Base:

1 ft $h \coloneqq t_f$

 $_{vall} \cdot L_{wall} = 96 \ in^2$

$$((L_{wall}, ((2 \cdot h + B_{wall} + 2 \cdot h)))) = 1 ft$$

 $= 144 in^{2}$

 $55 \cdot ((0.85 \cdot f'_c \cdot A_1)) = 212.16 kip$

$$55 \cdot \min\left| \left(\left((0.85 \cdot f'_c \cdot A_l) \right) \cdot \left(\frac{A_2}{A_l} \right), ((2 \cdot 0.85 \cdot f'_c \cdot A_l)) \right) \right| = 259.8419 \ kip$$

$$\min\left((N_l, N_2) \right)$$

$$Bearing \coloneqq 1 \ ft = 212.16 \ klf$$

= if $P_u < \phi P_{BaseBearing}$

"The footing has adequate bearing strength at the base"

∥ else

"The footing has inadequate bearing strength at the base"

="The footing has adequate bearing strength at the base"

0 Degree Hooked Dowel Bars in Column:

1

in²

```
make sure footing is thick enough to accommodate development length:
<sub>vel</sub> · 6
                          (radius of dowel bar bend)
       = 1.875 in
2
                          (distance required for hook)
w_{wel} + r = 2.5 in
d_{dc} + 2 · H + c_c = 20 in
= if h_{min} \leq h
                                                           I
                                                           T
""The footing thickness is adequate"
else
""The footing thickness is inadequate"
  II
                                                           I
="The footing thickness is adequate"
ebars in Wall:
             d_{bar} \coloneqq D_{\#4}
).5 in
                                  column bars are #4
nent Length:
```

$$\max \begin{pmatrix} 8 & in , & 0.02 \cdot f_y \cdot d_{bar} & , & 0.0003 \\ \lambda \cdot min \begin{pmatrix} 100 & psi , & f'_c \cdot psi \end{pmatrix} & psi \end{pmatrix} = 9.4868 \ in$$

ngth for rebars in compression:

$$\max\left(12 \quad in, l \quad 0.0005 \\ \frac{d_{cCol}}{psi}, f_{y} \cdot d_{bar} \cdot \alpha_{s}\right) = 15 \quad in \quad (round up to a 24in (2ft) splice)$$

of Rebar in Continuous Foundation For Stage Back Walls:

riteria:

kness:	$t_{cmu} = FIF$ "8"	$t_{brick} = FIF$ "	8" $t_{air} = FIF$ USE SOLI		in
ght:	<i>γ_{fill}</i> = 120 <i>pcf</i>	$\gamma_{brick} = 120 \ pc$			= 150 <i>pcf</i>
f wall:	$H_{wall} = FIF$ "16'"	$H_{total} = FIF$	"3'" + H _{wall}	$H_s \coloneqq FIF$ "6' 4"	Need an extra 3 ft of height due to frost line
s of footing/	<i>[t]</i> := <i>FIF</i> "1'8""	$t_s \coloneqq 6 in$			
footing:	<i>B</i>)≔ <i>FIF</i> "3' 8"				
Footing:	$D_f = 3 ft + t_f$	DUE TO FROST LINE	AT 4 ft.		
oads:	P≔ 2.65 <i>kip</i>	$b_{trib} \coloneqq 6 ft$	$P_{beam} \coloneqq \frac{P}{b_{trib}} = 0.4$	417 kip ft	

ne-Way Shear Strength:

depth of footing:

nuous footings, effective depth d is measured from the top of the footing to the center of the lateral bars. inal bars are designed separately:

a 3in clear cover, #6 rebars:

$$\begin{array}{c}
 in & D_{\#6} = 0.75 & in \\
 c_c + & = 3.375 & in \\
 2 & & \\
 \end{array}$$

cover = 16.625 *in*

Pressure:

on wall:
$$M_{wall} := ((t_{brick} + t_{cmu} + t_{air})) \cdot ((H_{total} - H_{wall})) \cdot \gamma_{conc} = 0.6375$$

$$ft$$

 $W_{\mathcal{T}} \coloneqq t_f \cdot B \cdot \gamma_{conc} = 0.9167 \qquad kip \\ ft$

= if $V_{uOneWay}$ <	$\phi V_{cOneWay}$!
""The footi	ng has adequate shear strength"
else	
	ng has inadequate shear strength "
∥ [™] I he footi	ng nas inadequate snear strength
=" The footing	has adequate shear strength"
lexural Strength	
C	
2	
2 = 1.6667 <i>ft</i>	
-2	
$u \cdot l^2$	
= 1.419 2 · <i>B</i>	ft (required flexural resistance)
0.0018	
12 <i>ii</i>	in ²
$\rho_{min} \cdot d \cdot $ $1 \cdot f$	=0.3591
1.9	
Rebars:	$f_{\#\phi} = 0.44 \ in^2$
$A_{\#6} = 0.44 \ in$	1 #6 bar is adequate
ng:	
ce _{max} ≔ min (\	$3 \cdot t_f, 18 \ in) = 18 \ in$
$\overline{ce} := \frac{1}{2} \frac{JI}{J} = 12$	<i>in</i> Need one bar every foot
1	
flexural strength	of a singly reinforced rectangular section:
$D_{\#6} = C + C_{c} = 3$	
= C + = 3	375 m
$t_f \qquad y_{sI} \coloneqq c$	$bver_1 \qquad A_s = 0.44 \ in^2 \qquad b = B$
+1	
$pth - y_{sl} = 16.6$	

= if $M_u < \phi M_n$	
""The footing has adequate flexural strength"	
else	
I I I I I I I I I I I I I I I I I I I	
="The footing has adequate flexural strength"	

I I

evelopment Length of Flexural 180 degree Hooked Rebars:

rvative assumptions:

$$\begin{split} \psi_{r} &\coloneqq 1.0 & \psi_{0} &\coloneqq 1.0 & \psi_{c} &\coloneqq 0.6 + \\ & 15000 & psi &= 0.8667 & d_{bar} &\coloneqq D_{\#6} \\ & max \begin{vmatrix} 6 & in \\ 6 & in \\ (& 55 \cdot \lambda \cdot min(100 & psi \\ (& 55 \cdot \lambda \cdot min(10 & psi \\ (& 55 \cdot \lambda \cdot min(10 & psi \\ (& 55 \cdot \mu))))) \end{vmatrix} \end{vmatrix} \right) = 0$$

л

 $\frac{\left(\left(B-B_{wall}\right)\right)}{2}-c_c=15 \ in$ f bars from the critical section:

$$(B - B_{wall})$$

2

∥ ∥ "There is adequate room to develop the hooked bars" else

""""" "There is inadequate room to develop the hooked bars"

="There is adequate room to develop the hooked bars"

he Longitudinal Steel:

0.0018	$A_{\#6} = 0.44 in^2$	$D_{\#6} = 0.75$ in
$ \rho_{min} \cdot B \cdot d = 1.3 $	3467 <i>in</i> ²	
Rebars:		
$A_{\#6} = 1.32 in^{-2}$	² 3 #6 bars is adeq	uate
cing:		
$ce_{max} = min(3)$	$(t_f, 18 in) = 18 in$	
$B - 2 c_c = 2$	19 <i>in</i> use 12 in	spacing to be conservative
make sure footing	is thick enough to accon	nmodate development length:

earing Capacity of Column at Base:
1
$$ft$$
 ft ft ft ft ft
 $(L_{wall} + L_{wall} = 96 in'$
 $(L_{wall} + L_{wall} + 2 \cdot h))) = 1 ft$
 $= 144 in^{2}$
 $55 \cdot ((0.85 \cdot f'_{c} \cdot A_{l})) = 212.16 kip$
 $55 \cdot min[(((0.85 \cdot f'_{c} \cdot A_{l})) \cdot \sqrt{\frac{A_{2}}{A_{1}}}, ((2 \cdot 0.85 \cdot f'_{c} \cdot A_{l}))] = 259.8419 kip$
 $min((N_{1}, N_{2}))$ $= 212.16 klf'$
 $1 \cdot ft$
 $= if P_{u} < \phi P_{BaseBearing}$
"The footing has adequate bearing strength at the base"

="The footing has adequate bearing strength at the base"

Degree Hooked Dowel Bars in Column:

$$.005 \cdot A_{I} \cdot \frac{1}{1 \cdot ft} = 0.48 \frac{in^{2}}{ft}$$

dowels

 $A_{\#5} \coloneqq 0.310 \ in^2$

 $= 2 \cdot A_{\#5} = 0.62 \text{ in}^2 \quad (\text{two dowels per 1 ft is adequate})$

nent Length:

.625 *in*

 $D_{\#5}$

in (round up to get an appropriate constructible dimension)

ebars in Wall	·				
	<u>Io</u>				
.5 <i>in d</i>	$bar = D_{\#4}$ column bars	are #4			
nent Length:					
max & <i>in</i> ,	$0.02 \cdot f_y \cdot d_{bar}$, 0.0003			
	$\lambda \cdot min^{l}$ 100 psi, f' · p	$\begin{array}{c} \begin{array}{c} 0.0003 \\ psi \end{array} \begin{array}{c} f_y \cdot d_{bar} \\ \end{pmatrix} = 9.44 \\ \end{array}$	868 <i>in</i>		
	$\langle \rangle c$))			
ngth for rebars	s in compression:				
0					
(max 12 in	0.0005				
	l_{dcCol} , 0.0005 $f_y \cdot d_{bar}$	$\left \alpha_{s} \right = 15 \ ln$ (row	und up to a 24in (2ft) splice)		
of Rebar ir	n Isolated Footing:				
	8				
One-Way Sh	ear Strength:				
					0
· "3' 8"	<u></u> <u>H</u> := <u>FIF</u> "3'"	$B_{coll} \coloneqq FIF$ "1'4"	$B_{col2} \coloneqq FIF$ "1""	<i>ty</i> := <i>FIF</i> "1' 10"	$h := t_f$
1 c Lin	150				
1.6 <i>kip</i>	$\gamma_{conc} \coloneqq 150 \ pcf$	$\gamma_{backfill} \coloneqq 120 \ pcf$	$\int c = 4000 pst$	$y_y = 60 \ kst$	
e depth of foo	oting				
	oung.				
a 3in clear c	over, #6 rebars and bars in	both directions:			
n D#6 =	≔ 0.750 <i>in</i>				
D_#6_		$D_{\#6}$			
$= C_c + $	= 3.375 <i>in cover</i> ₂ :	$=c_c+D_{\#6}+\frac{D_{\#6}}{2}=4.125$ in			
۷		<u>۲</u>			
- cover ₁ .	$+ cover_2$				
g	$+ cover_2$ = 3.75 in				

Punching Shear Strength:

$$q := q_u \cdot ((L_1 \cdot L_2 - ((c_1 + d)) \cdot ((c_2 + d)))) = 12.3775 \ kip$$

$$\frac{d}{d} = 1.3333 \qquad \qquad \alpha_s := 30 \qquad b_o := 2 \left((c_1 + d) \right) + 2 \cdot ((c_2 + d)) = 10.75 ft$$

$$hing \coloneqq 0.75 \cdot min \left(4, \left(2 + \frac{4}{\beta} \right), \left(2 + \frac{\alpha_s \cdot d}{\beta} \right) \right) \cdot \lambda \cdot \sqrt{f_c \cdot psi} \cdot b_o \cdot d = 446.6875 \ kip$$

= if $V_{uPunching} < \phi V_{cPunching}$

""The footing has adequate punching shear strength" else ""The footing has inadequate punching shear strength"

="The footing has adequate punching shear strength"

Flexural Strength:

$$\cdot L_2 \cdot \left(\frac{L_1 - c_1}{2}\right) \cdot \left(\frac{L_1 - c_1}{4}\right) = 4.9422 \quad kip \cdot ft \qquad \text{(required flexural resistance)}$$

0.0018

I

$$\rho_{min} \cdot B \cdot h = 1.7424 \ in^2$$

Rebars: $A_{\#6} \coloneqq 0.440 \ in^2$

 $A_{\#6} = 1.76$ in² 4 #6 bars is adequate

ing:

```
ace_{max} = min \quad 3 \cdot h, 18 \ in = 18 \ in
```

 $B - 2 \cdot c_c$ $B - 2 \cdot c_c = 12.6667 in$

e flexural strength of a singly reinforced rectangular section:

0

 $h \qquad y_{s1} \coloneqq cover_1 \qquad A_s = 1.76 \ in^2 \qquad b \coloneqq B$

```
0.9 \cdot M_n = 141.7447 \ kip \cdot ft (flexural strength)
```

= if $M_u < \phi M_n$

 Image: Strength of the strengt of the strength of the strength of the strength of the strength

T

="The footing has adequate flexural strength"

Development Length of Flexural 180 degree Hooked Rebars:

Tension Rebars Terminated in Hooks

in

For main tension rebars ACI 318 Table 25.3.1 defines geometry for 9 180° hooks as illustrated in Figure 7.21. The length of the bar up to the hook is called lead-in length. Minimum inside bend diameter *D* is in the table for different size rebars. The minimum dimension of the straight extension of the bar beyond the end of the bend is also shown figure. The distance *H* that must be added to the lead-in length to define development length of hooked bars is the bend radius plus the bar diameter distance H that must be here H and H and

00 Degree Hooked Dowel Bars in Column:

m Steel Ratio:

 $0.005 \cdot A_1 = 0.96 \ in^2$

5 dowels $A_{\#5} = 0.310 \ in^2$ $D_{\#5} = 0.625 \ in$ = $4 \cdot A_{\#5} = 1.24 \ in^2$

ment Length:

in

Ш

$$\begin{array}{c} D_{\#5} \\ (& 0.02 \cdot f_y \cdot d_{dowel} \\ ax \begin{pmatrix} 8 & in \\ \lambda \cdot min \left(100 & psi \\ \lambda \cdot f_c \cdot psi \end{pmatrix} \end{pmatrix}, \begin{array}{c} 0.0003 \\ psi \end{pmatrix} \cdot f_y \cdot d_{dowel} \\ psi \end{pmatrix} = 11.8585 \ in$$

(round up to get an appropriate constructible dimension) (

o make sure footing is thick enough to accommodate development length:

$$u^{vel + 6} = 1.875 in \quad (radius of dowel bar bend)$$

$$u^{i} = 12 \cdot d_{dowel} = 7.5 in$$

$$u^{vel} + r = 2.5 in \quad (distance required for hook)$$

$$u^{i}_{dc} + 2 \cdot H + c_{c} + D_{\#6} = 20.75 in$$

= if $h_{min} \le h$ "There footing thickness is adequate" else "There footing thickness is inadequate"

="There footing thickness is adequate"

Rebars in Colu	mn:			
#4 column	n bars are #4			
pment Length:				
(0.02 $\cdot f_y \cdot d_{bar}$	0.0003		
may 8 in	Jy = Jy		868 in	

Anchor bolt embedment length, l, in.

500 psi (10.34 MPa), $f_y = 60,000$ psi (413.6 MPa). Strength reduction factors: 0.50 for masonry breakout; 0.90 shor bolt steel. Values assume that projected areas of adjacent anchor bolts do not overlap (anchor spacing greater than al to $2l_b$). Ib x 4.448222 = N; in. x 25.4 = mm.

embedment of a 1/4 in. headed bolt is sufficient

f Bearing plate on Back wall:

50 <i>lbf</i>	<i>B</i> ∣≔6 <i>in</i>	$N \coloneqq 7$ in	$F_{y} = 36 \ ksi$	$f_c = 1.5 \ ksi$	$e \coloneqq 0$ <i>in</i>	$\vec{a} = 10 in$
	U					0
				masonry		
$\cdot B = 42 in^2$		$\overline{A_2} \coloneqq B + 2 e \cdot N +$	$-2 e = 42 in^2$			

eb Crippling:			
eo Cripping:			
7			
	$E \cdot F_{vw} \cdot t_f$		
$.75 \cdot 0.4 \cdot t_{w^2} \cdot \begin{vmatrix} 1 \\ 1 \end{vmatrix} + \begin{vmatrix} 4 \\ -0.2 \\ d \end{vmatrix} \cdot \begin{pmatrix} t_w \\ t_f \end{pmatrix}^{1.5}$	-44.3878	<i>kip</i> OK	
$(d + d) + (t_f)$	t_w		
f Weld:			
$min((t_p, t_f)) = 0.21 in $	$\overline{W} := \frac{3}{16}$ in = 0.1875 in		
	16		
$w = 0.75 \ in$			
r = 0.75 tn			
7			
.6667			
the base metal yielding and fracture along th	e weld base:		
$F_y = 50 \ ksi$ $F_u = 65 \ ksi$			
$= \min(1 \cdot 0.6 \cdot F_y \cdot t \cdot L, 0.75 \cdot 0.6 \cdot F_u \cdot t)$	· <i>L</i>) <i>J</i> =30.7125 <i>kip</i>	OK	
	, , , , , , , , , , , , , , , , , , , ,		
n weld fracture along effective throat dimensio	n:		
$F_{EXX} = 70 \ ksi$			
$6 \cdot F$ $\cdot (1 + 0.5 \cdot \sin \theta 1.5)$			
$6 \cdot F \cdot \left(1 + 0.5 \cdot \sin \theta^{1.5}\right)$			
$w \coloneqq 0.75 \cdot 0.707 \cdot w \cdot L_e \cdot F_w = 20.8786 \ km$	p OK		

af Column Base Plate and Anchor Bale:
1.6
$$kip$$
 $F = 36$ ksi A36 Steel
in $N = 14$ in
 kid $T = P_{on} = 11.6$ kip
 $\cdot B = 140$ in
 $\cdot P = 120$ in
 $\cdot P = 120$ in
 $\cdot P = 120$ in
 $\cdot P = 100$ in
 \cdot

1

' 4

и

strength:	:											
$d_b = 2.25$	5 <i>in</i>	$\psi_4 \coloneqq 1.4$										
7	(100	$f_c \cdot e_h \cdot d_b$		kin		maata	n than T	1 2241	hin			
.γ·ψ₄·[1(0.9	$J_c \cdot e_h \cdot u_b$	= 3.9555	кір	\$	greate	r than $T_u =$	1.32417	кір			
			<u> </u>	ou								
rods hav	e eno	ugh strength	, design is	OK								
of Girde	er Mo	ment Conne	ection into	Column:								
oads and p	proper	ties:					A325N bolt					
kip•f	ft	$V \coloneqq 8.5 \ ki$	p	<i>E</i> ≔ 2900	00 <i>ksi</i>	F_u	A325N boltBolt := 120					
						F	. CE hai					
≔ 36 <i>ks</i>	<i>st</i>	$F_{u_plate} \coloneqq 5$	oo KSI	$F_y = 50$	KSI		≔ 65 <i>ksi</i>					
in		$A_b \coloneqq \frac{\pi}{d}$	² – 0 601	$3 in^2$	dı :	$= d_1$	2 ⊦ <i>in</i> = 1	in				
.,.		4	5 -0.001	5 111	α_h .	- <i>u_b</i> -	16					
V12x40 A	.992 st	eel										
9 <i>in</i>	ha	.≔ 8.01 <i>in</i>	t	≔ 0.295	in to:=	= 0.5	15 <i>in</i>	S :=	51.5 <i>in</i> ³			
5 111	Ujg		ıwg	0.233	ujg -	5.5		<i>S</i> _x g	51.5 11			
W12x40	A992	steel										
	-											
9 in 1	$b_{fc} \coloneqq$	8.01 <i>in</i>	$t_{wc} \coloneqq 0.2$	95 <i>in</i>	$t_{fc} \coloneqq 0.51$	5 <i>in</i>						
n of flan	nge pl	ate dimensio	ons:									
= 33.27	73 k	<i>ip</i> force	carried by e	each flange	plate							

of bolts needed:

 $= \frac{P_u}{\phi R_{nShear}} = 1.5372$ need two bolts Provide two rows of two bolts to be conservative

 $= 2 \cdot L_e + s = 6.5 \quad in \qquad \text{add } 1/2 \text{ in setback}$

 $b_{min} + 0.5 \ in = 7 \ in$

aring in Beam Flange:

 $F_{u_plate} = 29 \frac{kip}{in} t_{fg} \cdot F_u = 33.475 \frac{kip}{in}$ $t_{te} \qquad \text{bearing critical in flange plate}$

 $d_{h} = 1.25 in$

strength for end bolt:

 $_{earing} \coloneqq 0.75 \cdot min((1.2 \cdot L_{cl} \cdot t \cdot F_u, 2.4 \cdot d_b \cdot t \cdot F_u)) = 36.5625 \ kip$

 $B_{olt} := min(\langle \phi R_{nShear}, \phi R_{nEndBearing} \rangle) = 21.6475 \ kip$

$$-d_h = 2$$
 in

 $wing \coloneqq 0.75 \cdot min\left(\left(1.2 \cdot L_{c2} \cdot t \cdot F_u, 2.4 \cdot d_b \cdot t \cdot F_u \right) \right) = 51.1875 \ kip$

 $olt := min(\langle \phi R_{nShear}, \phi R_{nIntBearing} \rangle) = 21.6475 \ kip$

 $x := 4 \cdot \phi R_{nEndBolt} = 86.5901 \ kip > P_u = 33.2773 \ kip$ OK

Strength in Flange:

ear strength of angle:

 $ShearAngle \coloneqq 0.75 \cdot \left(\left(\min\left(\left(0.6 \cdot F_{u_plate} \cdot A_{nv}, 0.6 \cdot F_{y_plate} \cdot A_{gv} \right) \right) + U \cdot F_{u_plate} \cdot A_{nt} \right) = 131.325 \ kip > P_u = 33.2773 \ kip$

hear failure of the plate Outside lines of bolts:

$$t_{f_plate} \cdot (\langle s + L_e \rangle) = 4.75 \ in^2$$

$$l_{gv} - 2 \cdot 1.5 \cdot d_h \cdot t_{f_plate} = 3.25 \ in^2$$

$$(b_p - g - d_h) t_{f_plate} = 1.5 in^2$$

ear strength of angle:

$$ShearAngle \coloneqq 0.75 \cdot \left(\left(\min\left(\left(0.6 \cdot F_{u_plate} \cdot A_{nv}, 0.6 \cdot F_{y_plate} \cdot A_{gv} \right) \right) + U \cdot F_{u_plate} \cdot A_{nt} \right) = 142.2 \ kip > P_u = 33.2773 \ kip$$

near failure of the beam flange Outside lines of bolts:

$$t_{fg} \cdot (\langle s + L_e \rangle) = 4.8925 \ in^2$$

$$g_v - 2 \cdot 1.5 \cdot d_h \cdot t_{f_plate} = 3.3925 \ in^2$$

$$b_{fg} - g - d_h \rangle t_{fg} = 1.8077 \ in^2$$

ear strength:

 $_{plate} \cdot ((L_e + n - 1 \cdot s)) = 1.125 in^2$

 g_{v} - n-1 + 0.5 $\cdot d_h \cdot t_{w_{plate}} = 0.75 \ in^2$

 $kShear \coloneqq 0.75 \cdot \left(\left(\min\left(\left(0.6 \cdot F_{u_plate} \cdot A_{nv}, 0.6 \cdot F_{y_plate} \cdot A_{gv} \right) \right) + U \cdot F_{u_plate} \cdot A_{nt} \right) = 96.8578 \ kip > V = 8.5 \ kip$ OK

Roof Insulation HANDI-FOAM® E84 CLASS 1(A) LOW PRESSURE SPRAY FOAM Link to Wesbite: https://www.energyefficientsolutions.com/Fire Rated.asp? item=FOAM605E84&gclid=EAIaIQobChMI3LfOkj1_QIVyv_jBx19aQAPEAQYAyABEgK6K_D_BwE Link to Datasheet: https://www.energyefficientsolutions.com/data%20sheets/ SprayFoamE84-105-205-605.pdf $Density = 1.75 \ lbf$ ft³ $Dead_{RoofInsulation} \coloneqq Density \cdot 2.5 \ in = 0.365 \ psf$ $Dead_{MEP} = 5 psf$ Mechanical/Electrical/Plumbing Typical **Total Roof Dead Load** $Dead_{Roof} := Dead_{Membrane} + Dead_{CompositeDeck} + Dead_{RoofInsulation} + Dead_{MEP} = 74.848 \ psf$ The dead load for the roof is approximately 75 psf

Phase One Restroom Snow Load Calcs

Balanced Snow Load

Exposure Coefficient

Table 7.3-1. Exposure Factor, Ce.

	Exposure of Roof"					
Surface Roughness Category	Fully Exposed ^b	Partially Exposed	Sheltered			
B (see Section 26.7)	0.9	1.0	1.2			
C (see Section 26.7)	0.9	1.0	1.1			
D (see Section 26.7)	0.8	0.9	1.0			
Above the tree line in windswept mountainous areas	0.7	0.8	N/A			
In Alaska, in areas where trees do not exist within a 2 mi (3 km) radius of the site	0.7	0.8	N/A			

The terrain category and roof exposure condition chosen shall be representative of the anticipated conditions during the life of the structure. An exposure factor shall be determined for each roof of a structure.

^a Partially Exposed: All roofs not Fully Exposed or Sheltered. Fully Exposed: Roofs exposed on all sides with no shelter^b afforded by terrain, higher structures, or trees. Roofs that contain several large pieces of mechanical equipment, parapets that extend above the height of the balanced snow load (h_0) , or other obstructions are not in this category. Sheltered: Roofs located tight in among conifers that qualify as obstructions.

^bObstructions within a distance of $10h_o$ provide "shelter," where h_o is the height of the obstruction above the roof level. If the only obstructions are a few deciduous trees that are leafless in winter, the "fully exposed" category shall be used. Note that these are heights above the roof. Heights used to establish the Exposure Category in Section 26.7 are heights above the ground.

Thermal Factor

Heated closed structure without a ventilated roof

Table 7.3-2 Thermal Factor, C,

Thermal Condition ^a				
All structures except as indicated below	1.0			
Structures kept just above freezing and others with cold, ventilated roofs in which the thermal resistance (R-value) between the ventilated space and the heated space exceeds $25^{\circ}F \times h \times ft^2/Btu (4.4 K \times m^2/W)$	1.1			
Unheated and open air structures	1.2			
Freezer building	1.3			
Continuously heated greenhouses ^b with a roof having a thermal resistance (R-value) less than $2.0^{\circ}F \times h \times ft^2/Btu$ (0.4 K × m ² /W)	0.85			
^o These conditions shall be representative of the anticipated conc winters for the life of the structure. ^o Greenhouses with a constantly maintained interior tempera (10°C) or more at any point 3 ft (0.9 m) above the floor level d	ture of 50°F			

Used ASCE 7-16 because it is simpler

$C_e \approx 1.0$

Surface Roughness B/Partially Exposed... because we're in downtown Maquoketa

ASCE 7-16 Table 7.3-1 Exposure Coefficient, Ce

$C_t \coloneqq 1.0$ All structures except as indicated below

ASCE 7-16 Table 7.3-2 Thermal Factor, Ct

Didn't use ASCE 7-22 because C_t is requires known material properties

Non-Commercial Use Only

Importance Factor

Table 1.5-2 Importance Factors by Risk Category of Buildings and Other Structures for Snow, Ice, and Earthquake Loads

Risk Category from Table 1.5-1	Importance Factor, I _s	Factor— Thickness, I,	Ice Importance Factor—Wind, I _w	Seismic Importance Factor, I _e
ı	0.80	0.80	1.00	1.00
Ш	1.00	1.00	1.00	1.00
ш	1.10	1.15	1.00	1.25
IV	1.20	1.25	1.00	1.50

Note: The component importance factor, I_p , applicable to earthquake loads, is not included in this table because it depends on the importance of the individual component rather than that of the building as a whole, or its occupancy. Refer to Section 13.1.3.

Ground Snow Load

ASCE 7 HAZARD TOOL

Risk Category 2 ASCE 7-16 Table 1.5-2

 $I_s \coloneqq 1.0$

Sloped Roof Factor	$C_s \coloneqq 1$	Essentially a flat roof
Sloped Roof Snow Load	$p_s \coloneqq 0.7 \cdot C$	$C_s \cdot C_e \cdot C_t \cdot I_s \cdot p_g = 35.7 \ psf$

 $BalancedSnow_{Load} = p_s = 35.7 \ psf$

The balanced snow load is 35.7 psf

Phase One Restroom Live Load Calculations

Occupancy or Use	Uniform, L _o psf (kN/m²)	Live Load Reduction Permitted? (Sec. No.)	Multiple-Story Live Load Reduction Permitted? (Sec. No.)	Concentrated Ib (kN)	Also Section
Penal institutions	Production of the sum				
Cell blocks	40 (1.92)	Yes (4.7.2)	Yes (4.7.2)		
Corridors	100 (4.79)	Yes (4.7.2)	Yes (4.7.2)		
Recreational uses					
Bowling alleys, poolrooms, and similar uses	75 (3.59)	No (4.7.5)	No (4.7.5)		
Dance halls and ballrooms	100 (4.79)	No (4.7.5)	No (4.7.5)		
Gymnasiums	100 (4.79)	No (4.7.5)	No (4.7.5)		
Residential					
One- and two-family dwellings					
Uninhabitable attics without storage	10 (0.48)	Yes (4.7.2)	Yes (4.7.2)		4.12.1
Uninhabitable attics with storage	20 (0.96)	Yes (4.7.2)	Yes (4.7.2)		4.12.2
Habitable attics and sleeping areas	30 (1.44)	Yes (4.7.2)	Yes (4.7.2)		
All other areas except stairs	40 (1.92)	Yes (4.7.2)	Yes (4.7.2)		
All other residential occupancies					
Private rooms and corridors serving them	40 (1.92)	Yes (4.7.2)	Yes (4.7.2)		
Public rooms	100 (4.79)	No (4.7.5)	No (4.7.5)		
Corridors serving public rooms	100 (4.79)	Yes (4.7.2)	Yes (4.7.2)		
Roofs					
Ordinary flat, pitched, and curved roofs	20 (0.96)	Yes (4.8.2)			4.8.1
Roof areas used for occupants	Same as occupancy served	Yes (4.8.3)			
Roof areas used for assembly purposes Vegetative and landscaped roofs	100 (4.70)	Yes (4.8.3)			
Roof areas not intended for occupancy	20 (0.96)	Yes (4.8.2)			
Roof areas used for assembly purposes	100 (4.70)	Yes (4.8.3)	_		
Roof areas used for other occupancies	Same as occupancy served	Yes (4.8.3)			
Awnings and canopies					
Fabric construction supported by a skeleton structure	5 (0.24)	No (4.8.2)			
Screen enclosure support frame	5 (0.24) based on the tributary area of the roof supported by the frame member	No (4.8.2)	-	200 (0.89)	
	00.000	11 1100			101

Table 4.3-1. (Continued) Minimum Uniformly Distributed Live Loads. La, and Minimum Concentrated Live Loads

Used ASCE 7-22

$ive_{Load} \coloneqq 100 \ psf$	For roof area assembly pu	
Since the roof won't be or nowstorm, use the large		
<i>Live_{Load}</i> = 100 <i>psf</i>	>>	$BalancedSnow_{Load} = 35.7 \ psf$
Regardless, we will t	est each load co	ombination for sufficient strength of members

MWFRS DESIGN WIND PRESS	JRES FOR WALLS AND ROOF	- PHASE 1
Determining Wind Load Paran	neters:	
Exposure Category:	В	(ASCE 7-22: Section 26.7.3)
Risk Category:	11	(ASCE 7-22: Table 1.5-1)
Importance Factor:	<i>I</i> ≔ 1.0	(ASCE 7-22: Table 1.5-2)
Basic Wind Speed:	$V \coloneqq 108 \ mph$	(ASCE 7-22: Figure 26.5-1B)
Wind Directionality Factor:	$K_d \coloneqq 0.85$ MWFRS system	(ASCE 7-22: Figure 26.6-1)
Topographic Factor:	$K_{zt} \coloneqq 1$ No ridges or hills near this site	(ASCE 7-22: Section 26.8.1)
Ground Elevation Factor:	$K_e \coloneqq 1$ Conservative approximation	(ASCE 7-22: Table 26.9-1)
Gust Effect Factor:	$G \coloneqq 0.85$ Rigid Building	(ASCE 7-22: Section 26.11.1)
Enclosure Classification:	Building Enclosed	(ASCE 7-22: Section 26.2)
Internal Pressure Coefficient:	$GC_{pi} \coloneqq 0.18$	(ASCE 7-22: Table 26.13-1)

Velocity PressureExposure Coefficient: $K_z \coloneqq 0.57$ (ASCE 7-22: Table 26.10-1)Using directional procedure so not 0.7

Velocity Pressu										
<i>qz</i> ≔ 0.00256	psj	• K_z ·	$K_{zt} \cdot I$	$K_d \cdot$	$V^2 \cdot I$	<i>I</i> =14	.467	psf	$q_i \coloneqq q_z$	(ASCE 7-22: Equation 26.10-
	mph ²									
Mean Roof Heigh	nt:	$h \coloneqq$	10 <i>ft</i>	+9.	5833	33 <i>fl</i>	=	9.792 ' metal c	ft	(Height Modeled on Revit)
	Ва	sed on	5" roof o	leck	2 3.5" (concret	te, 1.5	' metal o	decking	

Non-Commercial Use Only

Wall	Pressures Co	pefficients:	$L \coloneqq L_A = 76$	5 <i>ft</i>	E	$B \coloneqq B_A$	= 16.667 <i>ft</i>	
	riables Needed for T	able: $\frac{L}{P} = 4.56$						
va		B						
Ext	ernal Pressure Coef	icients: $C_{pWW} = 0.8$	$C_{pLW} \coloneqq$	-0.2	$C_{pS} =$	-0.7	(ASCE 7-2	22: Figure 27
Wall	Pressures:	$p \coloneqq p_{iext} + - p_{iir}$	ıt.					
	Surface 1:	$p_{Nlext} \coloneqq q_z \cdot G \cdot C_{pWW} \equiv$					(windward)	
		$p_{Nlint} \coloneqq q_i \cdot (\langle GC_{pi} \rangle) = 2$						
		$p_{NIplus} \coloneqq p_{N1ext} + p_{N1in}$	$t = 12.442 \ psj$	r				
		$p_{NIminus} \coloneqq p_{NIext} - p_{NIi}$	_{int} = 7.234 <i>psf</i>	•				
	Surface 2:	$p_{N2ext} \coloneqq q_z \cdot G \cdot C_{pS} = -$					(side)	
		$p_{N2int} \coloneqq q_i \cdot \left(\langle GC_{pi} \rangle \right) = 2$.6 <i>psf</i>					
		$p_{N2plus} \coloneqq p_{N2ext} + p_{N2}$						
		$p_{N2minus} \coloneqq p_{N2ext} - p_{N2}$	_{int} = -11.212]	osf				
	Surface 3:	$p_{N3ext} \coloneqq q_z \cdot G \cdot C_{pLW} \equiv q_z \cdot G \cdot C_{pLW} \equiv q_z \cdot G \cdot C_{pLW}$					(leeward)	
		$p_{N3int} \coloneqq q_i \cdot \left(\langle GC_{pi} \rangle \right) =$						
		$p_{N3plus} \coloneqq p_{N3ext} + p_{N3int}$						
		$p_{N3minus} \coloneqq p_{N3ext} - p_{N3}$	$p_{int} = -5.065 \ p_{int}$	5)				
		$p_{N4ext} \coloneqq q_z \cdot G \cdot C_{pS} = -$	8.61 maf				(side)	
	Surface 4:	$p_{N4ext} \coloneqq q_z \cdot (G C_{ps}) = 2$ $p_{N4int} \coloneqq q_i \cdot ((G C_{pi})) = 2$					(side)	
		$p_{N4plus} \coloneqq p_{N4ext} + p_{N4}$		osf				
		$p_{N4minus} = p_{N4ext} - p_{N4}$						
				-	Ir	ncluded	Overhang	
Roof	Pressures C	pefficients: L	$= L_A + l_{EW.O}$	H = 78	3 ft	$B \coloneqq$	$B_A + l_{NS.OH}$	= 20.667 <i>f</i>
		. 0				0		
Va	riables Needed for T	able: $h = 0.1255$	$\frac{h}{2} = 4.9 ft$	<i>h</i> =	9.8 <i>ft</i>	2 h =	= 19.6 <i>ft θ</i>	:= 0
			2					
Ext	ernal Pressure Coef	icient: $C_{pl} \approx -0.9$	$C_{p2} = -$	0.18			(ASCE 7-22: F	-igure 27.3-1
					Using Co	nservati	ve Pressure C	coefficients
Roof	Pressures:	$p = p_{iext} + - p_{iir}$	ıt 🛛					
	Surface 5:	$p_{N5ext} = q_{z} \cdot G \cdot C_{pl}$			$p_{N5ext2} \coloneqq 0$	$q_z \cdot G \cdot$	$C_{p2} = -2.21 \mu$	osf
		$p_{N5int1} \coloneqq q_i \cdot (\langle GC_{pi} \rangle)$	= 2.6 <i>psf</i>		$p_{N5int2} = 0$	$q_i \cdot (\backslash G$	$(C_{pi}) = 2.6 p$	sf
		$p_{N5plus1} \coloneqq p_{N5ext1} + p_{N5}$	_{5int1} = -8.463]	osf	$p_{N5plus2} =$	P _{N5ext2}	$p_2 + p_{N5int2} = 0.3$	391 <i>psf</i>
		$p_{N5minus1} \coloneqq p_{N5ext1} - p_1$	_{N5int1} = -13.67	1 <i>psf</i>	$p_{N5minus2}$	$= p_{N5e}$	$p_{xt2} - p_{N5int2} =$	-4.818 <i>psf</i>
	hang Pressu		$q_{oh} \coloneqq q_z \cdot G \cdot$	C		C		

Wall	Pressures C	oefficien	its:	Ĺ	$:= L_B = 1$	6.667)	ft (B := B	B = 76 ft	ł		
Va	riables Needed for T	able:	é = 0.219	9								
Ex	ternal Pressure Coel	ficients: C	$p_{pWW} := 0.$.8		= -0.5	C_{pS}	≔ -0.7	(AS	CE 7-22	2: Figu	ıre 27.
Wall	Pressures:	$p = p_{iex}$	+/-	p_{iint}								
	Surface 1:	$p_{Elext} \coloneqq q$			1 <i>psf</i>				(side)			
		$p_{Elint} \coloneqq q_i$	$\cdot \left(\langle GC_{pi} \rangle \right)$) = 2.6 <i>p</i>	sf							
		$p_{E1plus} \coloneqq$	$p_{Elext} + $	$p_{E1int} =$	-6.004	osf						
		$p_{E1minus} =$	$= p_{Elext} -$	$p_{Elint} =$	-11.212	<i>psf</i>						
	Surface 2:	$p_{E2ext} \coloneqq q_z$	$\cdot G \cdot C_p$	$w_{WW} = 9.8$	34 <i>psf</i>				(windw	ard)		
		$p_{E2int} \coloneqq q_i$	$\cdot \left(\langle GC_{pi} \rangle \right)$) = 2.6 <i>p</i>	sf							
		$p_{E2plus} = p$	$p_{E2ext} + p$	$E_{E2int} = 1$	2.442 <i>psj</i>	c i						
		$p_{E2minus} =$	p_{E2ext}	$p_{E2int} =$	7.234 <i>ps</i> j	r						
	Surface 3:	$p_{E3ext} \coloneqq q$	$z \cdot G \cdot C_{\mu}$	_{pS} =-8.6	1 <i>psf</i>				(side)			
	ounace o.	$p_{E3int} \coloneqq q_i$	$\cdot \left(\langle GC_{pi} \rangle \right)$) = 2.6 <i>p</i>	sf							
		$p_{E3plus} \coloneqq$	$p_{E3ext} + $	$p_{E3int} =$	-6.004	osf						
		$p_{E3minus} =$	$= p_{E3ext} -$	p _{E3int} =	-11.212	<i>psf</i>						
	Surface A	$p_{E4ext} = q_{E4ext}$	$z \cdot G \cdot C_p$	$b_{LW} = -6$.15 <i>psf</i>				(leewar	d)		
	Surface 4:	$p_{E4int} \coloneqq q_i$	$\cdot \left(\langle GC_{pi} \rangle \right)$) = 2.6 <i>p</i>	sf							
		$p_{E4plus} \coloneqq$	$p_{E4ext} + p_{E4ext}$	$v_{E4int} =$	-3.544 <i>p</i>	sf						
		$p_{E4minus} =$	$= p_{E4ext} -$	$p_{E4int} =$	-8.753 <i>p</i>	sf						
Roof	Pressures C	oefficier	nts:	$L \coloneqq I$	$L_B + l_{NS,C}$	H = 20.	667 <i>ft</i>	<i>B</i> =	$= B_B + l$	EW.OH	= 78	ft
		h		h	= 4.9 <i>ft</i>	,		U				
Va	riables Needed for T	able:	= 0.473	8 2	= 4.9 <i>ft</i>	h =	9.8 <i>ft</i>	2 h	= 19.6 <i>fi</i>		$\theta \coloneqq 0$,
			~								0	
Ext	ternal Pressure Coel	ficient:	$C_{pl} \coloneqq$	-0.9	$C_{p2} = -$	-0.18			(ASCE	7-22: Fi	gure 2	.7.3-1)
Roof	Pressures:	$p \coloneqq p_{iex}$	+/-	p_{iint}								
	Surface 5:	$p = p_{1ex}$ $p_{E5ext} = q$.07 <i>psf</i>		$p_{E5ext2} =$	$a_{\tau} \cdot G$	$C_{n^2} = -i$	2.21 <i>ps</i>	ſ	
		$p_{E5int1} = q$	-				$p_{E5int2} =$					
		$p_{E5plus1} =$					$p_{E5plus2}$:					
		$p_{E5minus1}$					$p_{E5minus}$					
						067 <i>ps</i>						

Wall	Pressures Co	pefficients:	$\widehat{L} := Lc = 76$	ft B)≔ <i>Bc</i> = 16.667	ft
Var	iables Needed for Ta	able: $\frac{L}{B} = 4.50$	6			
Ext	ernal Pressure Coeff	ficients: C _{PWW} =	0.8	0.2 €ps ≔	-0.7 (ASCE	7-22: Figure 27
Wall	Pressures:	$p = p_{iext} + -$	p _{iint}			
	Surface 1:	$p_{S1ext} \coloneqq q_z \cdot G$	C _{pLW} = -2.46 psf		(leeward)	
		$p_{Slint} = q_i \cdot (GG)$	C _{pi}) = 2.6 psf			
		$p_{S1plus} = p_{S1ext} +$	<i>p_{Slint}</i> = 0.145 <i>psf</i>			
		$p_{S1minus} = p_{S1ex}$	t- p _{Slint} = -5.063 psf			
	Surface 2:	$p_{S2ext} \coloneqq q_z \cdot G \cdot$	C _{pS} = -8.61 psf		(side)	
		$p_{S2int} = q_i \cdot (GC)$	_{pi}) = 2.6 psf			
		$p_{S2plus} = p_{S2ext}$	$+ p_{S2int} = -6.004 psf$			
		$p_{S2minus} = p_{S2ext}$	- <i>p</i> _{S2int} = -11.212 <i>psf</i>			
	Surface 3:	$p_{S3ext} = q_z \cdot G \cdot$	C _{pWW} = 9.84 psf		(windward)
		$p_{S3int} = q_i \cdot (GC)$	_{pi}) = 2.6 psf			
		$p_{S3plus} = p_{S3ext} +$	p _{S3int} = 12.442 psf			
		$p_{S3minus} = p_{S3ext}$	-p _{S3int} = 7.234 psf			
	Surface 4:	$p_{S4ext} \coloneqq q_z \cdot G \cdot$			(side)	
		$p_{54int} = q_i \cdot (GC)$				
			$+ p_{S4int} = -6.004 \ psf$			
		$p_{S4minus} = p_{S4ext}$	- <i>p</i> _{S4int} = -11.212 <i>psf</i>			
Roof	Pressures Co	pefficients:	L ≔ Lc + lew.oн	=78 ft	$B \coloneqq B_C + l_{NS}.$	он = 20.667 f
Var	iables Needed for Ta	able: L = 0.12	$\begin{array}{c} h \\ 255 \\ 2 \end{array} = 4.9 \ ft$	h = 9.8 ft	2 h = 19.6 ft	$\boldsymbol{\theta} \coloneqq 0$
Ext	ernal Pressure Coeff	ficient: C _{p1}	$= -0.9$ $C_{p2} := -0.1$	8	(ASCE 7-2	2: Figure 27.3-1)
Roof	Pressures:	$p \coloneqq p_{iext} + / -$	<i>p</i> _{iint}			
	Surface 5:	$p_{S5ext} = q_z \cdot G$		p 55ext2 :=	$q_z \cdot G \cdot C_{p2} = -2.21$	psf
		$p_{S5int1} = q_i \cdot (G$			$q_i \cdot (GC_{p_i}) = 2.6$	
		$p_{S5plus1} \coloneqq p_{S5ext}$	$p_{1} + p_{S5int1} = -8.463 \ p_{S5int1}$	f p _{S5plus2} ==	p _{S5ext2} + p _{S5int2}	= 0.391 <i>psf</i>
			_{t1} -p _{S5int1} =-13.671 ps		= p _{S5ext2} - p _{S5int2}	
	hang Pressu					

Variables Needed for Table: $L = 0.219$ B External Pressure Coefficients: $\rho_{BWV} = 0.8$ $\rho_{DVV} = -0.7$ (ASCE 7-22: Figure 2Wall Pressures: $p = \rho_{1ext} + l - \rho_{1int}$ (side)Surface 1: $p_{Motort} = q_2 \cdot G \cdot C_{aS} = -8.61 p_{S}f$ (side) $P_{WInt} = q_1 \cdot (GC_{p_1}) = 2.6 p_{S}f$ $P_{WIntmum} = P_{Wlext} + P_{WInt} = -6.004 p_{S}f$ $P_{WIntmum} = P_{Wlext} = P_{WInt} = -11.212 p_{S}f$ (leeward) $P_{W2plus} = P_{W2ext} = q_2 \cdot G \cdot C_{pLW} = -6.15 p_{S}f$ (leeward) $P_{W2plus} = P_{W2ext} + P_{W2int} = -3.544 p_{S}f$ (leeward) $P_{W2plus} = P_{W2ext} - P_{W2int} = -8.753 p_{S}f$ (side)Surface 3: $P_{W2ext} = q_2 \cdot G \cdot C_{pS} = -8.61 p_{S}f$ (side) $P_{W2plus} = P_{W2ext} + P_{W2int} = -6.004 p_{S}f$ (side) $P_{W2plus} = P_{W2ext} + P_{W2int} = -7.53 p_{S}f$ (side) $P_{W2plus} = P_{W2ext} - P_{W2int} = -11.212 p_{S}f$ (side)Surface 3: $P_{W2ext} - P_{W2int} = -11.212 p_{S}f$ Surface 4: $P_{W2ext} + P_{W2int} = -11.212 p_{S}f$ $P_{W2minn} = P_{W2ext} - P_{W2int} = -12.242 p_{S}f$ $P_{W2min} = P_{W2ext} - P_{W2int} = -7.234 p_{S}f$ Roof Pressures Coefficients: $L = L_p + I_{NS,OH} = 20.667 ft$ $R = B_p + I_{EW,OH} = 7.8 ft$ $L = 0.9$ $C_{PI} = -0.9$ $C_{PI} = -0.18$ (ASCE 7-22: Figure 2.7.3Roof Pressures: $p = P_{ext} + l - P_{1int}$ Surface 5: $p = P_{ext} + l - P_{1int}$ Surface 5: $p = P_{ext} + l - P_{1int}$	Wall	Pressures Co	pefficients:	$\underline{L} \coloneqq L_D = 16.667$	rft B ≔	<i>B</i> _D = 76 <i>ft</i>	
External Pressure Coefficients: $p = p_{iext} + l - p_{iint}$ Surface 1: $p_{wlext} = q_{2} \cdot (G \subset p_{1}) = 2.6 \text{ psf}$ $p_{wliplos} = p_{wlext} + p_{wlint} = -6.004 \text{ psf}$ $p_{wliplos} = p_{wlext} + p_{wlint} = -11.212 \text{ psf}$ (leeward) $p_{wliplos} = p_{wlext} = q_{2} \cdot G \cdot C_{p_{1}w} = -6.15 \text{ psf}$ $p_{wliplos} = p_{wlext} = q_{2} \cdot G \cdot C_{p_{1}w} = -3.544 \text{ psf}$ $p_{wliplos} = p_{wlext} = q_{2} \cdot G \cdot C_{p_{2}w} = -3.544 \text{ psf}$ $p_{wliplos} = p_{wlext} = q_{2} \cdot G \cdot C_{p_{2}w} = -8.753 \text{ psf}$ (leeward) $p_{wliplos} = p_{wlext} = q_{2} \cdot G \cdot C_{p_{2}w} = -8.753 \text{ psf}$ (side) $p_{wliplos} = p_{wlext} = q_{2} \cdot G \cdot C_{p_{2}w} = -8.753 \text{ psf}$ Surface 3: $p_{wliplos} = p_{wlext} = q_{2} \cdot G \cdot C_{p_{2}w} = -8.61 \text{ psf}$ $p_{wliplos} = p_{wlext} = q_{2} \cdot G \cdot C_{p_{2}w} = -8.61 \text{ psf}$ (windward) $p_{wliplos} = p_{wlext} = q_{2} \cdot G \cdot C_{p_{2}w} = -8.61 \text{ psf}$ (windward) $p_{wliplos} = p_{wlext} = q_{2} \cdot G \cdot C_{p_{2}w} = -8.61 \text{ psf}$ (windward) $p_{wliplos} = p_{wlext} = q_{2} \cdot G \cdot C_{p_{2}w} = -8.61 \text{ psf}$ (windward) $p_{wliplos} = p_{wlext} = q_{2} \cdot G \cdot C_{p_{2}w} = -8.61 \text{ psf}$ (windward) $p_{wliplos} = p_{wlext} = q_{2} \cdot G \cdot C_{p_{2}w} = -8.61 \text{ psf}$ (windward) $p_{wliplos} = p_{wlext} = q_{2} \cdot G \cdot C_{p_{2}w} = -8.61 \text{ psf}$ (windward) $p_{wliplos} = p_{wlext} - p_{wlint} = -11.212 \text{ psf}$ Surface 4: $p_{wliplos} = p_{wlext} - p_{wlint} = -12.42 \text{ psf}$ $p_{wliplos} = p_{wlext} - p_{wlint} = -12.42 \text{ psf}$ $p_{wliplos} = p_{wlext} - p_{wlint} = -2.6667 \text{ ft}$ $B = B_{D} + l_{Ew.OH} = 7.8 \text{ ft}$ Variables Needed for Table: $h_{L} = -0.4738 h_{L} = 4.9 \text{ ft} h = 9.8 \text{ ft}$ $2 h_{L} = 19.6 \text{ ft} g = 0$ External Pressure Coefficient: $p_{2} = -0.9 C_{2} = -0.18$ (ASCE 7-22: Figure 27.3- Roof Pressures: $p = p_{text} + t - p_{1int}$	Va	riables Needed for Ta	abio.				
Surface 1: $p_{wlast} = q_2 \cdot G \cdot C_{pS} = -8.61 psf$ (side) $p_{wlint} = q_1 \cdot (GC_{p1}) - 2.6 psf$ $p_{wlint} = p_{wlast} + p_{wlint} = -6.004 psf$ $p_{wlint} = p_{wlast} - p_{wlint} = -11.212 psf$ Surface 2: $p_{w2ext} = q_2 \cdot G \cdot C_{pLW} = -6.15 psf$ (leeward) $p_{w2int} = q_1 \cdot (GC_{p1}) - 2.6 psf$ $p_{w2plus} = p_{w2ext} + p_{w2int} = -3.544 psf$ $p_{w2int} = q_1 \cdot (GC_{p1}) - 2.6 psf$ $p_{w3int} = p_{w3ext} - p_{w2int} = -6.004 psf$ $p_{w3int} = q_2 \cdot G \cdot C_{pS} = -8.61 psf$ $p_{w3int} = q_2 \cdot G \cdot C_{pS} = -8.61 psf$ $p_{w3int} = q_2 \cdot G \cdot C_{pS} = -8.61 psf$ $p_{w3int} = q_2 \cdot G \cdot C_{pS} = -8.61 psf$ $p_{w3int} = q_2 \cdot G \cdot C_{pS} = -8.61 psf$ $p_{w3int} = q_2 \cdot G \cdot C_{pS} = -8.61 psf$ $p_{w3int} = q_1 \cdot (GC_{p1}) - 2.6 psf$ $p_{w3int} = q_1 \cdot (GC_{p1}) - 2.6 psf$ $p_{wiminus} = p_{w3ext} - p_{wiint} = -11.212 psf$ Surface 4: $p_{w4ext} = q_2 \cdot G \cdot C_{pW} = 9.84 psf$ $p_{wiminus} = p_{w4ext} - p_{wiint} = -12.442 psf$ $p_{wiminus} = p_{w4ext} - p_{wiint} = 7.234 psf$ Roof Pressures Coefficients: $L = Lp + l_{NS,OH} = 20.667 ft$ L = 0.4738 $a = 4.9 ft$ $h = 9.8 ft$ $2 h = 19.6 ft$ $\theta = 0$ External Pressure Coefficient: $C_{p1} = -0.9$ $C_{p2} = -0.18$ (ASCE 7-22: Figure 27.3- Roof Pressures: $p = p_{Text} + l_{r} - p_{iint}$	Ex	ternal Pressure Coef	ficients: $C_{PWW} = 0.4$	3 C _{pLW} = -0.5	Eps = -0	0.7 (ASCE 7	-22: Figure 27
Surface 1: $p_{wlext} = q_2 \cdot G \cdot C_{p5} = -8.61 psf$ (side) $p_{wlint} = q_1 \cdot (GC_{p1}) = 2.6 psf$ $p_{wlipus} = p_{wlext} + p_{wlint} = -6.004 psf$ $p_{wlinnus} = p_{wlext} - p_{wlint} = -11.212 psf$ Surface 2: $p_{w2ext} = q_2 \cdot G \cdot C_{pLW} = -6.15 psf$ (leeward) $p_{w2int} = q_1 \cdot (GC_{p1}) = 2.6 psf$ $p_{w2plus} = p_{w2ext} + p_{w2int} = -3.544 psf$ $p_{w2int} = q_2 \cdot G \cdot C_{p5} = -8.61 psf$ (side) $p_{w3int} = q_1 \cdot (GC_{p1}) = 2.6 psf$ $p_{w2int} = q_2 \cdot G \cdot C_{p5} = -8.61 psf$ (side) $p_{w3int} = q_1 \cdot (GC_{p1}) = 2.6 psf$ $p_{w3plus} = p_{w3ext} + p_{w3int} = -6.004 psf$ $p_{w3int} = q_1 \cdot (GC_{p1}) = 2.6 psf$ $p_{w3int} = p_{w2ext} - p_{w3int} = -11.212 psf$ Surface 4: $p_{w4ext} = q_2 \cdot G \cdot C_{pWW} = 9.84 psf$ $p_{w4inin} = p_{w4ext} - p_{w4int} = 12.442 psf$ $p_{w4inin} = p_{w4ext} - p_{w4int} = 7.234 psf$ Roof Pressures Coefficients: $L = Lp + l_{NS,OH} = 20.667 ft$ $B = Bp + l_{EW,OH} = 78 ft$ $Variables Needed for Table: h_{z} = 0.4738 h_{z} = 4.9 ft h = 9.8 ft 2 h = 19.6 ft B = 0External Pressure Coefficient: C_{p1} = -0.9 C_{p2} = -0.18 (ASCE 7-22: Figure 27.3-Roof Pressures: p = p_{Text} + l_{z} - P_{1int}$	Wall	Pressures:	$p = p_{iext} + / -$	p _{iint}			
$p_{w1plus} = p_{w1ext} + p_{w1int} = -6.004 \ psf$ $p_{w1minus} = p_{w1ext} - p_{w1int} = -11.212 \ psf$ Surface 2: $p_{w2ext} = q_z \cdot G \cdot C_{pLW} = -6.15 \ psf$ $p_{w2plus} = p_{w2ext} + p_{w2int} = -3.544 \ psf$ $p_{w2plus} = p_{w2ext} + p_{w2int} = -3.544 \ psf$ $p_{w2minus} = p_{w2ext} - p_{w2int} = -8.753 \ psf$ (leeward) $p_{w2int} = q_i \cdot (GC_{p1}) = -2.6 \ psf$ $p_{w2pinus} = p_{w2ext} - p_{w2int} = -8.753 \ psf$ (side) $p_{w2int} = q_i \cdot (GC_{p1}) = -2.6 \ psf$ $p_{w2pinus} = p_{w2ext} + p_{w2int} = -6.004 \ psf$ $p_{w2pinus} = p_{w2ext} + p_{w3int} = -6.004 \ psf$ $p_{w3pinus} = p_{w3ext} - p_{w3int} = -11.212 \ psf$ Surface 4: $p_{w4ext} = q_z \cdot G \cdot C_{piw} = 9.84 \ psf$ $p_{w4pinus} = p_{w4ext} + p_{w4int} = 12.442 \ psf$ $p_{w4pinus} = p_{w4ext} - p_{w4int} = 7.234 \ psf$ Roof Pressures Coefficients: $L = L_p + l_{NS,OH} = 20.667 \ ft$ $B = B_p + l_{Ew,OH} = 78 \ ft$ Variables Needed for Table: $L = 0.4738 \ a = -4.9 \ ft h = 9.8 \ ft 2 \ h = 19.6 \ ft g = 0$ External Pressure Coefficient: $p = p_{fext} + f - p_{iint}$		Surface 1:				(side)	
$P_{wliminus} = P_{wlext} - P_{wlint} = -11.212 \text{ psf}$ Surface 2: $P_{w2ext} = q_z \cdot G \cdot C_{pLW} = -6.15 \text{ psf}$ (leeward) $P_{w2int} = q_1 \cdot (GC_{p1}) = 2.6 \text{ psf}$ $P_{w2plus} = P_{w2ext} + P_{w2int} = -3.544 \text{ psf}$ $P_{w2minus} = P_{w2ext} - P_{w2int} = -8.753 \text{ psf}$ (side) $P_{w3int} = q_z \cdot G \cdot C_{pS} = -8.61 \text{ psf}$ $P_{w3plus} = P_{w3ext} = q_z \cdot G \cdot C_{pS} = -8.61 \text{ psf}$ $P_{w3plus} = P_{w3ext} = P_{w3int} = -11.212 \text{ psf}$ Surface 3: $P_{w3ext} = q_z \cdot G \cdot C_{pS} = -8.61 \text{ psf}$ $P_{w3plus} = P_{w3ext} + P_{w3int} = -6.004 \text{ psf}$ $P_{w3plus} = P_{w3ext} - P_{w3int} = -11.212 \text{ psf}$ Surface 4: $P_{w4ext} = q_z \cdot G \cdot C_{pWW} = 9.84 \text{ psf}$ $P_{w4minus} = P_{w4ext} + P_{w4int} = 12.442 \text{ psf}$ $P_{w4minus} = P_{w4ext} - P_{w4int} = 7.234 \text{ psf}$ Roof Pressures Coefficients: $L = L_D + l_{WS,OH} = 20.667 \text{ ft}$ $B := B_D + l_{EW,OH} = 78 \text{ ft}$ $Variables Needed for Table:$ L $P = P_{iext} + l_{i} - P_{iint}$ $P_{wint} = P_{wint} + l_{i} - P_{iint}$							
$P_{wliminus} = P_{wlext} - P_{wlint} = -11.212 \text{ psf}$ Surface 2: $P_{w2ext} = q_z \cdot G \cdot C_{pLW} = -6.15 \text{ psf}$ (leeward) $P_{w2int} = q_1 \cdot (GC_{p1}) = 2.6 \text{ psf}$ $P_{w2plus} = P_{w2ext} + P_{w2int} = -3.544 \text{ psf}$ $P_{w2minus} = P_{w2ext} - P_{w2int} = -8.753 \text{ psf}$ (side) $P_{w3int} = q_z \cdot G \cdot C_{pS} = -8.61 \text{ psf}$ $P_{w3plus} = P_{w3ext} = q_z \cdot G \cdot C_{pS} = -8.61 \text{ psf}$ $P_{w3plus} = P_{w3ext} = P_{w3int} = -11.212 \text{ psf}$ Surface 3: $P_{w3ext} = q_z \cdot G \cdot C_{pS} = -8.61 \text{ psf}$ $P_{w3plus} = P_{w3ext} + P_{w3int} = -6.004 \text{ psf}$ $P_{w3plus} = P_{w3ext} - P_{w3int} = -11.212 \text{ psf}$ Surface 4: $P_{w4ext} = q_z \cdot G \cdot C_{pWW} = 9.84 \text{ psf}$ $P_{w4minus} = P_{w4ext} + P_{w4int} = 12.442 \text{ psf}$ $P_{w4minus} = P_{w4ext} - P_{w4int} = 7.234 \text{ psf}$ Roof Pressures Coefficients: $L = L_D + l_{WS,OH} = 20.667 \text{ ft}$ $B := B_D + l_{EW,OH} = 78 \text{ ft}$ $Variables Needed for Table:$ L $P = P_{iext} + l_{i} - P_{iint}$ $P_{wint} = P_{wint} + l_{i} - P_{iint}$			$p_{W1plus} = p_{W1ext} +$	<i>p_{W1int}</i> = -6.004 <i>psf</i>			
$p_{W2int} = qi \cdot (GC_{pi}) = 2.6 psf$ $p_{W2plus} = p_{W2ext} + p_{W2int} = -3.544 psf$ $p_{W2minus} = p_{W2ext} - p_{W2int} = -8.753 psf$ Surface 3: $p_{W3ext} = q_z \cdot G \cdot C_{p5} = -8.61 psf$ $p_{W3int} = qi \cdot (GC_{pi}) = 2.6 psf$ $p_{W3plus} = p_{W3ext} + p_{W3int} = -6.004 psf$ $p_{W3plus} = p_{W3ext} - p_{W3int} = -11.212 psf$ Surface 4: $p_{W4ext} = q_z \cdot G \cdot C_{plW} = 9.84 psf$ $p_{W4minus} = p_{W4ext} + p_{W4int} = 12.442 psf$ $p_{W4minus} = p_{W4ext} - p_{W4int} = 7.234 psf$ Roof Pressures Coefficients: $L = L_D + l_{NS.OH} = 20.667 ft$ $B = B_D + l_{EW.OH} = 78 ft$ $Variables Needed for Table:$ $h_{L} = -0.4738 \qquad h_{L} = 4.9 ft \qquad h = 9.8 ft$ $2 h = 19.6 ft \qquad \theta = 0$ External Pressure Coefficient: $p = p_{iext} + f - p_{iint}$							
$p_{W2plus} = p_{W2ext} + p_{W2int} = -3.544 psf$ $p_{W2minus} = p_{W2ext} - p_{W2int} = -8.753 psf$ Surface 3: $p_{W3ext} = q_z \cdot G \cdot C_{pS} = -8.61 psf$ $p_{W3int} = q_i \cdot (GC_{pi}) = -2.6 psf$ $p_{W3plus} = p_{W3ext} + p_{W3int} = -6.004 psf$ $p_{W3minus} = p_{W3ext} - p_{W3int} = -11.212 psf$ Surface 4: $p_{W4ext} = q_z \cdot G \cdot C_{plW} = 9.84 psf$ $p_{W4minus} = p_{W4ext} + p_{W4int} = 12.442 psf$ $p_{W4minus} = p_{W4ext} - p_{W4int} = 7.234 psf$ Roof Pressures Coefficients: $L = L_D + l_{NS,OH} = 20.667 ft$ $B = B_D + l_{EW,OH} = 78 ft$ $Variables Needed for Table:$ $h_{L} = -0.4738 \qquad h_{L} = 4.9 ft \qquad h = 9.8 ft$ $2 h = 19.6 ft \qquad \theta = 0$ External Pressure Coefficient: $p = p_{iext} + f - p_{iint}$		Surface 2:	$p_{W^{2ext}} = q_z \cdot G \cdot C$	<i>pLW</i> = -6.15 <i>psf</i>		(leeward)	
$p_{W2minus} = p_{W2ext} - p_{W2int} = -8.753 \ psf$ Surface 3: $p_{W3ext} := q_2 \cdot G \cdot C_{pS} = -8.61 \ psf$ $p_{W3pint} = q_1 \cdot (GC_{p1}) = 2.6 \ psf$ $p_{W3pinus} = p_{W3ext} + p_{W3int} = -6.004 \ psf$ $p_{W3minus} := p_{W3ext} - p_{W3int} = -11.212 \ psf$ Surface 4: $p_{W4ext} = q_2 \cdot G \cdot C_{pWW} = 9.84 \ psf$ $p_{W4int} := q_1 \cdot (GC_{p1}) = 2.6 \ psf$ $p_{W4minus} := p_{W4ext} + p_{W4int} = 12.442 \ psf$ Roof Pressures Coefficients: $L := L_D + l_{NS,OH} = 20.667 \ ft$ $B := B_D + l_{EW,OH} = 78 \ ft$ Variables Needed for Table: $L = 0.4738 h = 4.9 \ ft h = 9.8 \ ft 2 \ h = 19.6 \ ft \theta = 0$ External Pressure Coefficient: $C_{p1} := -0.9 C_{p2} := -0.18 (ASCE 7-22: \ Figure 27.3-28)$ Roof Pressures: $p = p_{Text} + f - p_{iint}$			$p_{W2int} = q_i \cdot (GC_{p_i})$) = 2.6 <i>psf</i>			
Surface 3: $p_{W3ext} = q_z \cdot G \cdot C_{pS} = -8.61 psf$ (side) $p_{W3int} = q_i \cdot (GC_{p_i}) = 2.6 psf$ $p_{W3plus} = p_{W3ext} + p_{W3int} = -6.004 psf$ $p_{W3minus} = p_{W3ext} - p_{W3int} = -11.212 psf$ Surface 4: $p_{W4ext} = q_z \cdot G \cdot C_{pWW} = 9.84 psf$ (windward) $p_{W4int} = q_i \cdot (GC_{p_i}) = 2.6 psf$ $p_{W4plus} = p_{W4ext} + p_{W4int} = 12.442 psf$ $p_{W4minus} = p_{W4ext} - p_{W4int} = 7.234 psf$ Roof Pressures Coefficients: $L = L_D + l_{NS,OH} = 20.667 ft$ $B = B_D + l_{EW,OH} = 7.8 ft$ $Variables Needed for Table: h_L = 0.4738 h_z = 4.9 ft h = 9.8 ft z h = 19.6 ft \theta = 0External Pressure Coefficient: C_{p_1} = -0.9 C_{p_2} = -0.18 (ASCE 7-22: Figure 27.3-Roof Pressures: p = p_{text} + l - p_{iint}$			$p_{W2plus} = p_{W2ext} +$	<i>p_{W2int}</i> = -3.544 <i>psf</i>			
Description of the equation o			$p_{W2minus} = p_{W2ext} -$	<i>p</i> _{W2int} = -8.753 <i>psf</i>			
Description of the equation o		Surface 3	$p_{W3ext} \coloneqq q_z \cdot G \cdot C_p$	₂₅ = -8.61 <i>psf</i>		(side)	
$p_{w3minus} = p_{w3ext} - p_{w3int} = -11.212 \ psf$ Surface 4: $p_{w4ext} = q_z \cdot G \cdot C_{pWW} = 9.84 \ psf$ $p_{w4int} = q_i \cdot (GC_{p_i}) = 2.6 \ psf$ $p_{w4pius} = p_{w4ext} + p_{w4int} = 12.442 \ psf$ $p_{w4minus} = p_{w4ext} - p_{w4int} = 7.234 \ psf$ Roof Pressures Coefficients: $L = L_D + l_{NS.OH} = 20.667 \ ft$ $L = 0.4738$ $B = B_D + l_{EW.OH} = 78 \ ft$ $2 \ h = 19.6 \ ft$ $p = 0$ Roof Pressures: $p_{iint} = -0.9$ $p_{iint} = -0.18$ $C_{p2} = -0.18$ $(ASCE 7-22: Figure 27.3-10)$ Roof Pressures: $p = p_{iext} + l_{iint} + l_{iint} = 0.4738$ $h_{iint} = -0.18$ $p_{iint} = 0.4738$		Canado d.					
$p_{w3minus} = p_{w3ext} - p_{w3int} = -11.212 \ psf$ Surface 4: $p_{w4ext} = q_z \cdot G \cdot C_{pWW} = 9.84 \ psf$ $p_{w4int} = q_i \cdot (GC_{p_i}) = 2.6 \ psf$ $p_{w4pius} = p_{w4ext} + p_{w4int} = 12.442 \ psf$ $p_{w4minus} = p_{w4ext} - p_{w4int} = 7.234 \ psf$ Roof Pressures Coefficients: $L = L_D + l_{NS.OH} = 20.667 \ ft$ $L = 0.4738$ $B = B_D + l_{EW.OH} = 78 \ ft$ $2 \ h = 19.6 \ ft$ $p = 0$ Roof Pressures: $p_{iint} = -0.9$ $p_{iint} = -0.18$ $C_{p2} = -0.18$ $(ASCE 7-22: Figure 27.3-10)$ Roof Pressures: $p = p_{iext} + l_{iint} + l_{iint} = 0.4738$ $h_{iint} = -0.18$ $p_{iint} = 0.4738$			$p_{W3plus} = p_{W3ext} +$	<i>p_{W3int}</i> = -6.004 <i>psf</i>			
Sufface 4. $p_{W4int} = q_i \cdot (GC_{p_i}) = 2.6 \ psf$ $p_{W4plus} = p_{W4ext} + p_{W4int} = 12.442 \ psf$ $p_{W4minus} = p_{W4ext} - p_{W4int} = 7.234 \ psf$ Roof Pressures Coefficients: $L = L_D + l_{NS,OH} = 20.667 \ ft$ $B = B_D + l_{EW,OH} = 78 \ ft$ $Variables Needed for Table:$ $h = 0.4738 \ h = 4.9 \ ft$ $h = 9.8 \ ft$ $2 \ h = 19.6 \ ft$ $B = 0$ External Pressure Coefficient: $C_{p_1} = -0.9 \ C_{p_2} = -0.18 $ (ASCE 7-22: Figure 27.3- Roof Pressures: $p = p_{iext} + l - p_{iint}$			$p_{W3minus} = p_{W3ext}$	<i>p_{W3int}</i> = -11.212 <i>psf</i>			
$p_{W4int} = q_i \cdot (GC_{p_i}) = 2.6 psf$ $p_{W4plus} = p_{W4ext} + p_{W4int} = 12.442 psf$ $p_{W4ext} - p_{W4int} = 7.234 psf$ Roof Pressures Coefficients: $L := L_D + l_{NS.OH} = 20.667 ft$ $B := B_D + l_{EW.OH} = 78 ft$ Variables Needed for Table: $h \\ L = 0.4738$ $h \\ 2 = 4.9 ft$ $h = 9.8 ft$ $2 h = 19.6 ft$ $\theta := 0$ External Pressure Coefficient: $C_{p1} := -0.9$ $C_{p2} := -0.18$ (ASCE 7-22: Figure 27.3- Roof Pressures: $p := p_{iext}$ $+/- P_{iint}$		Surface 4	$p_{W4ext} = q_z \cdot G \cdot C_z$	oWW = 9.84 psf		(windward)	
$p_{w4minus} = p_{w4ext} - p_{w4int} = 7.234 \ psf$ Roof Pressures Coefficients: $L = L_D + l_{NS,OH} = 20.667 \ ft$ $B := B_D + l_{EW,OH} = 78 \ ft$ Variables Needed for Table: $h = 0.4738 \ b = 4.9 \ ft$ $h = 9.8 \ ft$ $2 \ h = 19.6 \ ft$ $B := B_D + l_{EW,OH} = 78 \ ft$ Variables Needed for Table: $L = 0.4738 \ b = 4.9 \ ft$ $h = 9.8 \ ft$ $2 \ h = 19.6 \ ft$ $\theta := 0$ External Pressure Coefficient: $C_{P2} := -0.18$ (ASCE 7-22: Figure 27.3-Roof Pressures: $p := p_{iext}$ $+/- \ p_{iint}$			$p_{W4int} = q_i \cdot (GC_{pi})$) = 2.6 psf			
Roof Pressures Coefficients: $L := L_D + l_{NS.OH} = 20.667 \text{ ft}$ $B := B_D + l_{EW.OH} = 78 \text{ ft}$ Variables Needed for Table: $h \\ L = 0.4738$ $h \\ 2 = 4.9 \text{ ft}$ $h = 9.8 \text{ ft}$ $2 h = 19.6 \text{ ft}$ $\theta := 0$ External Pressure Coefficient: $C_{p1} := -0.9$ $C_{p2} := -0.18$ (ASCE 7-22: Figure 27.3-Roof Pressures: $p := p_{iext}$ $+/ p_{iint}$			$p_{W4plus} = p_{W4ext} + p_{W4ext}$	P _{W4int} = 12.442 psf			
Variables Needed for Table: $h \\ L$ = 0.4738 $h \\ 2$ = 4.9 ft $h = 9.8$ ft $2 h = 19.6$ ft $\theta = 0$ External Pressure Coefficient: $C_{p1} = -0.9$ $C_{p2} = -0.18$ (ASCE 7-22: Figure 27.3-Roof Pressures: $p = p_{iext}$ $+/ p_{iint}$			$p_{W4minus} = p_{W4ext}$	<i>p_{W4int}</i> = 7.234 <i>psf</i>			
Variables Needed for Table: $h \\ L$ = 0.4738 $h \\ 2$ = 4.9 ft $h = 9.8$ ft $2 h = 19.6$ ft $\theta = 0$ External Pressure Coefficient: $C_{p1} = -0.9$ $C_{p2} = -0.18$ (ASCE 7-22: Figure 27.3-Roof Pressures: $p = p_{iext}$ $+/ p_{iint}$	Roof	Pressures Co	oefficients:	$L \coloneqq L_D + l_{NS,OH} = 2$	0.667 ft	$B := B_D + l_{EW,C}$	0H=78 ft
Roof Pressures: $p = p_{iext} + - p_{iint}$	Va	riables Needed for T	able: $\begin{array}{c} h \\ L \end{array} = 0.4738$	h			
	Ex	ternal Pressure Coef	ficient:	-0.9 $C_{p2} = -0.18$		(ASCE 7-22:	Figure 27.3-1
	Roof	Pressures:	$D \coloneqq D_{iort} + / -$	p _{iint}			
		Surface 5:			<i>₽₩</i> 5ext2 ==	$= q_z \cdot G \cdot C_{p2} = -2$	2.21 psf
$p_{w5int1} = q_i \cdot (GC_{p_i}) = 2.6 \ psf$ $p_{w5int2} = q_i \cdot (GC_{p_i}) = 2.6 \ psf$							
$p_{W5plus1} = p_{W5ext1} + p_{W5int1} = -8.463 \ psf \qquad p_{W5plus2} = p_{W5ext2} + p_{W5int2} = 0.391 \ p_{W5plus2} = 0.391 \ p_{W5$						````	
$p_{W5minus1} = p_{W5ext1} - p_{W5int1} = -13.671 \ psf$ $p_{W5minus2} = p_{W5ext2} - p_{W5int2} = -4.818$							

Surface 5: $min(p_{N5minus1}, p_{N5minus2}, p_{E5minus1}, p_{E5minus2}, p_{S5minus1}, p_{S5minus2}, p_{W5minus1}, p_{W5minus2}) = -13.671 psf$

Overhang Pressures: $p_{oh} = q_z \cdot G \cdot C_{p1} = -11.067 \text{ psf}$

Non-Commercial Use Only

Allowable Reaction at Supports (Based on LRFD Load Combinations) - for web crippling

Treat as a one way slab since the length is much much longer than the width

16 Deck Gauge	Design	n React	tions at	Suppo	orts Ba	sed on	Web C	rippling	g, øR _n (lb/ft)			
One Flange Loading	Bearing Length of Webs One-Flange Loading												
End bearing is 4"+	Deck			earing	je Load	1	Bearing			vo-Flang earing	je Loadi		Bearing
	Gage	11/2"	2"	3"	4"	4"	8"	11/2"	2"	3"	4"	4"	8"
	22	540	593	683	759	1164	1354	510	549	615	671	1353	1588
	20	780	855	980	1085	1668	2065	792	851	948	1031	1975	2481
Allowable = 2771 plf	19	1046	1143	1305	1443	2221	2795	1119	1198	1330	1442	2665	3407
	18	1324	1444	1645	1814	2798	3504	1473	1573	1742	1883	3389	4314
	16	2049	2226	2521	2771	4291	5324	2430	2585	2845	3065	5275	6656

 $Actual := MaxLoad \cdot 8.3333333 ft = ((1.667 \cdot 10^3)) plf$

 $Actual = ((1.667 \cdot 10^3)) plf$

< Alla

 $Allowable = 2771 \ plf$

Sufficient, web crippling will not be an issue

Shear Stud Spacing

Link: https://vulcraft.com/DesignTools/HighPerformanceDeckSlabDiaphragmStrength

Required Shear

 $WindLoad_{Max} = 12.442 \ psf$

ShearDistrib_{Required} = 12.442 $psf \cdot 5 ft = 62.21 plf$ Round up to 65 plf to be conservative Half of building height

ary	Detailed Calc	Stud Stren	ngth	Perp. Co	nn. Pattern	Re	inforcing	Table	Techn	ical Revision
	Keep up with Vulcraft/	Verco by follow	ing us at <u>h</u>	ttps://www	ulinkedin.com	m/company	/vulcraft	division-of-	nucor-corp	<u>-/</u>
Hig	h Performance Dec	k-Slab Dia	phragm	Strength			-			10 °
Inpu	ıt Design Criteria								CRAF	
Dan	an Basis								Print	0
	System				Imperial					
	gn Method				LRFD					
						_				
Requ	ired Factored Diaphrag	m Shear, v (plf	0	0	65					
Dee										
	k Selection									
	k Selection COption				Composit	e Deck		~		
Deck					Composite 3VLI-36	e Deck		~		
Deck	Option					e Deck				
Deck Deck Deck	c Option c Type				3VLI-36			~		
Deck Deck Deck Deck	c Option c Type c Gage				3VLI-36 16			~		
Deck Deck Deck Deck Deck Tota	COption CType Cage Crade Crete Slab I Slab Thickness (in.)			5≤	3VLI-36 16 Grade 50 6.50			~		
Deck Deck Deck Deck Deck Tota	: Option : Type : Gage : Grade : Stab 1 Slab Thickness (in.) : tural Concrete Unit Wei		0	5≤ 90≤	3VLI-36 16 Grade 50	≤ 9 ≤ 160		~		
Deck Deck Deck Deck Deck Tota	COption CType Cage Crade Crete Slab I Slab Thickness (in.)		0		3VLI-36 16 Grade 50 6.50 145	<u>s 9</u>		~		
Decl Decl Decl Decl Decl Tota Strue	: Option : Type : Gage : Grade : Stab 1 Slab Thickness (in.) : tural Concrete Unit Wei	(psi)	0	90 ≤	3VLI-36 16 Grade 50 6.50 145	≤ 9 ≤ 160		~		
Decl Decl Decl Decl Decl Decl Struc Struc Struc	C Option Type (Gage C Grade <i>crete Slab</i> I Slab Thickness (in.) :tural Concrete Unit Wei :tural Concrete Strength	(psi) forcement	0	90 ≤	3VLI-36 16 Grade 50 6.50 145 3000	≤ 9 ≤ 160	°8	~		
Decl Decl Decl Decl Decl Decl Decl Tota Struc Struc Struc	Coption Type Cage Cade crete Slab Slab Thickness (in.) ctural Concrete Unit Wei ctural Concrete Strength ccural Concrete Reinfl	(psi) forcement	0	90 ≤	3VLI-36 16 Grade 50 6.50 145 3000	≤ 9 ≤ 160 ≤ 5000 Steel Fiber	8	~ ~ ~		
Deck Deck Deck Deck Deck Deck Deck Tota Struc Struc Struc Struc Struc Conc Fibe	Option Type Cage Crate Stab Stab Thickness (in.) tural Concrete Unit Wei tural Concrete Reinfi ctural Concrete Reinfi rete Reinforcement Typ	(psi) forcement	0	90 ≤ 2500 ≤	3VLI-36 16 Grade 50 6.50 145 3000 Dramix®	≤9 ≤160 ≤5000 Steel Fiber	8	~ ~		
Deck Deck Deck Deck Deck Deck Deck Tota Struc Struc Struc Struc Struc Conc Fibe	c Option Type C Gage c Grade Stab Thickness (in.) tural Concrete Unit Wei tural Concrete Strength <i>ictural Concrete Reinfj</i> <i>rete Reinforcement Typ</i> Type	(psi) forcement	0	90 ≤ 2500 ≤	3VLI-36 16 Grade 50 6.50 145 3000 Dramix® 9 Please Se	≤9 ≤160 ≤5000 Steel Fiber	'S	~ ~		
Decl Decl Decl Decl Decl Decl Decl Decl	: Option Type Cage : Grade : Grad	(psi) forcement	٥	90 ≤ 2500 ≤	3VLI-36 16 Grade 50 6.50 145 3000 Dramix® : Please Sc 15.00	≤ 9 ≤ 160 ≤ 5000 Steel Fiber elect ≤ 66		• • • •		
Deck Deck Deck Deck Deck Deck Tota Struc Struc Struc Conc Fibe Fibe	: Option : Option : Type : Grade : Ital: Thickness (in.) : tural Concrete Slab : Stab : Type : Dosage (pcy)	(psi) forcement re Type	٥	90 ≤ 2500 ≤	3VLI-36 16 Grade 50 6.50 145 3000 Dramix® : Please Sc 15.00	≤9 ≤160 ≤5000 Steel Fiber		• • • •	•	

3VLI-36/3VLJ-36/3PLVLI-36 Composite Deck-Slab Information

for Temperature and Shrinkage Bekaert Dramix[®] Steel Fiber Alternate to WWR (lb/yd³) Total Slab Theoretical Min. A for T&S Cover Concrete WWR (OR) Volume (yd³/100 ft²) Depth Depth 4D 65/60BG (in.) (in.) (in.2) Normal Weight Concrete (145 pcf) 0.028 6x6-W1.4xW1.4 23 5 2 1.08 51/2 21/2 1.23 0.028 6x6-W1.4xW1.4 18 6x6-W1.4xW1.4 15 1.39 0.028 6 3 61/2 31/2 1.54 15 1.70 6x6-W2.1xW2.1 15 0.036 7 4 41/2 71/2 1.85 0.041 6x6-W2.1xW2.1 15 Light Weight Concrete (110 pcf) 2 0.028 6x6-W1.4xW1.4 33 5 1.08 51/2 21/2 1.23 0.028 6x6-W1.4xW1.4 25 0.028 6x6-W1.4xW1.4 1.39 20 6 3 61/4 31/4 1.47 0.029 6x6-W2.1xW2.1 20 1.54 6x6-W2.1xW2.1 61/2 31/2 0.032 20 6x6-W2.1xW2.1 71/4 41/4 1.77 0.038 20 Notes: FRC reinforcement is based on IAPMO UES ER-465.
 Dramix[®] fibers may be used in UL or ULC fire rated assemblies in lieu of WWR. See UL file R19307 for additional information.

		O .tp						
Deck-SI	ab Diaphragm Shear Strength	h				_		
	LI 36 Grade 50 Composite Deck							
6.5 in. tot	al slab depth, fc = 3000 psi, 145 pc	f NWC				v	JLCRA	
15 pcy of	Bekaert® Dramix® Please Select F	iter Reinfo	rcing 4	6				
				anna an t				
3/4" Steel	Headed Stud Anchor at Chords & Coll	lectors for Sh	lear Tr	ransfer				
	Perpendicular Connection Pattern						ery 3rd rib	
	Parallel Connection Attachment (maximum)			1	row al:	16	in. o c.
Minimum	Connections to Supporting Members	2						
	Minimum connections to all supp	orts may be	anvo	f the follo	ving arc snot	welds fille	t welds	
	PAF's, screws, Shearflex(® anchor						1.000.010.00	
	Perpendicular Connection Pattern	1					1 per rib	
	Parallel Ferimeter Connections for		greate	er than 5 ft			36	in. o c.
Governing	Deck-Slab Strength and Stiffness							
							2440	-16
	Available Diaphragm Design St Controlled by Connections to Cho		ectors		Va	=: ΦQN =	3160	plf
						10	1475	histor
	Deck-Slab Diaphragm Design She	ar Stiffness				C ¹ =	1425	kip/in
Deck-S ab	Shear Strength							
	Deck-Slab Diagonal Tension Desig	gn Shear Stre	ength			ΦSn =	9118	plf
Charle 0								
Chords &	Collector Shear Transfer Strength							
	Chord & Collectors Design Shear T	Transfer Stre	ngth			ΦQN =	3160	pif
				Diago	nal Tension St	rear Screng	gin	
	Perpendicular		./					
	Shear Transfer	7	1	/ /				
					·V			
	himmer		mil					
			7		Parallel Shear Transl	fer		
Not	25							
	 For UI. Fire rated assemblies, r Minimum connections to support 							
	3. Support welds at interlocking							
	 Eramix Steel Fibers up to 66 lb 900 Series Designs, and G229. 	o/ cy are app	roved	in lieu of w	relded wire fat	oric in all U	L D700, D8	100 , and
	5. Sidelap connections between s							
	or 1-1/2 in. top arc seam weld. T	he maximun	n sidel	ap connec	tion spacing sh	all not exc	eed 36 in. c	0. C.
	ns generated Per 2018 IBC & IAPMO I	ER-0652 usi	ng cal c	ulator V1.		Date:	3/30	/2023
Calculatio					indeper dent you ficatio		decises The int	formation in this
NO TICE: De sign	defixets that would cause injury or deatly may result from relying	ng on the informatio	in this de	ocument withou:	es and (ondicior s and ti	n by a qualified pr	THE OUT OF HE TELATE	I ID IIIIS (ROCHINED)
NO TICE: De sign	vale of AS15. Nuclei Corporation and ES artifiat is expressly di	isci iim: (i) a ny and a	ii represa	ntations warran :	es and conditions and (n by a qualified pi 1) all habt ny arts	ig out of it relate	i to this (locument
NO TICE: De sign document i s pro	vale of AS15. Nuclei Corporation and ES artifiat is expressly di	isci iim: (i) a ny and a	ge 1 of	ntations warran :	es and conditions and (n by a qua iffied pi i) all habi ny artsi	ressional rite in	to this locument
NO TICE: De sign document i s pro	vale of AS15. Nuclei Corporation and ES artifiat is expressly di	isci iim: (i) a ny and a	ii represa	ntations warran :	es and i ondinior s and (n by a qua inted pr	ng out of or relate	
NO TICE: De sign document i s pro	vale of AS15. Nuclei Corporation and ES artifiat is expressly di	isci iim: (i) a ny and a	ii represa	ntations warran :	es and ionificion s and (h by a qua iffed pr	ng out of a relate	
NO TICE: De sign document i s pro	vale of AS15. Nuclei Corporation and ES artifiat is expressly di	isci iim: (i) a ny and a	ii represa	ntations warran :	es and conditions and (n by a qua inted pr	ng out of a relate	
NO TICE: De sign document i s pro	vale of AS15. Nuclei Corporation and ES artifiat is expressly di	isci iim: (i) a ny and a	ii represa	ntations warran :	es and condition s and (n by a qua inted pr	g out of a reise	
NO TICE: De sign document i s pro	vale of AS15. Nuclei Corporation and ES artifiat is expressly di	isci iim: (i) a ny and a	ii represa	ntations warran :	es and conditions and (n by a qualified pr		
NO TICE: De sign document i s pro	vice of AS15. Nuclei Corporation and ES artifiat is expressly di	isci iim: (i) a ny and a	ii represa	ntations warran :	es und conditions and p	n y a qua inted p		

Overhang Analysis – treat as beam with two simple supports and an overhang

Loads

TribWidth = 3 ft1 bearing plate/screwanchor every 3 ribs (3 feet)

Extra Concrete

 $Dead_{Overhang} \coloneqq ((Dead_{Membrane} + Dead_{CompositeDeck} + 1 in \cdot 145 pcf)) \cdot TribWidth = 0.231 klf$

 $Dead_{Roof} := (Dead_{MEP} + Dead_{RoofInsulation} + Dead_{Membrane} + Dead_{CompositeDeck} + 1 in \cdot 145 pcf) \cdot TribWidth = 0.247 klf$

Analyze it for the live over the total roof, just the $Live := L \cdot TribWidth = 0.3 \ klf$ overhang, and just over the span between the walls

 $Wind_{uplift} := W_{uplift} \cdot TribWidth = -0.041 \ klf$

Neglect Positive Wind load because it is so small

$Snow = S \cdot TribWidth = 0.107 \ klf$

Load Definitions

	Case	Load type	List								
	1:Dead Overh	uniform load	1	PX=0.0	PZ=-0.23	global	not project.	absolute	BE=0.0	DZ=0.0	MEMO:
	2:Dead Roof	uniform load	2	PX=0.0	PZ=-0.25	global	not project.	absolute	BE=0.0	DZ=0.0	MEMO:
	3:Live Overha	uniform load	1	PX=0.0	PZ=-0.30	global	not project.	absolute	BE=0.0	DZ=0.0	MEMO:
	4:Live Roof	uniform load	2	PX=0.0	PZ=-0.30	global	not project.	absolute	BE=0.0	DZ=0.0	MEMO:
	5:Live Total	uniform load	12	PX=0.0	PZ=-0.30	global	not project.	absolute	BE=0.0	DZ=0.0	MEMO:
	6:Uplift	uniform load	12	PX=0.0	PZ=0.04	global	not project.	absolute	BE=0.0	DZ=0.0	MEMO:
	7:Snow	uniform load	12	PX=0.0	PZ=-0.11	global	not project.	absolute	BE=0.0	DZ=0.0	MEMO:
ż											

Applied all LRFD Load Combos

Combinations	Name	Analysis type	Combi nation	Case nature	Definition
8 (C)	1.4D	Linear Combinati	ULS	dead	(1+2)*1.4
9 (C)	1.2D+1.6L(Overhang)+0.5S	Linear Combinati	ULS	dead	(1+2)*1.20+3*1.60+7*0.5
10 (C)	1.2D+1.6L(Roof)+0.5S	Linear Combinati	ULS	dead	(1+2)*1.20+4*1.60+7*0.5
11 (C)	1.2D+1.6L(Total)+0.5S	Linear Combinati	ULS	dead	(1+2)*1.20+5*1.60+7*0.5
12 (C)	1.2D+1.6S+L(Overhang)	Linear Combinati	ULS	dead	(1+2)*1.20+7*1.60+3*1.0
13 (C)	1.2D+1.6S+L(Roof)	Linear Combinati	ULS	dead	(1+2)*1.20+4*1.00+7*1.6
14 (C)	1.2D+1.6S+L(Total)	Linear Combinati	ULS	dead	(1+2)*1.20+5*1.00+7*1.6
15 (C)	1.2D+1.6S+0.5W	Linear Combinati	ULS	dead	(1+2)*1.20+7*1.60+6*1.0
16 (C)	1.2D+W+L(Overhang)+0.5S	Linear Combinati	ULS	dead	(1+2)*1.20+(3+6)*1.00+7*0.5
17 (C)	1.2D+W+L(Roof)+0.5S	Linear Combinati	ULS	dead	(1+2)*1.20+(6+4)*1.00+7*0.5
18 (C)	1.2D+W+L(Total)+0.5S	Linear Combinati	ULS	dead	(1+2)*1.20+(5+6)*1.00+7*0.5
19 (C)	0.9D+W	Linear Combinati	ULS	dead	(1+2)*0.90+6*1.0

Non-Commercial Use Only

1.2 D+1.6L(Total)+0.5S produces the highest shear

Slab Depth		Deck	Maximum Unshored Construction Clear Span		Concrete + Deck	Deflection $I_d = (I_{cr} + I_{u})/2$	Moment ØM _{no}	Shear ØV _{no}	
Total	Topping	Gage	1	2	3	(psf)	(in⁴/ft)	(kip-ft/ft)	(<mark>kip/ft)</mark>
5"	2"	22	10'-0"	10'-7"	11'-0"	44.0	7.54	5.16	4.72
		20	11'-9"	12'-5"	12'-10"	44.4	8.04	6.14	5.61
		19	12'-3"	13'-10"	14'-3"	44.7	8.49	7.03	5.61
		18	12'-8"	15'-1"	14'-10"	45.0	8.89	7.86	5.61
		16	13'-4"	16'-8"	15'-8"	45.8	9.72	9.60	5.61
		22	8'-9"	8'-3"	9'-4"	62.1	15.94	6.80	5.90
		20	10'-4"	10'-11"	11'-3"	62.5	16.93	8.11	7.36
61/2"	31/2"	19	11'-4"	12'-2"	12'-7"	62.8	17.82	9.31	7.97
		18	11'-8"	13'-4"	13'-8"	63.1	18.62	10.41	7.97
		16	12'-4"	15'-0"	14"-6"	63.9	20.27	12.75	7.97
7½"	41/2 "	22	8'-2"	7'-2"	8'-2"	74.2	24.12	7.98	6.77
		20	9'-7"	10'-2"	10'-6"	74.6	25.57	9.52	8.23
		19	10'-9"	11'-5"	11'-9"	74.9	26.87	10.95	9.46
		18	11'-2"	12'-5"	12'-10"	75.2	28.04	12.26	9.70
		16	11'-10"	14'-0"	13'-11"	76.0	30.47	15.06	9.70
lega	tiveMo	oment	Allow) =	1.97	kip ft	FribWid	<i>th</i> = 23.91	kip	Sufficient
							he 4 foo and is st		

Selection of Expansion Anchor Connecting Base Plate to CMU

Link: https://www.strongtie.com/mechanicalanchors_mechanicalanchoringproducts/tnt_screw/p/titen-turbo

Datasheet: http://embed.widencdn.net/pdf/plus/ssttoolbox/5lzzrblyap/C-A-2021-p147-149.pdf

Designing for the less long wall would result in a higher in plane shear force, so design for the East wall

Anchor	Em	bedment			Dimensions		Allowa			
Diamete (in.)	1	Depth (in.)	Spacing	1	n.) Ige	End	Loar (lb.)4			
3∕16		1¼	3		7%	37/8	117			
1/4		11⁄4	4	3	7/8	31/8	117			
2. Embedment is 3. Screw anchor 4. Allowable load Allowable S	the thickness of s may be installed Is are based on a hear Load fo	of 1,500 psi at time o the face shell. at any location in the safety factor of 5.0 fo r Titen Turbo S Wall Faces1.2.3	e wall face provide or installations une	der the IBC an		distances are ma	intained.			
Anchor Diameter	Embedment Depth (in.)		m Dimensions (in.)		Direct		Allowable L	oad		
(in.)	(in.)	Spacing	Edge	End	Load	ding	(lb.)4			
^{3∕} 16	1¼	3	31/8	3%	Toward edge, pa	rallel to wall end	164			
1/4	1¼	4	31%	37%	Toward edge, pa	rallel to wall end	190			
* See p. 12 for an	explanation of the l	oad table icons.								149
			1 1/1"	Scrow	Ancho	r Diamet	or			
(\Shear	rLoad _{Pa}	Pic						ear _{allow}	≔ 190	lbf
(\Sheat	r <i>Load_{Pa}</i> Requ	rallel, Shear							≔ 190 wable	lbf
(\Sheat		rallel, Shear		$r_p) = 1$						lbf
		rallel , Shean uired		$r_p) = 1$	86.63 <i>11</i>					lbf
_ength	Requ	uired		$r_p) = 1$	86.63 <i>11</i>					
_ength EmbedL	Require	uired		$r_p) = 1$	86.63 <i>11</i>					
_ength EmbedE BasePla LengthR	Required	allet, Shear uired ad 1.25 in = 0.5 in = Embear	rLoad _{Pe}	rp)) = 1 Sι + Base.	86.63 <i>It</i> ufficient	<i>bf</i> <i>epth</i> = 1.7	Sh 75 in	Allo	wable	
Length Embed BasePla LengthR	Require Require Depth := teDepth Required + Head Type	eallet, Shear uired ed 1.25 in = 0.5 in = Embear $= communications communications (1) = 10000000000000000000000000000000000$	rLoad _{Pe}	$(r_p) = 1$ Su + Base.	86.63 14	<i>bf</i>	Shu 75 in Product Includes \$	Cotor ¢	Packaging Oty.	
Length Embed BasePla LengthR Model No	Require Require Depth := teDepth Required + Head Type Hex Head	eallel, Shean	rLoadPe rLoadPe Performance IDepth Carbon Carbon Carbon	<i>mp</i>)) = 1 Steel 1/4×11	86.63 <i>[1]</i> ufficient <i>PlateDe</i> <i>Drill Bit Dia. (m</i> <i>3/16</i>	bf epth = 1. 5/16 in. Hex	7.5 in	Allo	Packaging Qy. 4	
-ength EmbedE BasePla LengthR	Require Require Depth := teDepth Required e Meed Type 4H Hex Head 1TF Fat Head	eallel, Shean uired ed 1.25 in := 0.5 in := EmbeanCatagorianZac Plated with CeranZac Plated with Ceran	rLoadPe	$F(p) = 1$ $Stel = 1/4 \times 11$ $Stee = 1/4 \times 11$	86.63 1/2 ufficient	bf = = = 1. = = 5/16 in. Hex = = 10 €-LOBE	Sha Sha Sha Sha Sha Sha Sha Sha Sha Sha	Allo	Packaging Qty.	
-ength EmbedE BasePla CengthR Model No TNT25114 TNT25114	Require Require Depth := teDepth Cequired Heat Type Heat Head ATF Fiat Head	allel, Shean uired ed 1.25 in := 0.5 in := Embea € Conting Zinc Plated with Ceran Zinc Plated with Ceran	rLoadPe rLoadPe IDepth - tic Coating Carbon nic Coating Carbon	<i>mp</i>)) = 1 Stel Stel Stel Stel 1/4×11 Stel 1/4×11	86.63 1/2 ufficient PlateDe onil Bit Dia, (r /4 3/16 /4 3/16	bf epth = 1. 5/16 in Hex T30 6-Lobe	Image: Share of the state	Allo Allo Allo Allo Allo Allo Allo Allo	Wable Image: Strate	
Length Embed L Base Pla Length R Model No TNT2511 TNTW2511 TNTW2511	Require Require Depth := teDepth Required Heat Head 4TF Flat Head 4TF Flat Head	allel, Shean ired ired i.25 in := 0.5 in := Embea Cating Zinc Plated with Ceran Zinc Plated with Ceran Zinc Plated with Ceran	rLoadPe rLo	<i>mp</i>)) = 1 Stel Stel Stel Stel 1/4×11 Stel 1/4×13	86.63 1/2 ufficient PlateDe onil Ba Da. (m /4 3/16 /4 3/16 /4 3/16	bf a bf a bf bf bf bf bf bf bf bf bf bf	Image: Share of the state	Color	Packaging Qty. 4 Packaging Qty. 4 100 100 100 100	
-ength EmbedE BasePla CengthR Model No TNT25114 TNT25114	Require Require Depth := teDepth Required tre Fiat Head 4TF Fiat Head 4TF Fiat Head 4TF Fiat Head	allel, Shean uired ed 1.25 in := 0.5 in := Embea € Conting Zinc Plated with Ceran Zinc Plated with Ceran	rLoadPee	<i>mp</i>)) = 1 Steller 1/4×11 Steel 1/4×13 Steel 1/4×13 Steel 1/4×13	86.63 1/2 ufficient PlateDe Dell Bit Dia. (m /4 3/16 /4 3/16 /4 3/16 /4 3/16	bf epth = 1. 5/16 in Hex T30 6-Lobe	Image: Share of the state	Allo Allo Allo Allo Allo Allo Allo Allo	Wable Image: Strate	

Phase One Restroom Wall Calculations

Link: https://ncma.org/resource/strength-design-of-concrete-masonry-walls-for-axial-flexure/

NCMA TEK

National Concrete Masonry Association an information series from the national authority on concrete masonry technology

STRENGTH DESIGN OF CONCRETE MASONRY WALLS FOR AXIAL LOAD & FLEXURE

TEK 14-11B Structural (2003)

Figures 1 through 8 apply to fully or partially grouted reinforced concrete masonry walls with a specified compressive strength f'_m of 1,500 psi (10.34 MPa), and a maximum wall height of 20 ft (6.10 m), Grade 60 (414 MPa) vertical reinforcement, with reinforcing bars positioned in the center of the wall

and reinforcing bar spacing *s* from 8 in. to 120 in. (203 to 3,048 mm). The following discussion applies to simply supported walls and is limited to uniform lateral loads. Other support and loading conditions should comply with applicable engineering procedures. Each figure applies to one specific wall thickness and one reinforcing bar size.

Conditions are met:

-Walls are fully grouted -CMU blocks have a compressive strength of 1500 psi - standard -The wall height is 10 feet -Grade 60 reinforcement will be used -Reinforcement bars will be positioned in the center of the wall -Spacing will be between the specified amounts -Walls are simply supported... supported by the roof diaphragm at the top and the foundations at the bottom -Wind load is a uniform lateral load (Uniform wall pressure) **We can use this document** In strength design, two different deflections are calculated; one for service level loads (δ_s) and another for factored loads (δ_u). For a uniformly loaded simply supported wall, the resulting bending moment is as follows:

 $M_x = W_x h^2 / 8 + P_{xy}(e/2) + P_x \delta_x$ (Eqn. 1)

In the above equation, notations with "x" are replaced with factored or service level values as appropriate. The first term on the right side of Equation 1 represents the maximum moment of a uniform load at the mid-height of the wall (normally wind or earthquake loads). The second term represents the moment induced by eccentrically applied floor or roof loads. The third term is the P-delta effect, which is the moment induced by vertical axial loads and lateral deflection of the wall.

D dead load, lb/ft (kN/m) modulus of elasticity of masonry in compression, psi E (MPa) eccentricity of axial load - measured from centroid of wall, in.(mm) specified masonry compressive strength, psi (MPa) modulus of rupture, psi (MPa) factor for floor load: = 1.0 for floors in places of public assembly, for live loads in excess of 100 psf(4.8 kPa) and for parking garage live loads; = 0.5 otherwise h height of wall, in. (mm) I moment of inertia of cracked cross-sectional area of a member, in.4/ft (mm4/m) I, moment of inertia of gross cross-sectional area of a member, taken here as equal to I mg, in.4/ft (mm4/m) L live load, lb/ft(kN/m) L, M roof live load, lb/ft (kN/m) nominal cracking moment strength, in.-lb/ft (kN·m/m) M service moment at midheight of a member, including Pdelta effects, in.-lb/ft (kN·m/m) M factored moment, in.-lb/ft or ft-lb/ft (kN·m/m) P factored axial load, lb/ft (kN/m) P_{uf} factored load from tributary floor or roof areas, lb/ft (kN/ m) P., load due to wall weight, lb/ft (kN/m) S section modulus of the net cross-sectional area of a member, in.3/ft(mm3/m) spacing of vertical reinforcement, in. (mm) W wind load, psf (kN/m2) horizontal deflection at midheight under service loads, δ in.(mm) δ. deflection due to factored loads, in. (mm)

Phase One CM	/IU Co	umn	Calo	culat	tions						
Link: https://ncma.c	org/resou	ırce/allo	owabl	e-stre	ss-des	ign-of-o	concrete-	mason	ry-colu	mns/	

INTRODUCTION

Masonry elements typically support both axial and lateral loads. For structural elements that resist primarily lateral forces, axial load can increase the element's flexural resistance. In this case, axial load is often neglected as a conservative assumption which simplifies the analysis. However, for elements carrying significant axial loads, such as columns, the additional moment due to lateral loads or eccentric axial loads typically reduces the element's axial capacity. In this case, the design must consider the interaction between axial load and moment.

The walls will need to support major axial point loads from the Phase 3 Roof, so columns are needed.

By definition, a column is an isolated vertical member whose horizontal dimension measured at right angles to its thickness does not exceed three times its thickness and whose height is greater than four times its thickness (ref. 1). Columns function primarily as compression members when supporting beams, girders, trusses or similar elements.

	Our columns will meet this criteria.
moment ca Structures calculation	cy of columns may be reduced due to either buckling or to additional bending used by deflection ($P-D$ effects). In Building Code Requirements for Masonry (ref. 1, referred to hereafter as the Code), slenderness effects are included in the of allowable compressive stress for reinforced masonry. For columns, the Code the effective height to thickness ratio to 25, and requires a minimum nominal side
dimension	of 8 in. (203 mm).
the designer rotation at t	ve height of a column is typically taken as the clear height between supports. If er can demonstrate that there is reliable restraint against both translation and the supports, the effective height may be reduced in accordance with al design principles.
introduced minimum,	y also affects the structural capacity of masonry columns. Eccentricity may be by eccentric axial loads, lateral loads, or a column that is out of plumb. As a the <i>Code</i> requires that the design consider an eccentricity of 0.1 times each side with each axis considered independently. This minimum eccentricity is account for construction tolerances. If the actual eccentricity exceeds this

Non-Commercial Use Only

Th effective height of the column will be roughly 10 feet between the roof diaphragm and the floor slab. Our column will be at least 8 inches per side, so 10 ft/8 in = 15 so the ratio is for sure satisfied. In addition, we will be sure to concentrically load our columns, so eccentricity will not be an issue.

For Column Size

Section in Compression

An eccentricity located within the kern (center one-third) of the column places the entire section in compression. In this case, capacity is determined by the equations for P_a listed a above, and Table 2 can be used for design for columns up to 20 ft (6.1 m) high. The table assumes the element is in pure compression under a minimum design eccentricity of 0.1*t* for each axis, as required by the *Code*. The designer is responsible for confirming this.

The maximum axial load from the column is 70 kip. Therefore, using a column size of 16"x16" would satisfy this axial load (due to its capacity of 76 kip) and conform to the geometry of the wall pretty well.

The *Code* allows lateral ties to be placed in either mortar or grout, although placement in grout more effectively prevents buckling and results in more ductile behavior. For this reason, the *Code* requires ties to be embedded in grout in Seismic Performance Categories D and E.

Vertical reinforcement and lateral ties are needed... for the lateral ties, they will be placed in the grout because that results in better performance.

		Table	1—Allowable	eColumn Reir	nforcement			
	I N	umber of rein	forcing bars p	ermitted, base	d on 0.0025A	$\leq A \leq 0.04A$	1, for bar sizes	s:
Column	No. 4	No.5	No. 6	No. 7	No. 8	No. 9	"No.10	No.11
size, in. (mm)	(M13)	(M16)	(M19)	(M22)	(M25)	(M29)	(M 32)	(M36)
8 x 8 (203 x 203)	4-10	4	4	N/A	N/A	N/A	N/A	N/A
8 x 16 (203 x 406)	4-12	4 - 12	4 - 10	4 - 8	4-6	4	N/A	N/A
8 x 24 (203 x 610)	4 - 12	4 - 12	4 - 12	4 - 12	4 - 8	4-6	4	4
10 x 16 (254x406)	4-12	4 - 12	4 - 12	4 - 10	4-6	4-6	4	N/A
10 x 24 (254x610)	4-12	4 - 12	4 - 12	4 - 12	4 - 10	4 - 8	4-6	4
12 x 12 (305 x 305)	4-12	4 - 12	4 - 12	4 - 8	4-6	4	4	N/A
12 x 16 (305 x 406)	4-12	4 - 12	4 - 12	4 - 12	4 - 8	4-6	4	4
12 x 24 (305x610)	4-12	4 - 12	4 - 12	4 - 12	4 - 12	4-10	4-8	4-6
12 x 32 (305 x 813)	6-12	4 - 12	4 - 12	4 - 12	4 - 12	4-12	4 - 10	4-8
16 x 16 (406x406)	4-12	4 - 12	4 - 12	4 - 12	4 - 12	4 - 8	4-6	4-8
16 x 24 (406x 610)	6-12	4 - 12	4 - 12	4 - 12	4 - 12	4-12	4 - 10	4-8
16 x 32 (406x 813)	8-12	4 - 12	4 - 12	4 - 12	4 - 12	4-12	4-12	4-12
24 x 24 (610x 610)	8-12	6 - 12	4 - 12	4 - 12	4 - 12	4-12	4-12	4-12
24 x 32 (610x 813)	10-12	8-12	6 - 12	4 - 12	4 - 12	4 - 12	4-12	4-12
24 x 40 (610x 1016)	12	8 - 12	6-12	4-12	4-12	4-12	4-12	4-12

Table 1-Allowable Column Reinforcement

Since Grade 60 No. 4 (M13) bars are used for the walls, we are sticking with this type of reinforcement. 8 vertical bars are required for a 16"x16" column due to a max of 6" clear distance. Additional reinforcement requirements are shown below.

Phase Three Restroom Wall Calculations

Link: https://ncma.org/resource/loadbearing-concrete-masonry-wall-design/

The design aids in this TEK cover combined axial compression or axial tension and flexure, as determined using the allowable stress design provisions of Building Code Requirements for Masonry Structures (ref. 1). The data in this TEK applies to 8 in. (203 mm) thick reinforced concrete masonry walls with a specified compressive strength, f'_m , of 1500 psi (10.3 MPa), and a maximum wall height of 20 ft (6.1 m) (taller walls can be evaluated using the NCMA computer software (ref. 3) or other design tools). Reinforcing bars are assumed to be located at the center of the wall, and bar sizes 4, 5, 6, 7, and 8 are included.

Anchoring of Veneer

Link: https://ncma.org/resource/concrete-masonry-veneers/

A1in. (25 mm) minimum air space must be maintained between the anchored veneer and backing to facilitate drainage. A 1 in. (25 mm) air space is considered appropriate if special precautions are taken to keep the air space clean (such as beveling the mortar bed away from the cavity). Otherwise, a 2 in. (51 mm) air space is preferred. As an alternative, proprietary insulating drainage products can be used.

A 1 inch gap between backing and veneer is appropriate

Selecting Wall Ties

Link: https://www.blok-lok.com/index.php/product/2-seal-concrete-seal-tie/

Spec Sheet: https://www.blok-lok.com/wp-content/uploads/2020/04/13CON2SEALTIE.pdf

Concrete 2-Seal™ Tie

Our cavity is 4" (3" insulation and 1" air gap)... was tested with a 4.5" gap so it is sufficient

walls and the ramp walls, use

age ultimate load) 700# (average u * WORKING LOAD DETERMINED AT .05" DEFLECTION ed for 4 1/2" ins Pullout values assume wire 2-Seal Byna-Lok Wire Tie is fully engaged into 2-Seal Tie with "0" eccentricity.

OHMANN & BARNARD, Inc. | 30 Rasons Court | H 800.645.0616 F: 631.234.0683 | www.h-b.com

6½" 573# 6½" 402#

810# (;

3" of insulation for restroom structure, so use the highlighted tie... for the stage

the 5/8" embedded wall tie

ruction project is unique, the appropriate selection and us must be determined by competent architects, engineers

confidential and proprietary information of Hohmann © 2013-2017 MiTek®

Non-Commercial Use Only

Selecting Horizontal Reinforcement

Link: https://www.h-b.com/index.php?main_page=product_info&products_id=75 Spec Sheet: https://www.h-b.com/images/submittal/08220LAPRITEL.pdf

SPECIFYING BRICK VENEER CONTROL JOINTS

Link: https://ncma.org/resource/crack-control-for-concrete-brick-and-other-concrete-masonry-veneers/

Crack Control Recommendations for Concrete Masonry Veneers^a

- Control joints: maximum panel length to height ratio of 1¹/₂, and maximum spacing of 20 ft (6.1 m) and where stress concentrations occur
- · Joint reinforcement: at 16 in. (406 mm) o.c.
- · Mortar: Type N

^a Adjust as needed to suit local conditions and experience.

Height - 10 feet

Every 15 feet there will be an control joint and also at stress concentrations

Determining Lintel Size				

Link: https://ncma.org/resource/precast-concrete-lintels-for-concrete-masonry-construction/ Link: https://ncma.org/resource/asd-of-concrete-masonry-lintels-2012-ibc-2011-msjc/

Design for the longest span...

A modular lintel length should be specified, with a minimum length of the clear span plus 8 in. (203 mm), to provide at least 4 in. (102 mm) bearing at each end (ref. 1). Additionally, if lintels are subjected to tensile stresses during storage, transportation, handling, or placement, it is recommended that steel reinforcement be provided in both the top and bottom to prevent cracking. Minimum concrete cover over the steel should be 1 ½ in. (13 mm). The lintel width, or width of the combination of side-by-side lintels, should equal the width of the supported masonry wythe.

Longest clear span is 8 feet

Length := 5.5 ft + 4 in + 4 in = 6.167 ft

Width = 8 in Width of wythe

Reinforcement will be needed

Need to design for flexure and shear

equal or exceed the factored loads. Precast concrete strength reduction factors are 0.9 and 0.85 for flexure and shear, respectively (ref. 2).

Flexure strength

$$\phi M_{a} = \phi [A_{a}f_{a}(d-a/2)], \phi = 0.9$$

Shear strength

$$\phi V_n = \phi(2) (f'_n)^{1/2} bd, \ \phi = 0.85$$

S= Sn W= W	oof Live L ow Load /ind Load .in Load	oad				
L= Li	ead Load ve Load					
Where						
	9 10				$D+0.525E_v+0.525E_h+0.6D-0.7E_v+0.7E_h$	0.751 +0.755
	8 9				$D+0.7E_v+0.7E_h$ $D+0.525E_v+0.525E_h+0.525E_h+0.525E_h$	-0.751 +0.755
	7	$\frac{1.2D + E_v + E_h + L}{0.9D - E_v + E_h}$	·		0.6D+0.6W	$(0.75(L_r)) = 0.75(L_r)$
	5 6	0.9D+W $1.2D+E_v+E_h+L+0.2S$			$\frac{D+0.6W}{D+0.75L+0.75(0.6W)}$	$\pm 0.75(L \text{ or } S \text{ or } R)$
	4	$1.2D + W + L + 0.5(L_r or$			$D + 0.75L + 0.75(L_r \text{ or } 2)$	S or R)
	2 3	$1.2D + 1.6L + 0.5(L_r \text{ or } 1.2D + 1.6(L_r \text{ or } S \text{ or } R))$			$\frac{D+L}{D+(L_r \text{ or } S \text{ or } R)}$	
	1	1.4D	C D)		D	
	LC	LRFD			ASD	
ading						
		Use preca	ist lintel chart			
	2. Reinforceme 3. When deter	I on strength design method as descri- nt, $f'_{\pm} = 60,000$ pai (413 MPa). out at listed effective depth exceeds the mining minimum end bearing, the be- es not exceed $0.25f'_{\pm}$ (ref. 1).	e maximum reinforcing ratio of 0.	75 p.		
	5 (16M) 2 6 (19M) 2	9,800 (43.6) 430,410 (48.6) 9,760 (43.4) 588,870 (66.5)	10,590 (47.1) 434,990 (49.1) 10,540 (46.9) 598,090 (67.6)	11,320 (50.4 11,270 (50.1) 438,420 (49.5)) 605,000 (68.4)	
	6 (19M) 1 4 (13M) 2	Ib (kN) inlb (kN m) 9,760 (43.4) 310,570 (35.1)	b (kN) inlb (kNm) 10,540 (46.9) 312,870 (35.4) 10,640 (47.3) 288,270 (32.6)	Ib (kN) 11,270 (50.1	inlb (kNm)) 314,600 (35.5)	
	Table 4 - Shea Reinforcing N bar size of (No.) ba	f 3000 (20.7)	in. (203 x 406 mm) Reinforced Co f', psi (MPa) 3500 (24.1) dif dM		00 (27.6)	
	CALCULATION OF A		•		छि	
	5 (16M) 2 6 (19M) 2	4,120 (18.4) 162,570 (18.4)	4,450 (19.8) 167,150 (18.9) [2] [2]	4,760 (21.2) 4,710 (21.0)	170,580 (19.3)	
	5 (16M) 1 6 (19M) 1 4 (13M) 2	4,080 (18.2) 120,490 (13.6)	4,450 (19.8) 90,430 (10.2) 4,410 (19.6) 122,790 (13.9) 4,500 (20.0) 115,470 (13.0)	4,760 (21.2) 4,710 (21.0) 4,810 (21.4)	124,520 (14.1)	
	4 (13M) 1 5 (16M) 1		lb (kN) inlb (kNm) 4,500 (20.0) 60,590 (6.85) 4,450 (10.8) 90,430 (10.2)	lb (kN) 4,810 (21.4) 4,260 (21.2)		
	(No.) ba	n øV øM	¢V\$M	41.	414	
	Table 3 - Shea Reinforcing No bur size of		L (203 x 203 mm) Reinforced Con		0 (27.6)	
	_				and the second	
	4 (13M) 2 5 (16M) 2	3,070 (13.7) 108,820 (12.3)	3,330 (14.9) 55,850 (1.44) 3,320 (14.8) 111,410 (12.6) [2] [2]	3,590 (16.0) 3,550 (15.8) 3,510 (15.6)	113,340 (12.8)	
	4 (13M) 1 5 (16M) 1 3 (10M) 2	3,040 (13.5) 86,440 (9.77)	3,320 (14.8) 59,570 (6.73) 3,280 (14.6) 87,990 (9.94) 3,350 (14.9) 65,850 (7.44)	3,550 (15.8) 3,510 (15.6) 3,590 (16.0)	89,160 (10.1)	
	(No.) ba	Ib (kN) inIb (kNm)	φV_ φM_ b (kN) inlb (kNm)	¢۴ Ib (kN)	¢M, inb (kNm)	
	Reinforcing No bur size of	f 3000 (20.7)	f', psi (MPa) 3500 (24.1)	100	00 (27.6)	
		r and Moment Capacity for 6 x 8 in		erete Lintels		
	4 (13M) 1 5 (16M) 1	1,980 (8.8) 56,440 (6.38)	2,140 (9.5) 57,440 (6.49) 2,110 (9.4) 82,860 (9.36)	2,290 (10.2) 2,260 (10.1)	58,190 (6.57)	
	(No.) ha 3 (10M) 1	Ib (kN) in -Ib (kN m) 2,000 (8.9) 33,140 (3.75)	φV, φM, lb (kN) inlb (kNm) 2,160 (9.6) 33,450 (3.78)	φ ⁰ , lb (kN) 2,310 (10.3)		
	Reinforcing No bur size of	f 3000 (20.7)	f', psi (MPa) 3500 (24.1)		0 (27.6)	
	Reinford ht				dia .	
	Table 1 - Shea	r and Moment Capacity for 4 x 8 in	(102 x 203 mm) Reinforced Com	crete Lintels	H	

Loads:		
$Dead_{Membrane} \coloneqq 1 \ psf$		$Dead_{MEP} \coloneqq 5 \ psf$
$Dead_{RoofInsulation} \approx 0.365 \ psf$		$Dead_{CompositeDeck} \coloneqq 63.9 \ psf$
$D \coloneqq Dead_{Membrane} + (1 \ in \cdot 145 \ pcf) + Dead_{Membrane}$ Additional 1 inch of concrete for roof slop		
$L \coloneqq 100 \ psf$		
$S = 35.7 \ psf$		
$W \coloneqq 0.391 \ psf$		
<i>W</i> _{uplift} =-13.671 <i>psf</i>		
LRFD Load Combos:		
1.4 D = 115.288 psf (1)		
1.2 <i>D</i> +1.6 <i>L</i> +0.5 <i>S</i> =276.668 <i>psf</i>	(2)	
1.2 <i>D</i> +1.6 <i>S</i> + <i>L</i> =255.938 <i>psf</i>		glect wind load in combo 3
1.2 $D + W + L + 0.5 S = 217.059 psf$	(4)	cause it is smaller than L
0.9 $((D + Dead_{CompositeDeck})) + W_{uplift} = 11$	7.953 <i>psf</i>	(5) Uplift is not an issue
$MaxLoad = 276.668 \ psf$		
Tributary Area Over the Largest Opening	J	
$Trib \coloneqq \begin{array}{c} 16.6666 \ ft \\ + 4 \ ft = 12.333 \ ft \\ 2 \end{array}$	At Ov	erhang
$Dead_{Wall} \coloneqq 125 \ pcf \cdot 16 \ in \cdot 8 \ in + 120$) <i>pcf</i> · 4 <i>in</i> · 1	6 in = 164.444 plf
$w \coloneqq MaxLoad \cdot Trib + Dead_{Wall} \cdot 1.2 = 3$	3.61 <i>klf</i>	Add in factored dead load of wall

Non-Commercial Use Only

$ \begin{array}{c} = w \\ & \\ \\ $	$I_{Max} =$	w ·	Length ² 8	=(\2	2.0	59 · 10⁵) in · ll	bf				
Image: State of the s	$f := W \cdot$.113 ·	10	₄ <i>\) lbf</i>	•					
Image: Second state 3000 (267) 3500 (241) 4000 (27.6) 41.6 (106) 1 2000 (107) 21.0 (107) 21.0 (107) 21.0 (107) 31.0 (257) 4 (1050) 1 1.900 (157) 84.69 (120) 21.0 (107) 21.0 (107) 31.0 (107) 4 (1050) 1 1.900 (157) 84.69 (120) 21.0 (10.4) 82.89 (12.0) 22.90 (10.1) 84.70 (12.7) 1 (106) 1 1.900 (157) 84.69 (120) 22.90 (12.0) 22.90 (12.0) 84.70 (12.7) 1 (106) 1 1.900 (127) 1.900 (12.7) 1.900 (12.7) 1.900 (12.7) 1.900 (12.7) 1 (1010) 1 1.900 (12.7) 1.900 (12.7) 1.900 (12.7) 1.900 (12.7) 1.900 (12.7) 1 (1010) 1 1.900 (12.7) 1.900 (12.7) 1.900 (12.7) 1.900 (12.7) 1.900 (12.7) 1.900 (12.7) 1.900 (12.7) 1.900 (12.7) 1.900 (12.7) 1.900 (12.7) 1.900 (12.7) 1.900 (12.7) 1.900 (12.7) 1.900 (12.7) 1.900 (12.7) 1.900 (12.7) 1.900 (12.7) 1.900 (12.7)						and Moment C:	upacity for 4 x 8 in			crete Lintels	静	[
				bur size	of			3500	(24.1)			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					_	Ib (kN)	inlb (kNm)	lb (kN)	inIb (kN m)	lb (kN)	inb (kNm)	
Bernforcing Ne. f_{-p} pris (MPs) The factor of the second se				4 (13M)		1,980 (8.8)	56,440 (6.38)	2,140 (9.5)	57,440 (6.49)	2,290 (10.2)	58,190 (6.57)	
Bernforcing Ne. f_{-p} pris (MPs) The factor of the second se								(15) - 50)	Birtonto	- Link		
				Reinforcing	g No.			f', psi	(MPa)		(27.6)	
$\frac{5 (16M)}{5 (16M)} = \frac{1}{2} \frac{1}{10^{10}} \frac{10 (135)}{10 (135)} \frac{65 (36)}{65 (125)} \frac{1}{3} \frac{55 (16)}{35 (161)} \frac{1}{3} \frac{55 (16)}{5 (155)} \frac{1}{3} \frac{1}{35 (16)} \frac{1}{6 (55)} \frac{1}{3} \frac{1}{35 (16)} \frac{1}{10 (126)} \frac{1}{3} \frac{1}{35 (16)} \frac{1}{10 (126)} \frac{1}{3} \frac{1}{5 (16)} \frac{1}{10 (126)} \frac{1}{1$						Ib (kN)	inlb (kNm)	lb (kN)	inIb (kNm)	Ib (kN)	inb (kNm)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				5 (16M) 3 (10M)	1 2	3,040 (13.5) 3,110 (13.8)	86,440 (9.77) 65,070 (7.35)	3,280 (14.6) 3,350 (14.9)	87,990 (9.94) 65,850 (7.44)	3,510 (15.6) 3,590 (16.0)	89,160 (10.1) 66,430 (7.51)	
$\frac{1}{10000000000000000000000000000000000$												
$\frac{1}{1000} = \frac{1}{1000} = 1$				Table 3 - S	these s	and Managert Co	marity for \$ + 8 in	(703 - 703	Reinforced Com	crete Lintels		
$\frac{b_{0}(h)}{4(13b)} = \frac{b_{0}(h)}{4(120)} \frac{in_{0}-b_{0}(h)}{h(120)} + \frac{b_{0}(h)}{h(120)} \frac{in_{0}-b_{0}(h)}{h(120)} \frac{in_{0}-b_{0}(h)}{h(120)} + \frac{b_{0}(h)}{h(120)} \frac{in_{0}-b_{0}(h)}{h(120)} + \frac{b_{0}(h)}{h(120)} + $				Reinforcing	g No.	1		f', pri	(MPa)		Do IN. COD MAD	
$\frac{5 (16M)}{6 (19M)} = \frac{1}{4} (\frac{120}{450} (18.4) + \frac{89,290}{20} (10.1) + \frac{4450}{440} (19.8) + \frac{90,400}{61} (10.2) + \frac{4760}{470} (21.6) + \frac{91,290}{12.5} (14.1) + \frac{4760}{41.5} (13.6) + \frac{4760}{41.5} (21.6) + \frac{174,520}{41.5} (14.1) + \frac{4760}{41.5} (21.6) + \frac{174,520}{41.5} (14.5) + \frac{174}{41.5} (14.6) + \frac{174}$					12.03	Ib (kN)	inlb (kNm)	lb (kN)	inlb (kNm)	lb (kN)	inb (kNm)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				5 (16M) 6 (19M)	1	4,120 (18.4) 4,080 (18.2)	89,290 (10.1) 120,490 (13.6)	4,450 (19.8) 4,410 (19.6)	90,430 (10.2) 122,790 (13.9)	4,760 (21.2) 4,710 (21.0)	91,290 (10.3) 124,520 (14.1)	
Reinforcing No. f', pi (MPa) (No.) hars $\frac{\partial U_{-}}{\partial U_{-}}$ $\frac{\partial M_{-}}{\partial U_{-}}$ $\partial M_$				5 (16M)	2	4,120 (18.4)	162,570 (18.4)	4,450 (19.8)	167,150 (18.9)	4,760 (21.2)	170,580 (19.3)	
Reinforcing Nn. Join (Nn.) Join (Nn.) <td></td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>.</td> <td></td>					2						.	
1000000000000000000000000000000000000				Reinforcing	g No.			$\int_{-2}^{2} psi$	(MPa)		(27.6)	
4 (134) 2 9,850 (43.8) 286,360 (32.4) 10,640 (47.3) 282,70 (32.6) 11,370 (50.6) 289,700 (32.7) 5 (164) 2 9,800 (43.6) 10,630 (46.8) 10,590 (47.1) 11,330 (50.4) 289,700 (32.7) 6 (194) 2 9,760 (43.4) 588,870 (66.5) 10,590 (47.5) 11,270 (50.4) 68,430 (46.5) 1 Tables based on steringth design method as described in ref. 2, assuming 1.5 in. (38 mm) concrete cover and Grade 60 reinforcement, <i>i</i> = 60,000 pi (413 MPa). 8. 9. 8. 9.				(No.)	-	Ib (kN)	inlb (kNm)	lb (kN)	inIb (kNm)	Ib (kN)	inb (kNm)	
6 (19%) 2 9,760 (43.4) 588,870 (66.5) 10,540 (46.9) 598,090 (67.6) 11,270 (50.1) 605,000 (68.4) 1. Tables based on strength design method as described in ref. 2, assuming 1.5 in: (38 mm) concrete cover and Grade 60 reinforcement j. field effective depth exceeds the maximum reinforcing ratio of 0.75 ρ. 3. When determining minimum end bearing, the bearing stress of the masonry supporting the lintel should be checked to ensure it does not exceed 0.25 ⁴ / ₂ (ref. 1). Specify a 8x16 lintel with 1 #6 bar for reinforcement and 1.5 inch				4 (13M)	2	9,850 (43.8)	286,360 (32.4)	10,640 (47.3)	288,270 (32.6)	11,370 (50.6)	289,700 (32.7)	
Specify a 8x16 lintel with 1 #6 bar for reinforcement and 1.5 inch					2	9,760 (43.4)	588,870 (66.5)	10,540 (46.9)	598,090 (67.6)	11,270 (50.1)	605,000 (68.4)	
Specify a 8x16 lintel with 1 #6 bar for reinforcement and 1.5 inch				reinfore 2. Reinfor	cement.	f = 60,000 psi at listed effecti	(413 MPa). ve depth exceeds t	he maximum rein	forcing ratio of 0.1	5 p.		
Specify a 8x16 lintel with 1 #6 bar for reinforcement and 1.5 inch of concrete cover with 4000 psi compressive strength concrete									and addam	o de altra altra		
			0									
of concrete cover with 4000 psi compressive strength concrete												
				elec	000		4000 p	SICOM	pressive	estren	gin con	crete

Phase One Restroo	m Insulation Calcs	
Link to International Energy https://codes.iccsafe.org/content/	Conservation Code: IECC2021P2/chapter-4-ce-comme	rcial-energy-efficiency
Considering this building a class	C - commercial building	
CHAPTER 4 [CE] COMMER ENERGY EFFICIENCY	CIAL	
C401.2.1 International Energy Conservation Code: Commercial buildings shall comply with one of the following. 1. Prescriptive Compliance. The Prescriptive Compliance option n systems serving multiple units shall be deemed to be in complian 2. Total Building Performance. The Total Building Performance optic Exception: Additions, alterations, repairs and changes of occupancy:	on requires compliance with Section C407.	welling units and sleeping units in Group R-2 buildings without
building we will start off in section c402.1 General. Building thermal envelope assemblies for buildings that are inter the following: 1. The opaque portions of the <i>building thermal envelope</i> s C402.1.3; the U-, C- and F-factor-based method of Section 2. Roof solar reflectance and thermal emittance shall comply 3. Fenestration in building envelope assemblies shall comply 4. Air leakage of building envelope assemblies shall comply Alternatively, where buildings have a vertical fenestration area Section C401.2.2.	shall comply with the specific insulation requirements of Section C402 on C402.1.4; or the component performance alternative of Section C402 y with Section C402.3. y with Section C402.4. with Section C402.5.	ements the compliance path described in Item 1 of Section C401.2.1 shall comply with 2.2 and the thermal requirements of either the <i>R</i> -value-based method of Section 2.1.5. g and <i>building thermal envelope</i> shall comply with Item 2 of Section C401.2.1 or
Marine (C) Dry (B)	Moist (A)	Maquoketa is in Climate Zone 5
All of Alaska is in Zone 7 except for the following boroughs in Zone 8: Bethel, Northwest Arctic, Dellingham, Southeast Fairbanks, Fairbanks N. Star, Wade Hampton, Nome, Yukon-Koyukuk, North Slope	Zone 1 includes Hawaii, Guam, Puerto Rico, and the Virgin Islands	

Non-Commercial Use Only

For Roof Insulation

C402.2.3 Floors.

The thermal properties (component *R*-values or assembly *U*-, *C*- or *F*-factors) of floor assemblies over outdoor air or unconditioned space shall be as specified in Table C402.1.3 or C402.1.4 based on the construction materials used in the floor assembly. Floor framing *cavity insulation* or structural slab insulation shall be installed to maintain permanent contact with the underside of the subfloor decking or structural slabs.

"Mass floors" where used as a component of the thermal envelope of a building shall provide one of the following weights:

- 1. 35 pounds per square foot (171 kg/m²) of floor surface area.
- 2. 25 pounds per square foot (122 kg/m²) of floor surface area where the material weight is not more than 120 pounds per cubic foot (1923 kg/m³).

							Floors				
Mass ^e	NR	NR	R-6.3ci	R-8.3ci	R-10ci	R-10ci	R-14.6ci	R-16.7ci	R-14.6ci	R-16.7ci	R-16.
Joist/framing	R-13	R-13	R-30	R-30	R-30	R-30	R-30	R-30	R-30	R-30	R-3

Considering it a mass floor because floor composite deck is over 35 psf... R value needed is R-14.6 ci (continuous insulation)

We are going with a closed cell foam insulation product

Benefits of Closed Cell Foam

Closed cell foam is the best choice for robust insulating where space is an issue, as it can achieve 2x the R-Value of open cell inside a standard wall. Its rigid nature also adds to the structural integrity of the building and E84 fire rated versions are available. The closed cell also acts as a vapor barrier, so water and moisture will be less likely to get inside the home, and the foam itself is unharmed by water damage.

Product: Handi-Foam[™] Quick Cure E-84 (Class 1)

https://www.energyefficientsolutions.com/Fire_Rated.asp? item=FOAM605E84&gclid=EAIaIQobChMI3LfOkj1 QIVyv jBx19aQAPEAQYAyABEgK6K D BwE

R Value: R-6.2... required thickness of 2.5 inches

\$750 for 605 board feet = 605 ft^2 at 1 in depth

Amount of spray foam needed

76 ft - 16 in • 16 ft + 8 in - 16 in • 2.5 =
$$(2.862 \cdot 10^3)$$
 ft²

$$2.862 \cdot 10^{\circ}$$
 = 4.731 Units

		Meets F	R value require	ment						
		lhf								
D_{0}	ensity =	= 1.75 <i>lbf</i>								
		ft³								
Deaa	lLoad ≔	Density · 2.	5 in = 0.365 ps	<mark>f</mark>						
402 5 1 3 1	Aaterials. 😰									
1aterials w	ith an air permea		fm/ft ² (0.02 L/s × m ²) under a pres o comply with this section, provide							
1. Ply	wood with a thick	ness of not less than ³ / ₈ inch	(10 mm).	u triat joints are sea	ieu anu materiais	are installed as all be	aniers in accordance wi	ur ule manulacu	rer s hisbuctions	
		rd having a thickness of not le e insulation board having a th	ess than ³ / ₈ inch (10 mm). ckness of not less than ¹ / ₂ inch (1:	2.7 mm).						
			g a thickness of not less than ¹ / ₂ in / of 1.5 pcf (2.4 kg/m ³) and having		ess than 1 ¹ / ₂ inche	es (38 mm).				
			and 1.5 pcf (0.6 and 2.4 kg/m ³) ar ess of not less than ¹ / ₂ inch (12.7 n		s of not less than 4	4.5 inches (113 mm).				
8. Ce		ig a thickness of not less than								
10. Mo	· · · · · · · · · · · · · · · · · · ·	roof membrane.								
12. A F	Portland cement/	and parge, or gypsum plaste	r having a thickness of not less tha	n ⁵ / ₈ inch (15.9 mm).					
14. Fu		te block masonry.								
	eet steel or alum Iid or hollow mas	num. onry constructed of clay or sh	ale masonry units.							
			Meets air bar	rior com	nlianco					
			INICELS All Dal		pliance					

Linheated slabs NR NR NR NR NR NR NR	For Floor S	Slab									
Inheated slahs NR NR NR NR NR							S	lab-on-grad	e floors		
	Unheated slabs	NR	NR	NR	NR	NR	A STATE OF A		and the second s		R-20 1 24" bel

No insulation requirement needed because slab does not sit 24" below grade (unheated slab)

or Wall Insulation
an be considered a mass wall because CMU blocks have a high density which results in a
eight not less than 35 psf

C402.2.2 Above-grade walls.

The minimum thermal resistance (*R*-value) of materials installed in the wall cavity between framing members and continuously on the walls shall be as specified in Table C402.1.3, based on framing type and construction materials used in the wall assembly. The *R*-value of integral insulation installed in concrete masonry units shall not be used in determining compliance with Table C402.1.3 except as otherwise noted in the table. In determining compliance with Table C402.1.4, the use of the *U*-factor of concrete masonry units with integral insulation shall be permitted.

"Mass walls" where used as a component in the thermal envelope of a building shall comply with one of the following:

- 1. Weigh not less than 35 pounds per square foot (171 kg/m²) of wall surface area.
- 2. Weigh not less than 25 pounds per square foot (122 kg/m²) of wall surface area where the material weight is not more than 120 pcf (1900 kg/m³).
- 3. Have a heat capacity exceeding 7 Btu/ft² × °F (144 kJ/m² × K).
- 4. Have a heat capacity exceeding 5 Btu/ft² × °F (103 kJ/m² × K), where the material weight is not more than 120 pcf (1900 kg/m³).

						١	Nalls, above	e grade			
Mass ^f	R-5.7ci ^c	R-5.7ci ^c	R-5.7cic	R-7.6ci	R-7.6ci	R-9.5ci	R-9.5ci	R-11.4ci	R-11.4ci	R-13.3ci	R-13.(
Metal building	R-13 +	R-13 +	R13 +	R-13 +	R-13 +	R-13 +	R-13 +	R-13 +	R-13 +	R-13 +	R-13
Metal building	R-6.5ci	R-6.5ci	R-6.5ci	R-13ci	R-6.5ci	R-13ci	R-13ci	R-14ci	R-14ci	R-14ci	R-14
Metal framed	R-13 +	R-13 +	R-13 +	R-13 +	R-13 +	R-13 +	R-13 +	R-13 +	R-13 +	R-13 +	R-13
wetar named	R-5ci	R-5ci	R-5ci	R-7.5ci	R-7.5ci	R-7.5ci	R-7.5ci	R-7.5ci	R-10ci	R-10ci	R-12.
Wood framed	R-13 +	R-13 +	R-13 +	R-13 +	R-13 +	R-13 +	R-13 +	R-13 +	R-13 +	R-13 +	R-13
and	R-3.8ci or	R-3.8ci or	R-3.8ci or	R-3.8ci or	R-3.8ci or	R-3.8ci or		R-3.8ci or	R-7.5ci or	R-7.5ci or	R-7.5c
					and the second second				R20 +	R-20 +	R-20
onsidering	it a m	ass wa	I abo∨e	e grad <mark>e^{,20}the</mark> R	value	s 🕅 🖓 1	.4cf (cd	ontinuo	USRINSU	lation)	R-3.8

We are going with rigid foam board insulation commonly used with masonry walls

Product: R-Tech 1 1/2 in x 48 in. x 8 ft. R-5.78 EPS Rigid Foam Board Insulation

https://www.homedepot.com/p/R-Tech-1-1-2-in-x-48-in-x-8-ft-R-5-78-EPS-Rigid-Foam-Board-Insulation-320817/202532855

R-value:	5.78		5.78	· 2 = 11.56	5	
		Need	l two laye	ers of this	insulation	
	How much will you need?					
	Please note: calculations are numbers.	estimates and c	an only be made	using whole		
	Calculate by Square Footage					
	Area 1					
	Width: Height:	4 ×				
	152 ^{ft} 10	ft				
	Area 2					
	Width: Height: 34 ft 10	ft ×				
	54					
	+ Add Area					
	Calculate	7				
	64 units	\$1.3	841.44			
	will cover 2048.00 sq. ft.	ψı,	Est. Total			
	Include an extra 10%	to cover potent	S ial waste and bre	aks		
		100			2 . 40	
	Cost: \$2682.88 f in. x 8 ft. R-5.78					
Weight in p	sf					
Dens	$ity \coloneqq 4$	bf	1 n	of		
	8 <i>ft</i> · 1.5	<i>in</i> · 48 <i>i</i>	= 1 <i>p</i> o n	-J		
W	aHInsulation ≔ 3	in · Der	nsitv = 0.7	25 <i>psf</i>		
				P -J		

1	Filmood	wim a	nickness	of not less	nan 3/.	inch (jû mm	l														
									(10 mm).													
									ess than 1,		2 7 mm).										
4.	Fcil-bac	polyis	ocyanurat	e insulatio	r board	having	a thicl	(ness (f not le ss	than 1/ ₂ ii	nch (12	." mm).										
									kg/m ³) ar													
									and 2,4 k nan 1/ ₂ inc			ių a thic	mess of	r not le	ss than 4	o inches i	(113 mm)	1				
				i bolardina ickriossio						art 2.7 ľ	onti).e											
			membran			, man	.2	1.2.1														
10.	iviodified	oitumi	ious roof	menibran	e																	
			nembrane																			
				arge, or g t coricrete		laster	naving	a thick	iess o' no	t less tha	an 9/ ₈ ine	ch (15.9	mm).									
				ck mason																		
	Sheet st																					
16.	Sclid or	ollow	hasonry c	onstructed	l of clay	or sha	e mas	onry un	ts.													
						м	et	s a _i	r ba	rrier	co	npi	ian	се								

ous Footing Des	sign for the Restroom:			
riteria:				
ckness:	$t_{cmu} \coloneqq FIF$ "8"	$t_{brick} = FIF$ "4"	$t_{air} \coloneqq FIF$ "1"	$t_{insulation} \coloneqq FIF$ "3"
	$t_{wall} \coloneqq t_{cmu} + t_{brick} + t_{ain}$	$t + t_{insulation} = 16$ in	USE SOLID GROUT	Γ
ight:	$\gamma_{fill} \coloneqq 120 \ pcf$	$\gamma_{brick} \coloneqq 120 \ pcf$	$\gamma_{cmu} \approx 130 \ pcf$	$\gamma_{conc} \coloneqq 150 \ pcf$
safety:	$FS_{overturning} \coloneqq 1.5$	$FS_{sliding} \coloneqq 1.5$	$FS_{bearing} \coloneqq 3$	
of wall:	$H_{total} \coloneqq FIF$ "12' 6"	$H_{wall} \coloneqq FIF$ "9' 6"	Need an ex	xtra 3 ft of height due to frost line
ss of footing/	$t_f = FIF$ "1' 8""			
`footing:	$B \coloneqq FIF$ "3"			
Footing:	$D_f = 3 ft + t_f$ D	UE TO FROST LINE AT 4 ft.		
arth Pressure: $K_a \coloneqq t$	$\tan\left(\frac{\pi}{4} - \frac{\phi'}{2}\right)^2 = 0.3333$			
	$-H_{wall}+t_f)^2\cdot K_a=0.4350$	kip ft		
20 <i>psf</i>				
wind $\cdot H_{wall} = 0.$	19 <i>kip</i> <i>ft</i>			
ing Moment:				
$r_{ning} \coloneqq P_a \cdot$	$H_{total} - H_{wall} + t_f) $ $ + P_w \cdot $ $ 3 $	$ \begin{array}{c} H_{wall} \\ H_{$		
Moment:				
nt weights:				moment arms:
: <i>W</i> _m	$u := ((t_{cmu})) \cdot ((H_{wall})) \cdot \gamma_{cmu} +$	$-\left(\left(t_{brick}\cdot\left(\left(H_{wall}\right)\right)\cdot\gamma_{brick}\right)\right)=1.$	2033 <i>kip</i> <i>ft</i>	$r_m \coloneqq \frac{B}{2} = 1.5 ft$
	(B)	kin	J ^L	
W _e	$\coloneqq 2 \begin{pmatrix} B \\ 2 \end{pmatrix} - (0.5 \cdot (t_{wall})) \end{pmatrix}$	$3 ft \cdot \gamma_{fill} = 0.6 ft$		$r_e \coloneqq \frac{B}{2} = 1.5 ft$
				r = B = 15 ft

$W_m + W_e + W_f + W_{wall} + W_{roof} = 13$.1533 <i>kip</i>		
m e	ft		
$\sum W \cdot \tan \phi' = 17.4354$	$FS_{sliding} = 1.5$	Technically would have a pass	ive
$P_a = 17.4334$	$TO_{stiding} = 1.5$	pressure but is a conservative	100
FS _{sliding} OK		answer	
ressure:			
<i>TW</i>			
$\frac{GW}{B} = 4384.4444 \ psf$			
pacity:			
continuous foundation equation:			
$af \qquad B = 3 ft \qquad \gamma' \coloneqq \gamma$	<i>Pfill</i> = 120 <i>pcf</i>		
$N_q \approx 22.5$ N_z	, == 20.1		
$\gamma_{fill} = 560 \ psf$			
$N_c + \sigma'_{zD} \cdot N_q + 0.5 \cdot \gamma' \cdot B \cdot N_{\gamma} = 1$	6218 <i>psf</i>		
$FS_{bearing}$ = 3.699 $FS_{bearing}$	g = 3		
FS _{bearing} OK			
Settlement Failure: Boussinesq's Si	mple Elastic Settlement method		
IE "1410" $B > ft$	$H = \Sigma \cdot B$ $H = 0.2$ $\alpha = 4$ (E	$E_{i=750}$ tonf	δ

										touf	
FIF '	"14' 0"	1	B = 3	ft	$H \coloneqq 5 \cdot B$	$\mu_s \coloneqq 0.3$	$\alpha \coloneqq 4$	(Footing	g Center)	$E_s \approx 750$ tonf	$\delta_{all} \coloneqq 0.5$ in
										ft^2	
I			R								
L =7	ft	<i>B'</i> :	= " =	= 1.5 <i>ft</i>							
2			2								
τ,			11								
$\begin{bmatrix} L \\ D \end{bmatrix} =$	4.6667	N=	= <i>H</i>								
B'			B^{\prime}								

ence Factors:

$$\ln \left(\frac{r_{1}+B}{L} + B + \ln \left(\frac{r_{2}+L}{B} \right) - \frac{r_{2}^{2}-L^{2}-B^{2}}{3\cdot L \cdot B} = 8.4095 fl$$

$$\ln \left(\frac{r_{1}+B}{r_{1}} + B + \ln \left(\frac{r_{2}+L}{r_{2}} \right) - \frac{r_{2}^{2}-r_{2}^{2}-r_{2}^{2}+r_{1}}{3\cdot L \cdot B} = 5.154 fl$$

$$\left((B+r_{2}), r_{1} \right) + \frac{r_{1}}{r_{1}} + \frac{$$

d to users of the ACI Building Code, information on sizes, areas, and weights of various steel reinforcement is

$W = 4384.4444 \ psf$

pressure:

A

(Long dimension. Use 1 ft analysis strip)

(short dimension)

(width of wall)

 $W_m + W_{wall} + 10 \frac{kip}{ft} = 11.8033 \ klf$

$$= P \cdot \begin{pmatrix} B - c - 2 \cdot d \\ B \end{pmatrix} = -4.3443 \ klf$$

$$W_{ay} \coloneqq 0.75 \cdot \left(2 \cdot \lambda \cdot \int_{c}^{t} psi \cdot L_{2} \cdot d\right) = 56.7787 \ klf$$

| |

T

= if $V_{uOneWay} < \phi V_{cOneWay}$

""The footing has adequate shear strength"

else

="The footing has adequate shear strength"

lexural Strength:

с

 $\frac{2}{=1.1667 ft}$

$$l^2 kip \cdot ft$$

 $2 \cdot B \qquad ft$

0.0018

$$\rho_{min} \cdot d \cdot \frac{12 \text{ in}}{1 \cdot \text{ft}} = 0.3591 \frac{\text{in}^2}{\text{ft}}$$

Rebars: $A_{\#6} = 0.44 \ in^2$

$$\beta_{I} \cdot 0.85 \cdot f'_{c} \cdot b \quad 3 \cdot d_{t} = 10.8104 \text{ in}^{2}$$
The design is tension controlled
$$A \leq A_{s} \leq A_{s}$$

$$f_{y} = 8$$

Concrete Compression block:

$$f_s \cdot f_y = 0.2157 \ in$$

$$5 \cdot f_c \cdot b$$

ft

6776 *kip · ft*

$$\int_{y} f_{y} \cdot \left(d - \frac{a}{2} \right) = 36.3377 \ kip \cdot ft$$

 $0.9 \cdot M_n = 32.704 \quad kip \cdot ft$ (flexural strength) 1 *ft* ft

= if $M_u < \phi M_n$

^{II} "The footing has adequate flexural strength" II else

" "The footing has inadequate flexural strength "

="The footing has adequate flexural strength"

evelopment Length of Flexural 180 degree Hooked Rebars:

rvative assumptions:

$$\psi_r = 1.0 \quad \psi_o = 1.0 \quad \psi_c = 0.6 + \int_c^{f'_c} = 0.8667 \quad d_{bar} = D_{bar} = 0$$

$$\max \begin{vmatrix} 6 & in , 8 \cdot d_{bar}, \\ \begin{pmatrix} \psi_e \cdot \psi_r \cdot \psi_o \cdot \psi_c \cdot J_y \\ 55 \cdot \lambda \cdot min \begin{pmatrix} 100 & psi \\ 100 & psi \end{pmatrix} \end{vmatrix} \begin{vmatrix} \cdot 1 & in \cdot \begin{pmatrix} a_{bar} \\ in \end{pmatrix} \end{vmatrix} = 9.7096 in$$

I T

I

I

I

f bars from the critical $(R_t \)$ wall $-c_c = 7$ in section:

= if $l < ((B-t_{wall}))$ dhook 2

2

else

$ \frac{1}{6} = 2.25 \text{ in} (\text{radius of dowel bar bend}) $ $ \frac{1}{1} = 2.25 \text{ in} (\text{radius of dowel bar bend}) = 2.25 \text{ in} (1 + r = 3 \text{ in} (1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 $	
= 2.25 in (radius of dowel bar bend) $uralHooks := \left(\left(\left(D_{\#6} \cdot 6 \right) \right) + \left(\left(2 \cdot D_{\#6} \right) \right) \right) + D_{\#6} = 6.75 in$ $r + r = 3 in $ (distance required for hook) $epth_{FlexuralHooks} = 6.75 in$ $= if h_{min} < t_f$ $\ $ "The footing thickness is adequate to accomodate the hooked bar" $else$ $\ $ "The footing thickness is not adequate to accomodate the hooked bar" $\ $	make sure footing is thick enough to accommodate development length:
= 2.25 in (radius of dowel bar bend) $uralHooks := \left(\left(\left(D_{\#6} \cdot 6 \right) \right) + \left(\left(2 \cdot D_{\#6} \right) \right) \right) + D_{\#6} = 6.75 in$ $r + r = 3 in $ (distance required for hook) $epth_{FlexuralHooks} = 6.75 in$ $= if h_{min} < t_f$ $\ $ "The footing thickness is adequate to accomodate the hooked bar" $\ $	
= 2.25 in (radius of dowel bar bend) $uralHooks := (l((D_{\#6} \cdot 6)) + (l(2 \cdot D_{\#6}))) + D_{\#6} = 6.75 in$ $r + r = 3 in $ (distance required for hook) $epth_{FlexuralHooks} = 6.75 in$ $= if h_{min} < t_f$ $\ $ "The footing thickness is adequate to accomodate the hooked bar" $\ $	· 6
$r + r = 3 \text{ in} (\text{distance required for hook})$ $repth_{FlexuralHooks} = 6.75 \text{ in}$	$= 2.25 in \qquad (radius of dowel bar bend)$
$r + r = 3 \text{ in} (\text{distance required for hook})$ $repth_{FlexuralHooks} = 6.75 \text{ in}$	
$epth_{FlexuralHooks} = 6.75 in$ $= if h_{min} < t_{f}$ $= if h_{mi$	$uralHooks := (((D_{\#6} \cdot 6)) + ((2 \cdot D_{\#6}))) + D_{\#6} = 6.75 in$
$epth_{FlexuralHooks} = 6.75 in$ $= if h_{min} < t_f$ $= if h_{min} < t$	
= if $h_{min} < t_f$ "The footing thickness is adequate to accomodate the hooked bar" "The footing thickness is not adequate to accomodate the hooked bar" "The footing thickness is not adequate to accomodate the hooked bar" 	r + r = 3 <i>in</i> (distance required for hook)
= if $h_{min} < t_f$ "The footing thickness is adequate to accomodate the hooked bar" "The footing thickness is not adequate to accomodate the hooked bar" "The footing thickness is not adequate to accomodate the hooked bar" 	
= if $h_{min} < t_f$ "The footing thickness is adequate to accomodate the hooked bar" "The footing thickness is not adequate to accomodate the hooked bar" "The footing thickness is not adequate to accomodate the hooked bar" 	$Pepth_{FlexuralHooks} = 6.75 in$
Image: Semigration of the second s	
Image: Semigration of the second s	
else [""The footing thickness is not adequate to accomodate the hooked bar" "	= if $h_{min} < t_f$
else [""The footing thickness is not adequate to accomodate the hooked bar" "	"""The footing thickness is adequate to accomodate the hooked bar"
""The footing thickness is not adequate to accomodate the hooked bar" I	else
	""The footing thickness is not adequate to accomodate the hooked bar"
"The footing thickness is adequate to accomodate the hooked bar"	
"The footing thickness is adequate to accomodate the hooked bar"	
	"The footing thickness is adequate to accomodate the hooked bar"

I

I

I

earing Capacity of Column at Base:

$$1 ft h \coloneqq$$

 $in \cdot L_{wall} = 96 in^2$

$$(L_{wall}, ((2 \cdot h + t_{wall} + 2 \cdot h))) = 1 ft$$

= 144 *in* ²

 $55 \cdot (\langle 0.85 \cdot f'_c \cdot A_l \rangle) = 212.16 \ kip$

$$55 \cdot min \left| \left(\left((0.85 \cdot f'_c \cdot A_1) \right) \cdot \begin{array}{c} A_2 \\ A_1 \end{array} \right), ((2 \cdot 0.85 \cdot f'_c \cdot A_1)) \right| = 259.8419 \ kip$$

$$\lim_{tearing} := \frac{min((N_1, N_2))}{1 \ ft} = 212.16 \ klf$$

t_f

= if $P_u < \phi P_{BaseBearing}$

""The footing has adequate bearing strength at the base" else ""The footing has inadequate bearing strength at the base"

Ш

="The footing has adequate bearing strength at the base"

$a := 12 \cdot d_{dowel} = 7.5 \ in$	
$\eta = 12$ $\alpha_{dowel} = 1.5$ m	
make sure footing is thick enough to accommodate development length:	
$vel \cdot 6$ = 1.875 <i>in</i> (radius of dowel bar bend)	
2	
$m_{wel} + r = 2.5$ in (distance required for hook)	
$d_{c} + 2 \cdot H + c_{c} = 20 \ in$	
$= \text{if } h_{min} \le h$	
""The footing thickness is adequate"	
else	
else ""The footing thickness is inadequate" I I I I I I I I I I I I I I I I I I I	
="The footing thickness is adequate"	
ebars in Wall:	
0.5 <i>in</i> $d_{bar} \coloneqq D_{\#4}$ column bars are #4	
nent Length:	

$$\max \begin{pmatrix} 8 & in , & 0.02 \cdot f_y \cdot d_{bar} \\ \lambda \cdot min \begin{pmatrix} 0.02 \cdot f_y \cdot d_{bar} \\ 100 & psi \end{pmatrix}, & f'_c \cdot psi \end{pmatrix}, & 0.0003 \cdot f_y \cdot d_{bar} \end{pmatrix} = 9.4868 in$$

ngth for rebars in compression:

$$\max \left(\begin{array}{ccc} 12 & in \\ dcCol \end{array}, \begin{array}{c} 0.0005 \\ psi \end{array}, \begin{array}{c} f_y \cdot d_{bar} \cdot \alpha_s \\ psi \end{array} \right) = 15 \quad in \quad (round up to a 24in (2ft) splice)$$

ous Footing De	sign for the Ramp:			
riteria:				
kness:	$t_{cmu} = FIF$ "8"	$t_{brick} := FIF$ "4"	<i>t_{air}:= FIF</i> "1"	
	$[t_{wall} := t_{cmu} + 2 t_{brick} + 2$	$2 t_{air} = 18 in$		
ght:	$\gamma_{fill} = 120 \ pcf$	$\gamma_{brick} = 120 \ pcf$	USE SOLID GROUT $\gamma_{cmu} = 130 \ pcf$	$\gamma_{conc} = 150 \ pcf$
safety:	$FS_{overturning} = 1.5$	$FS_{sliding} = 1.5$	$FS_{bearing} \coloneqq 3$	
f wall:	$H_{total} = FIF$ "18""	$H_{wall} = FIF$ "15"	Need an extra	3 ft of height due to frost line
s of footing/	€] := <i>FIF</i> "1'8""			
footing:	<i>B</i> ≔ <i>F1F</i> "3' 8"			
Footing:		DUE TO FROST LINE AT 4 ft.		
arth Pressure: $K := 1$ a $fill ($ $\gamma \cdot (H^{total} - $	$\tan \left(\begin{array}{c} \pi \\ - \end{array} \begin{array}{c} \phi' \\ 2 \end{array} \right)^2 = 0.3333$ $= 0.3333$ $= 0.3333$ $= 0.3333$ $= 0.3333$	kip 6 ft		
$20 \ psf$ wind $\cdot H_{wall} = 0$	0.3 kip ft			
ing Moment:				
	$H_{total} - H_{wall} + t_f) + P \cdot (I$	$ \begin{array}{c} H_{wall} \\ +3 ft \\ 2 \end{array} = 3.8275 \begin{array}{c} kip \\ ft \\ ft \end{array} $	ft	
ning a	3	2) ft		
Moment:				
nt weights:				moment arms:
<i>W</i> _n	$\overline{\eta} = ((t_{cmu})) \cdot ((H_{wall})) \cdot \gamma_{cmu}$	+ $((t_{brick} \cdot ((H_{wall})) \cdot \gamma_{brick})) = 1.$	9 kip ft	$F_m \coloneqq \frac{B}{2} = 1.8333 ft$
	$= 2 \begin{pmatrix} B \\ - (0.5 \cdot (t_{wall})) \\ 2 \end{pmatrix}$			$r \coloneqq B = 1.8333 ft$
		kip		$F_{wath} \coloneqq B = 1.8333 \ ft$

$\Sigma W \cdot tan$	φ' = 5.6623	F	$S_{sliding} = 1.5$	5		Technica	lly would have a pa	assive
P_a							out is a conservativ	
FS _{sliding}	OK							
ressure:								
<i>W</i> = 1165 <i>p</i> <i>B</i>	sf							
pacity:								
	ndation equation:							
commuous ioui	idation equation.							
sf B =	3.6667 <i>ft</i> y	$i = \gamma_{fill} = 120 pc$	cf					
.2 Nq:	= 22.5	$N_{\gamma} \approx 20.1$						
$f \cdot \gamma_{fill} = 560 p$	osf							
$N_{a+\sigma'_{a}D} \cdot N_{a}$	$+0.5\cdot\gamma'\cdot B\cdot N$	- 17022 psf						
110 20 119		y						
<i>ult</i> = 14.6112	E FS _{be}	earing = 3						
OSS								
→ FS _{bearing}	OK							
	ilure: Boussinesq'	's Simple Elastic	Settlement m	nethod				
<i>IF</i> "14' 0"	<i>B</i> = 3.6667	$ft H = 5 \cdot B$	$\mu_3 \approx 0.3$	α ≔ 4	(Footing Cente	er)	$= 750 \frac{tonf}{ft^2}$	$\delta_{all} = 0.5 i$
= 7 <i>ft</i>	$\underline{B} \stackrel{:=}{=} \frac{B}{2} = 1.83$	33 <i>ft</i>						
L' 3' = 3.8182	$\mathbb{N} \coloneqq \frac{H}{B'}$							
nce Factors:								
1 11								

$$\frac{1}{\pi} \cdot \left[\frac{M \cdot \ln \left(\frac{1}{1 + \sqrt{M} + 1} \cdot \sqrt{M} + N + N + \frac{1}{1 + \sqrt{M} + 1} \right) \cdot \sqrt{M} + N}{M \cdot \left(1 + \sqrt{M}^{2} + N^{2} + 1 \right)} \right] + \ln \left[\frac{M + \sqrt{M} + 1 \cdot \sqrt{1 + N}}{M + \sqrt{M}^{2} + N^{2} + 1} \right] = 0.7356$$

TANDARD REINFORCING BARS

Bar size, no.	Nominal diameter, in.	Nominal area, in. ¹	Nominal weight, lb/ft	
3	0.375	0.11	0.376	
4	0.500	0.20	0.668	
5	0.625	0.31	1.043	

$$\frac{f_{c} \leq 4000 \ psi}{0.85}$$

$$\frac{f_{c} = 4000 \ psi}{1000 \ psi}$$

$$\frac{f_{c} = 4000 \ psi}{1000 \ psi}$$

$$\frac{f_{c} = 4000 \ psi}{1000 \ psi}$$

$$\frac{f_{c} = 0.000 \ psi}{f_{c} = 0.1765 \ in}$$

$$\frac{f_{c} = 0.1765 \ in}{f_{c} = 0.1765 \ in}$$

$$\frac{f_{c} = 0.1765 \ in}{f_{c} = 0.1765 \ in}$$

$$\frac{f_{c} = 0.1765 \ in}{f_{c} = 0.1765 \ in}$$

$$\frac{f_{c} = 0.1765 \ in}{f_{c} = 0.1765 \ in}$$

$$\frac{f_{c} = 0.1765 \ in}{f_{c} = 0.1765 \ in}$$

$$\frac{f_{c} = 0.1765 \ in}{f_{c} = 0.1765 \ in}$$

$$\frac{f_{c} = 0.1765 \ in}{f_{c} = 0.1765 \ in}$$

$$\frac{f_{c} = 0.1765 \ in}{f_{c} = 0.1765 \ in}$$

$$\frac{f_{c} = 0.1765 \ in}{f_{c} = 0.1765 \ in}$$

$$\frac{f_{c} = 0.1765 \ in}{f_{c} = 0.1765 \ in}$$

$$\frac{f_{c} = 0.1765 \ in}{f_{c} = 0.1765 \ in}$$

$$\frac{f_{c} = 0.1765 \ in}{f_{c} = 0.1765 \ in}$$

$$\frac{f_{c} = 0.1765 \ in}{f_{c} = 0.1765 \ in}$$

$$\frac{f_{c} = 0.1765 \ in}{f_{c} = 0.1765 \ in}$$

$$\frac{f_{c} = 0.1765 \ in}{f_{c} = 0.1765 \ in}$$

$$\frac{f_{c} = 0.1765 \ in}{f_{c} = 0.1765 \ in}$$

$$\frac{f_{c} = 0.1765 \ in}{f_{c} = 0.1765 \ in}$$

$$\frac{f_{c} = 0.1765 \ in}{f_{c} = 0.1765 \ in}$$

$$\frac{f_{c} = 0.1765 \ in}{f_{c} = 0.1765 \ in}$$

$$\frac{f_{c} = 0.1765 \ in}{f_{c} = 0.1765 \ in}$$

$$\frac{f_{c} = 0.1765 \ in}{f_{c} = 0.1765 \ in}$$

$$\frac{f_{c} = 0.1765 \ in}{f_{c} = 0.1765 \ in}$$

$$\frac{f_{c} = 0.1765 \ in}{f_{c} = 0.1765 \ in}$$

$$\frac{f_{c} = 0.1765 \ in}{f_{c} = 0.1765 \ in}$$

$$\frac{f_{c} = 0.1765 \ in}{f_{c} = 0.1765 \ in}$$

$$\frac{f_{c} = 0.1765 \ in}{f_{c} = 0.1765 \ in}$$

$$\frac{f_{c} = 0.1765 \ in}{f_{c} = 0.1765 \ in}$$

$$\frac{f_{c} = 0.1765 \ in}{f_{c} = 0.1765 \ in}$$

$$\frac{f_{c} = 0.1765 \ in}{f_{c} = 0.1765 \ in}$$

$$\frac{f_{c} = 0.1765 \ in}{f_{c} = 0.1765 \ in}$$

$$\frac{f_{c} = 0.1765 \ in}{f_{c} = 0.1765 \ in}$$

$$\frac{f_{c} = 0.1765 \ in}{f_{c} = 0.1765 \ in}$$

$$\frac{f_{c} = 0.1765 \ in}{f_{c} = 0.1765 \ in}$$

$$\frac{f_{c} = 0.1765 \ in}{f_{c} = 0.1765 \ in}$$

$$\frac{f_{c} = 0.1765 \ in}{f_{c} = 0.1765 \ in}$$

$$\frac{f_{c} = 0.1765 \ in}{f_{c} = 0.1765 \ in}$$

$$\frac{f_{c} = 0.1765 \ in}{f_{c} = 0.1765 \ in}$$

$$\frac{f_{c} = 0.1765 \ in}{f_{c} = 0.1765 \ in}$$

$$\frac{f_{c} = 0.1765 \ in}{f_{c} = 0.1765 \ in}$$

$$\frac{f_{c} = 0.1765 \ in}{f_{c} = 0.1765 \ in}$$

$$\frac{f_{c} = 0.1765 \ i$$

evelopment Length of Flexural <u>180 degree Hooked</u> Rebars:

rvative assumptions:

$$\begin{split} \psi_{r} &:= 1.0 \quad \psi_{g} := 1.0 \quad \psi_{g} := 0.6 + \int_{15000}^{c} psi = 0.8667 \quad d_{bar} := D_{\#6} \\ (& (& \psi \cdot \psi \cdot \psi \cdot \psi \cdot f &) & (d &)^{1.5} \\ max | 6 & in , 8 \cdot d_{bar}, | & e & r & o & c & y \\ (& & (& 55 \cdot \lambda \cdot min \left(100 & psi , \sqrt{f'_{c} \cdot psi} \right) \right) | \cdot 1 & in \cdot \left(& bar \\ in &) | = 9.7096 & in \\ \end{pmatrix} \end{split}$$

 $\overline{ce_{max}} = min((3 \cdot t_f, 18 \ in)) = 18 \ in$

 $\frac{B-2}{ce} = \frac{c_c}{2} = 19 in$ us

use 12 in spacing to be conservative

make sure footing is thick enough to accommodate development length:

 $\cdot 6 = 2.25$ *in* (radius of dowel bar bend)

$$\frac{1}{2} = \frac{1}{2} \left(\left(\left(D_{\#6} \cdot 6 \right) \right) + \left(\left(2 \cdot D_{\#6} \right) \right) \right) + D_{\#6} = 6.75 \text{ in}$$

ur + r = 3 *in* (distance required for hook)

lepth_{FlexuralHooks} = 6.75 in

= if $h_{min} < t_f$

"The footing thickness is adequate to accomodate the hooked bar" else

 $\|$ $\|$ "The footing thickness is not adequate to accomodate the hooked bar "

| |

I

="The footing thickness is adequate to accomodate the hooked bar"

earing Capacity of Column at Base:

1 *ft*

$$h \coloneqq t_f$$

 $in \cdot L_{wall} = 96 in^2$

$$(L_{wall}, ((2 \cdot h + t_{wall} + 2 \cdot h))) = 1 ft$$

= 144 *in* ²

 $(0.85 \cdot f'_c \cdot A_1) = 212.16 \ kip$

$$55 \cdot min \left| \begin{pmatrix} ((0.85 \cdot f'_c \cdot A_1)) \cdot A_2 \\ ((0.85 \cdot f'_c \cdot A_1)) \cdot A_1 \end{pmatrix}, ((2 \cdot 0.85 \cdot f'_c \cdot A_1)) \right| = 259.8419 \ kip$$

$$min((N_1, N_2)) = 212.16 \ klf$$

$$e_{aring} := 1 \ ft = 212.16 \ klf$$

 $= H D A D_{-}$

ment Length: .625 in $D_{\#5}$

$$\sum_{k=1}^{\infty} |ax| = \frac{11.8585}{\lambda \cdot min \left(100 \text{ } psi, f' \cdot psi\right)} + \frac{11.8585}{\lambda \cdot min \left(100 \text{ } psi, f' \cdot psi\right)} + \frac{11.8585}{\lambda \cdot psi} + \frac{11.8585}{\lambda$$

(round up to get an appropriate constructible dimension)

 $n = 12 \cdot d_{dowel} = 7.5$ in

in

make sure footing is thick enough to accommodate development length:

 $vel \cdot 6$ = 1.875 *in* (radius of dowel bar bend) 2

wel + r = 2.5 *in* (distance required for hook)

 $d_{dc} + 2 \cdot H + c_c = 20$ in

= if $h_{min} \leq h$

```
"The footing thickness is adequate"
else
"The footing thickness is inadequate"
```

="The footing thickness is adequate"

ebars in Wall:

0.5 *in* $d_{bar} = D_{\#4}$ column bars are #4

nent Length:

t

Isolated Footi	ng Design for	· Bathroom co	olumns from ro	of				
Decise Deces								
esign Paramete								
⁷ "4' 4"	H = 3 ft	$B_{col} \coloneqq FIF$	' "1' 4"	<i>t</i> ∱≔ <i>FIF</i> "1'	8" $P_{des} =$	= 12 <i>kip</i>		
$ft + t_f$								
$H + t_f = 4.66$	667 <i>ft</i>							
or Bearing Fai	lure:							
Equation for B	earing Capac	ity:						
$\cdot N_c \cdot s_c \cdot d_c \cdot$	$i_c \cdot b_c \cdot g_c + c$	$\sigma'_z \cdot N_q \cdot s_q \cdot$	$d_q \cdot i_q \cdot b_q \cdot g_q$	+0.5 · γ _{backfill} ·	$B'\cdot N_{\gamma}\cdot s_{\gamma}\cdot d$	$b_{\gamma}\cdot i_{\gamma}\cdot b_{\gamma}\cdot g_{\gamma}$		
Capacity Factor	rs:							
		s for $\phi' = 30$ c	legrees and using	g Vesic's Equati	on:			
.4 $N_{\gamma} = 22$	4							
Inclination Fa	ictors:							
level ground, th	nerefore, groui	nd inclination	factors are equa	l to 1:				
$g_{\gamma} \coloneqq 1$								
clination Facto	ors:							
$i_{\gamma} \coloneqq 1$								
lination Facto	rs:							
is not inclined	, therefore the	base inclinati	on factors are eq	ual to 1:				
$b_{\gamma} \coloneqq 1$								
	2 828						
For continue factors may	ous footings be ignored v	s, $B/L \rightarrow 0$, when analyz	so s_c , s_q , and ing continuou	s_{γ} become each straight	ual to 1. Thi	s means	In line with conti	nuous tooting
actors:								
$s_{\gamma} \coloneqq 1$								
actors:								
D_f								
$\cdot 2 \cdot \frac{D_f}{B}$	$\phi' \cdot 1 - si$	$p \phi'^2 = 1.$	3109 d_{γ}	≔ 1				
Unit Woight.								

or Settlement Failure:

$$B = 4.3333 \ ft \qquad H \coloneqq 5 \cdot B \qquad \mu_s \coloneqq 0.3 \qquad \alpha \coloneqq 4 \quad \text{(Footing Center)} \qquad \delta_{all} \coloneqq 0.5$$
$$= 2.1667 \ ft \qquad B' \coloneqq B \\ = 2.1667 \ ft \qquad M \coloneqq L' \\ B' = 1 \qquad N \coloneqq H \\ B' \qquad B' \qquad B' \equiv 0.5$$

e Factors:

$$\begin{pmatrix} \begin{pmatrix} \\ M \cdot \ln \begin{pmatrix} (1 + \sqrt{M^2 + 1}) \cdot \sqrt{M^2 + N^2} \\ M \cdot (1 + \sqrt{M^2 + N^2 + 1}) \end{pmatrix} + \ln \begin{pmatrix} (M + \sqrt{M^2 + 1}) \cdot \sqrt{1 + N^2} \\ M + \sqrt{M^2 + N^2 + 1} \end{pmatrix} = 0.4979$$

$$\pi \operatorname{tan}' | = 0.0158$$

$$\pi \sqrt{N^{2} + N^{2} + 1}$$

orrection Factor:

$$\begin{pmatrix} 1-2 \cdot \mu_s \\ 1-\mu_s \end{pmatrix} \cdot I = 0.5069$$

th Correction Factor, If:

$4 \cdot \mu_s$	$\boldsymbol{\beta}_2 \coloneqq 5 - 12 \cdot \boldsymbol{\mu}_s + 8 \cdot \boldsymbol{\mu}_{s^2}$	$\beta_3 = -4 \cdot \mu_s \cdot ((1 - 2 \cdot \mu_s))$	$\beta_4 = -1 + 4 \cdot \mu_s - 8 \cdot \mu_{s^2}$	$\beta_{5} = -4 \cdot \left(\left(1 - 2 \cdot \mu_{s} \right)^{2} \right)$
	\cup			

in

 $D_f = 9.3333 ft$

 $L^2 + r^2 = 10.2902 ft$

 $B^2 + r^2 = 10.2902 ft$

 $L^2 + B^2 + r^2 = 11.1654 ft$

 $L^2 + B^2 = 6.1283 \ ft$

Ň

$$\ln \left(\begin{array}{c} r_4 + B \\ L \end{array} \right) + B \cdot \ln \left(\begin{array}{c} r_4 + L \\ B \end{array} \right) - \begin{array}{c} r_{4^3} - L^3 - B^3 \\ = 6.442 \ ft \\ 3 \cdot L \cdot B \end{array}$$

$$\frac{\binom{r_3+B}{1}+B\cdot\ln\binom{r_3+L}{1}-r_3^3-r_2^3-r_1^3+r^3}{3\cdot L\cdot B} = 3.0925 \ ft$$

$$\cdot \ln \left(\frac{\left(\left(B + r_{2} \right) \right) \cdot r_{1}}{\left(\left(B + r_{3} \right) \right) \cdot r} \right) + \frac{r^{*}}{B} \cdot \ln \left(\frac{\left(\left(L + r_{1} \right) \right) \cdot r_{2}}{\left(\left(L + r_{3} \right) \right) \cdot r} \right) = 1.5872 \, ft$$

of Rebar in Isolated Footing:

<u> Dne-Way Shear Strength:</u>

7 "4' 4"	<i>H</i> := <i>FIF</i> "3'"	$B_{coll} \coloneqq FIF$ "2' 8"	$B_{col2} \coloneqq FIF$ "2'"	<i>ty</i> := <i>FIF</i> "1' 10"	$h := t_f$
2 kip	$\gamma_{conc} \coloneqq 150 \ pcf$	$\gamma_{backfill} = 120 \ pcf$	$f_c = 4000 \ psi$	$f_y = 60 \ ksi$	

e depth of footing:

a 3in clear cover, #6 rebars and bars in both directions:

$$D_{\#6} = 0.750 \text{ in}$$

$$D_{\#6} = 3.375 \text{ in} \quad cover_2 := c_c + D_{\#6} + \frac{D_{\#6}}{2} = 4.125 \text{ in}$$

$$g \coloneqq \frac{cover_1 + cover_2}{2} = 3.75 in$$

 $cover_{Avg} = 18.25$ in

Pressure:

$$\frac{\partial des}{\partial B} + (\underbrace{\gamma_{conc} \cdot t}_{f}) + 2 \cdot (\underbrace{\gamma_{backfill} \cdot H}_{h}) + \frac{2 \gamma_{conc} \cdot FIF \quad (1' \ 10'' \ \cdot \ 1 \ ft \ \cdot \ 3 \ ft}{B \cdot B} = 1721.9231 \ psf$$

1 1

ľ

$$L_2 \coloneqq B \qquad c_1 \coloneqq B_{coll} \qquad c_2 \coloneqq B_{col2} \qquad \hat{h} \coloneqq 1$$

$$\stackrel{:= q}{\stackrel{\scriptstyle u}{}} L_2 \cdot \left(\begin{array}{c} L_1 - c_1 \\ 2 \end{array} \right) = -5.1299 \ kip$$

$$= 0.75 \cdot \left(2 \cdot \lambda \cdot \int_{a} f_c \cdot p_{si} \cdot L_2 \cdot d\right) = 90.03 \ kip$$

= if $V_{uOneWay} < \phi V_{cOneWay}$

"The footing has adequate shear strength" else ""The footing has inadequate shear strength"

""The footing has inadequate shear strength" I

="The footing has adequate shear strength"

Punching Shear Strength:

 $r = a_{1} \cdot (|L_{1} \cdot L_{2} - (|c_{1} + d|) \cdot (|c_{2} + d|)|) = 6.9467 kin$

```
\rho_{min} \cdot B \cdot h = 2.0592 \ in^2
                   A_{\#6} = 0.440 in^2
6 Rebars:
                           5 #6 bars is adequate
A_{\#6} = 2.2 in^2
ing:
ace_{max} = min \quad 3 \cdot h, 18 in = 18 in
cce \coloneqq \frac{B-2 \cdot c_c}{4} = 11.5 in
e flexural strength of a singly reinforced rectangular section:
       y_{st} \coloneqq cover_1 A_s = 2.2 in^2 b \coloneqq B
h
pth-y<sub>s1</sub>=18.625 in
f'<sub>c</sub>≤4000 psi
                                                            L
0.85
se
(
max | 0.65, 0.85 - 0.05 · c
1000 psi /
5
\stackrel{\text{Controlled}}{=} \stackrel{=}{\stackrel{\underset{f_y}{=}}{\stackrel{\beta_l \cdot 0.85 \cdot f'_c \cdot b \cdot 3 \cdot d_l}{=}} = 17.4935 \ in^2
ign is tension controlled
f Concrete Compression block:
f_s \cdot f_y = 0.7466 \ in
f_c \cdot f_c \cdot b
                                M_u = 2.5909 kip \cdot ft
s \cdot f_{y} \cdot \begin{pmatrix} a \\ d - \\ 2 \end{pmatrix} = 196.6437 \ kip \cdot ft
```

$0.9 \cdot M_n = 176.9793 \ kip \cdot ft$ (flexural strength)

$o^{(I)}$ = 10 in	
(B-B, u)	
$= \text{if } l_{dhook} \leq \frac{1}{2} $	
" "There is adequate room to develop the hooked bars"	
else	
""There is inadequate room to develop the hooked bars" _I	
heck="There is adequate room to develop the hooked bars"	
o make sure footing is thick enough to accommodate development length:	
$\dot{a} = 2.25$ <i>in</i> (radius of dowel bar bend)	
$auralHooks := \left(\left(\left(\left(d_{bar} \cdot 6 \right) \right) + \left(\left(2 \cdot d_{bar} \right) \right) \right) \right) = 6 \text{ in}$	
$n \coloneqq \max((4 \cdot d_{bar}, 2.5 \ in)) = 3 \ in$	
r + r = 3 <i>in</i> (distance required for hook)	
r + r = 5 m (distance required for nook)	
$lepth_{FlexuralHooks} = 6$ in	
Bearing Capacity of Column at Base:	
$\frac{1}{oll} \cdot B_{col2} = 768 \ ln^2 \qquad L \coloneqq B = 4.3333 \ ft \qquad l \coloneqq min((L, ((2 \cdot h + B_{col1} + 2 \cdot h)))) = 4.3333 \ ft$	
$= 2704 in^2$	
$S \cdot ((0.85 \cdot f'_c \cdot A_1)) = 1697.28 \ kip \qquad N_2 \coloneqq 0.65 \cdot min \left \left((0.85 \cdot f'_c \cdot A_1) \right) \cdot \frac{A_2}{A_1} \right , ((2 \cdot 0.85 \cdot f'_c \cdot A_1)) \right = 318$	34.7565 <i>kip</i>
$\operatorname{earing} \coloneqq \min(\langle N_1, N_2 \rangle) = 1697.28 \ kip $	
= if $P_{des} < \phi P_{BaseBearing}$	
$\int_{ac}^{ac} e^{\varphi T} BaseBearing$ $\int_{ac}^{bc} e^{\varphi T} BaseBearing$	
else	
""The footing has inadequate bearing strength at the base" 	
= "The footing has adequate bearing strength at the base"	

00 Degree Hooked Dowel Bars in Column:

$a = 12 \cdot d_{dowel} = 9$ in		
$p_{wel} + r = 3$ in (distance required for hook)		
$d_{c} + 2 \cdot H + c_{c} + D_{\#6} = 21.75 \ in$		
= if $h_{min} \le h$		
"There footing thickness is adequate"		
else		
""There footing thickness is inadequate"		
="There footing thickness is adequate"		
Rebars in Column:		
$D_{\#4}$ column bars are #4		
ment Length:		
$\max \begin{vmatrix} \mathbf{\hat{b}} & in \\ \lambda \cdot min \begin{pmatrix} 0.02 \cdot f_y \cdot d_{bar} \\ 100 & psi \\ \sqrt{c} \end{pmatrix}, 0.0003 \\ psi & f_y \cdot d_{bar} \end{vmatrix} = 9.4868 \ in$		
$\lambda \cdot min^{(100 psi)}, f' \cdot psi psi^{(100 psi)} = 9.4868 in$		

ength for rebars in compression:

 $\max \begin{vmatrix} (12 & in \\ 12 & in \\ 0.0005 \\ \vdots \\ f_y \cdot d_{bar} \cdot \alpha_s \end{vmatrix} = 15 in$ (round up to a 24in (2ft) splice)

	SURES FOR WALLS AND ROOF	
Determining Wind Load Para	meters:	
Exposure Category:	В	(ASCE 7-22: Section 26.7.3)
Risk Category:		(ASCE 7-22: Table 1.5-1)
Importance Factor:	<i>I</i> := 1	(ASCE 7-22: Table 1.5-2)
Basic Wind Speed:	<i>V</i> ≔ 108 <i>mph</i>	(ASCE 7-22: Figure 26.5-1B
Wind Directionality Factor:	$K_d \coloneqq 0.85$	(ASCE 7-22: Figure 26.6-1)
Topographic Factor:	$K_{zt} \coloneqq 1$	(ASCE 7-22: Section 26.8.1)
Ground Elevation Factor:	$K_e \coloneqq 1$	(ASCE 7-22: Table 26.9-1)
Gust Effect Factor:	<i>G</i> ≔ 0.85	(ASCE 7-22: Section 26.11.1
Enclosure Classification:	Building Enclosed	(ASCE 7-22: Section 26.2)
Internal Pressure Coefficient:	$GC_{pi} \coloneqq 0.18$	(ASCE 7-22: Table 26.13-1)
Velocity Pressure Exposure (Coefficient: $K_z \coloneqq 0.57$	(ASCE 7-22: Table 26.10-1)
/elocity Pressure:		
$q_{z} \coloneqq 0.00256 \qquad \frac{psf}{mph^{2}} \cdot K_{z} \cdot K_{zt}$	$\cdot K_d \cdot V^2 \cdot I = 14.467 \ psf q_i \coloneqq q_z$	(ASCE 7-22: Equation 26.10
Mean Roof Height: $h = {}^{10}$	$\frac{ft + 9.458 ft}{2} = 9.729 ft$	(Height Modeled on Revit)

Wall	Pressures C	coefficients:	$L \coloneqq L_A = 79.333 f$	$t B \coloneqq B$	4 = 16.667 ft
Var	iables Needed for	Table: $L = 4.76$			
Exte	ernal Pressure Coe	efficients: $C_{pWW} = 0.8$	$C_{pLW} \coloneqq -0.2$	$C_{pS} = -0.7$	(ASCE 7-22: Figure 27
Wall	Pressures:	$p \coloneqq p_{iext} + - p_{iint}$			
	Surface 1:	$p_{Nlext} \coloneqq q_z \cdot G \cdot C_{pWW} = 9$	9.84 <i>psf</i>		(windward)
		$p_{N1int} \coloneqq q_i \cdot (\langle GC_{pi} \rangle) = 2.6$			
		$p_{NIplus} \coloneqq p_{NIext} + p_{NIint} =$	12.442 <i>psf</i>		
		$p_{N1minus} \coloneqq p_{N1ext} - p_{N1int}$	= 7.234 <i>psf</i>		
	Surface 2:	$p_{N2ext} \coloneqq q_z \cdot G \cdot C_{pS} = -8.$.61 <i>psf</i>		(side)
		$p_{N2int} \coloneqq q_i \cdot \left(\langle GC_{pi} \rangle \right) = 2.6$			
		$p_{N2plus} \coloneqq p_{N2ext} + p_{N2int}$	= -6.004 <i>psf</i>		
		$p_{N2minus} \coloneqq p_{N2ext} - p_{N2int}$	=-11.212 <i>psf</i>		
	Surface 2:	$p_{N3ext} \coloneqq q_z \cdot G \cdot C_{pLW} = -$	-2.46 <i>psf</i>		(leeward)
	Surface 3:	$p_{N3int} \coloneqq q_i \cdot \left(\langle GC_{pi} \rangle \right) = 2$			
		$p_{N3plus} = p_{N3ext} + p_{N3int} =$	0.145 <i>psf</i>		
		$p_{N3minus} \coloneqq p_{N3ext} - p_{N3int}$			
		$p_{N4ext} \coloneqq q_z \cdot G \cdot C_{pS} = -8.$.61 <i>psf</i>		(side)
	Surface 4:	$p_{N4int} \coloneqq q_i \cdot (\langle GC_{pi} \rangle) = 2.6$			
		$p_{N4plus} \coloneqq p_{N4ext} + p_{N4int}$	= -6.004 <i>psf</i>		
		$p_{N4minus} \coloneqq p_{N4ext} - p_{N4int}$	=-11.212 <i>psf</i>		
Roof	Pressures ($L_A + l_{EW.OH} = 79.$		$= B_A + l_{NS.OH} = 20.667 f$
Var	iables Needed for	Table: $\begin{array}{c} h \\ L \end{array} = 0.1226 \end{array}$	$\frac{h}{2} = 4.9 ft \qquad h =$	9.7 <i>ft</i> 2 <i>h</i>	$= 19.5 ft \qquad \theta \coloneqq 0$
Exte	ernal Pressure Coe	efficient: $C_{p1} \coloneqq -0.9$	$C_{p2} \approx -0.18$		(ASCE 7-22: Figure 27.3-1
Roof	Pressures:	$p \coloneqq p_{iext} + - p_{iint}$			
	Surface 5:	$p_{NSext} = q_{\pm} \cdot G \cdot C_{pl} = -1$	1.07 <i>psf</i>	$p_{N5ext2} \coloneqq q_z \cdot G$	$\cdot C_{p2} = -2.21 \ psf$
		$p_{N5int1} \coloneqq q_i \cdot \left(\langle GC_{pi} \rangle \right) =$	2.6 <i>psf</i>	$p_{N5int2} \coloneqq q_i \cdot (\langle \cdot \rangle)$	GC_{pi}) = 2.6 <i>psf</i>
		$p_{N5plus1} \coloneqq p_{N5ext1} + p_{N5int}$	$t_{l} = -8.463 \ psf$	$p_{N5plus2} \coloneqq p_{N5ex}$	$p_{N5int2} + p_{N5int2} = 0.391 \ psf$
		$p_{N5minus1} \coloneqq p_{N5ext1} - p_{N5t}$	int1 = -13.671 <i>psf</i>	$p_{N5minus2} \coloneqq p_N$	$5_{ext2} - p_{N5int2} = -4.818 \ psf$
Ovor	hang Press		$G \cdot C_{pl} = -11.067$	maf	

Wall	Pressures C	coefficients:	$\underline{L} := L_B = 16$	5.667 <i>ft</i>	$B \coloneqq B_B = 79.33$	3 <i>ft</i>
Va	riables Needed for	Table: $\begin{array}{c} L \\ B \end{array} = 0.21 \end{array}$				
Ext	ternal Pressure Coe	efficients: $C_{pWW} = 0.1$	8 <i>C_{pLM}</i> :=	-0.5)= -0.7 (ASC	E 7-22: Figure 27
Wall	Pressures:	$p \coloneqq p_{iext} + / -$	Piint			
	Surface 1:	$p_{Elext} \coloneqq q_z \cdot G \cdot C_p$			(side)	
		$p_{Elint} \coloneqq q_i \cdot (\langle GC_{pi} \rangle)$	= 2.6 <i>psf</i>			
		$p_{E1plus} \coloneqq p_{E1ext} + p_{E1ext}$				
		$p_{E1minus} = p_{E1ext}$	$p_{E1int} = -11.212 p$	psf		
	Surface 2:	$p_{E2ext} \coloneqq q_z \cdot G \cdot C_p$			(windwa	ırd)
		$p_{E2int} \coloneqq q_i \cdot (\langle GC_{pi} \rangle)$				
		$p_{E2plus} \coloneqq p_{E2ext} + p_{E2ext}$				
		$p_{E2minus} \coloneqq p_{E2ext} - p_{E2ext}$	$D_{E2int} = 7.234 psj$			
	0	$p_{E3ext} \coloneqq q_z \cdot G \cdot C_p$	s = -8.61 psf		(side)	
	Surface 3:	$p_{E3int} \coloneqq q_i \cdot ((GC_{pi}))$				
		$p_{E3plus} \coloneqq p_{E3ext} + p_{E3ext}$	$p_{E3int} = -6.004 p$	sf		
		$p_{E3minus} \coloneqq p_{E3ext}$	$p_{E3int} = -11.212 p$	sf		
	Surface 4:	$p_{E4ext} \coloneqq q_z \cdot G \cdot C_p$			(leeward)
		$p_{E4int} \coloneqq q_i \cdot (\langle GC_{pi} \rangle)$		ſ		
		$p_{E4plus} \coloneqq p_{E4ext} + p_{E4ext} + p_{E4minus} \coloneqq p_{E4ext} - p$				
		FE4minus FE4exi	F E4Imi Streep .	,		
Roof	Pressures C		$L := L_B + l_{NS.OF}$			w.он = 79.333 j
		h		1	U	_
Va	riables Needed for	Table: $= 0.4708$	= 4.9 Jt	h = 9.7 ft	2 h = 19.5 ft	$\theta \coloneqq 0$
Evi	ternal Pressure Coe	officient: C :=	-0.9 C	0.18	(ASCE 7	22: Figure 27.3-1
			$-0.9 \qquad C_{p2} \approx -0.9$	5.10	(//002 /	22. 1 iguro 27.0 1
Roof	Pressures:	$p \coloneqq \underline{p}_{iext} + / -$	P_{iint}			
	Surface 5:	$p_{E5ext} = q_{F} \cdot G \cdot C_{P}$		p_{E5ext2} =	$= q_z \cdot G \cdot C_{p2} = -2.$	21 <i>psf</i>
		$p_{E5int1} \coloneqq q_i \cdot (\backslash GC_i)$			$= q_i \cdot \left(\langle GC_{pi} \rangle \right) = 2$	2.6 <i>psf</i>
		$p_{E5plus1} \coloneqq p_{E5ext1} +$	$p_{E5int1} = -8.463 \ p$	$p_{E5plus2}$	$\coloneqq p_{E5ext2} + p_{E5int2}$	= 0.391 <i>psf</i>
		$p_{E5minus1} = p_{E5ext1}$	$-p_{E5int1} = -13.67^{\circ}$	1 <i>psf</i> p _{E5minu}	$p_{s2} \coloneqq p_{E5ext2} - p_{E5in}$	$_{nt2} = -4.818 \ psf$

vvali	Pressures C	Coefficients:	$\underline{L} := L_C =$	79.333 <i>ft</i>	$B \coloneqq B_C = 16.$	667 <i>ft</i>
Va	riables Needed for	Table: $L = 4.76$				
			Cortes	≔ -0.2 <i>A</i>	$C_{pS} = -0.7$ (A	SCE 7-22: Figure 27
Ex	ternal Pressure Co	efficients: $C_{pWW} = 0.$	8	:= -0.2		
Wall	Pressures:	$p = p_{iext} +/-$	P _{iint}			
	Surface 1:	$p_{Slext} \coloneqq q_z \cdot G \cdot C_p$			(leew	ard)
		$p_{Slint} \coloneqq q_i \cdot \left(\backslash GC_p \right)$	· ·			
		$p_{S1plus} = p_{S1ext} + p_S$				
		$p_{S1minus} \coloneqq p_{S1ext} - p_{S1}$	$O_{S1int} = -5.065$	usj		
	Surface 2:	$p_{S2ext} \coloneqq q_z \cdot G \cdot C_p$	$s = -8.61 \ psf$		(side)	
	Gundee 2.	$p_{S2int} \coloneqq q_i \cdot (\langle GC_{pi} \rangle)$,	
		$p_{S2plus} \coloneqq p_{S2ext} + p_{S2ext}$	$p_{S2int} = -6.004$	psf		
		$p_{S2minus} \coloneqq p_{S2ext} \cdot p_{S2ext}$	$\mathcal{D}_{S2int} = -11.212$	psf		
	Surface 3:	$p_{S3ext} \coloneqq q_z \cdot G \cdot C_p$ $p_{S3int} \coloneqq q_i \cdot ((GC_{pi}))$			(wind	ward)
		$p_{S3plus} = p_{S3ext} + p_S$		f		
		$p_{S3minus} = p_{S3ext} - p_{S3ext}$				
	Surface 4:	$p_{S4ext} \coloneqq q_z \cdot G \cdot C_p$			(side)	
	ounace 4.	$p_{S4int} \coloneqq q_i \cdot (\langle GC_{pi} \rangle)$		_		
		$p_{S4plus} \coloneqq p_{S4ext} + p_{S4ext}$				
		$p_{S4minus} \coloneqq p_{S4ext} - p_{S4ext}$	$P_{S4int} = -11.212$	psj		
Roof	Pressures (Coefficients:	$L \coloneqq L_C + l_{EW}$. <i>он</i> = 79.333	ft $B \coloneqq B_C +$	$l_{NS.OH} = 20.667 f$
			\bigcap			
Va	riables Needed for		$6 \frac{h}{2} = 4.9 ft$	h = 9.7 f	2 $h = 19.5$	ft $\theta \coloneqq 0$
			2			0
Ex	ternal Pressure Co	efficient: $C_{pI} =$	-0.9 <i>C_{p2}</i> ≔	-0.18	(ASCE	7-22: Figure 27.3-1
D						
ROOT	Pressures: Surface 5:	$p \coloneqq p_{iext} +/-$			6 6	
	Sunace 5.	$p_{SSext} \coloneqq q_{2} \cdot G \cdot C_{l}$ $p_{SSint1} \coloneqq q_{i} \cdot (\backslash GC_{l})$			$q_{2} \coloneqq q_{z} \cdot G \cdot C_{p2} = q_{i} \cdot (\langle GC_{pi} \rangle)$	
		$p_{S5plus1} = q_1 + (GC_p)$ $p_{S5plus1} = p_{S5ext1} + (GC_p)$			$p_{us2} \coloneqq p_{s5ext2} + p_{s5i}$	
		$p_{S5minus1} = p_{S5ext1}$				$s_{5int2} = -4.818 \ psf$

Wall	Pressures C	oefficients:	$\underline{L} := L_D = 16.0$	667 <i>ft</i> B ≔	$B_D = 79.333 ft$	
Va	riables Needed for					
		В				
Ext	ernal Pressure Coe	efficients: $C_{pWW} = 0$.	$8 \qquad \underbrace{C_{pLW}}_{= -6}$	$C.5 \qquad \underbrace{C_{pS}}_{pS} \coloneqq -$	0.7 (ASCE 7-22: Figur	e 27
Wall	Pressures:	$p = p_{iext} + / -$	<i>p_{iint}</i>			
	Surface 1:	$p_{Wlext} \coloneqq q_z \cdot G \cdot C$	$p_{pS} = -8.61 \ psf$		(side)	
		$p_{W1int} \coloneqq q_i \cdot \left(\langle GC_{pi} \rangle \right)$) = 2.6 <i>psf</i>			
			$p_{Wlint} = -6.004 \ p_{Wlint}$			
		$p_{W1minus} \coloneqq p_{W1ext}$	$-p_{Wlint} = -11.212 p$	sf		
	Surface 2:	$p_{W2ext} \coloneqq q_z \cdot G \cdot C$			(leeward)	
		$p_{W2int} \coloneqq q_i \cdot \left(\langle GC_{pi} \rangle \right)$) = 2.6 <i>psf</i>			
			$p_{W2int} = -3.544 \ ps_{y}$			
		$p_{W2minus} \coloneqq p_{W2ext}$	$-p_{W2int} = -8.753 \ p_{S}$	f		
	Surface 3:	$p_{W3ext} \coloneqq q_z \cdot G \cdot C$	$p_{pS} = -8.61 \ psf$		(side)	
	Sunace 5.	$p_{W3int} \coloneqq q_i \cdot \left(\langle GC_{pi} \rangle \right)$) = 2.6 <i>psf</i>			
		$p_{W3plus} \coloneqq p_{W3ext} +$	$p_{W3int} = -6.004 \ p_{W3int}$	sf		
		$p_{W3minus} \coloneqq p_{W3ext}$	$-p_{W3int} = -11.212 \ p_{W3int}$	sf		
		$p_{W4ext} \coloneqq q_z \cdot G \cdot C$	$ww = 9.84 \ psf$		(windward)	
	Surface 4:	$p_{W4int} \coloneqq q_i \cdot \left(\langle GC_{pi} \rangle \right)$			(
		$p_{W4plus} \coloneqq p_{W4ext} + p_{W4ext}$	$p_{W4int} = 12.442 psf$			
		$p_{W4minus} = p_{W4ext}$	p_{W4int} = 7.234 <i>psf</i>			
Roof	Pressures C	Coefficients:	$L \coloneqq L_D + l_{NS.OH}$	= 20.667 <i>ft</i>	$B \coloneqq B_D + l_{EW.OH} = 79.3$	33)
			0,]	
Va	riables Needed for	Table: $\frac{h}{L} = 0.470$	$ \begin{array}{c} h \\ h \\ 2 \end{array} = 4.9 ft $	h = 9.7 ft	$2 h = 19.5 ft \qquad \theta \coloneqq 0$	
Evi	ernal Pressure Coe	officient: C		10	(ASCE 7-22: Figure 27	3_1
	ental Fressure Coe		-0.9 $C_{p2} = -0.7$	10	(AGOL 7-22. Figure 27	.5-1
Roof	Pressures:	$p \coloneqq \underline{p_{iext}} +/-$	p_{iint}			
	Surface 5:	$p_{W5ext} = q_z \cdot G \cdot C$		p_{W5ext2} =	$q_z \cdot G \cdot C_{p2} = -2.21 \ psf$	
		$p_{W5int1} \coloneqq q_i \cdot (\backslash GG)$	$(p_{pi}) = 2.6 psf$	$p_{W5int2} =$	$= q_i \cdot \left(\langle GC_{pi} \rangle \right) = 2.6 \ psf$	
		$p_{W5plus1} = p_{W5ext1}$	$+p_{W5int1} = -8.463 p_{W5int1}$	$sf p_{W5plus2}$	$= p_{W5ext2} + p_{W5int2} = 0.391$	psf
		$p_{W5minus1} \coloneqq p_{W5ex}$	$p_{W5intI} = -13.671$	psf p _{W5minu} .	$p_{W5ext2} - p_{W5int2} = -4.8$	318

Appendix E: Restroom Phase Two Design Calculations

MWFRS DESIGN WIND				
Determining Wind Loa	d Paran	neters:		
Exposure Category:		В		(ASCE 7-22: Section 26.7.3)
Risk Category:				(ASCE 7-22: Table 1.5-1)
Importance Factor:		<i>I</i> ≔ 1.0		(ASCE 7-22: Table 1.5-2)
Basic Wind Speed:		$V \coloneqq 108 mph$	1	(ASCE 7-22: Figure 26.5-1B)
Wind Directionality Fa	ctor:	$K_d \coloneqq 0.85$	MWFRS system	(ASCE 7-22: Figure 26.6-1)
Topographic Factor:		$K_{zt} \coloneqq 1$ No ri	dges or hills near this site	(ASCE 7-22: Section 26.8.1)
Ground Elevation Fact	or:	$K_e \coloneqq 1$ Con	servative approximation	(ASCE 7-22: Table 26.9-1)
Gust Effect Factor:		$G \coloneqq 0.85$	Rigid Building	(ASCE 7-22: Section 26.11.1
Enclosure Classificatio	n:	Partially Ope	en	(ASCE 7-22: Section 26.2)
Internal Pressure Coe	fficient:	$GC_{pi} \coloneqq 0.18$		(ASCE 7-22: Table 26.13-1)
Velocity Pressure Expo	osure Co	pefficient:	$K_z := 0.57$	(ASCE 7-22: Table 26.10-1)
		Using directi	onal procedure so not 0.7	
Velocity Pressure:				
$q_z \coloneqq 0.00256 \frac{p_s f}{mph^2} \cdot f$	$K_z \cdot K_{zt} \cdot M_{zt}$	$K_d \cdot V^2 \cdot I = 14$.467 $psf_{q_i = q_z}$	(ASCE 7-22: Equation 26.10-
			9.729 <i>ft</i>	

Wall	Pressures C	coefficients: $L \coloneqq L_A = 79.333 \ ft$ B	$\coloneqq B_A = 30.333 \ ft$
	riables Needed for	Table: $L = 2.615$	
va	riables Needed for	B	
Ex	ternal Pressure Co	efficients: $C_{pWW} := 0.8$ $C_{pLW} := -0.267$ $C_{pS} :=$	-0.7 (ASCE 7-22: Figure 27.3-1
Wall	Pressures:	$p \coloneqq p_{iext} + - p_{iint}$	
	Surface 1:	$p_{Nlext} \coloneqq q_z \cdot G \cdot C_{pWW} = 9.84 \ psf$	(windward)
	ounace r.	$p_{Nlext} = q_z \cdot G \cdot C_{pWW} = 9.84 \ p_{Sf}$ $p_{Nlint} = q_i \cdot ((GC_{pi})) = 2.6 \ p_{Sf}$	(windward)
		$p_{NIplus} \coloneqq p_{Nlext} + p_{Nlint} = 12.442 \text{ psf}$	
		$p_{NIpius} = p_{NIext} \cdot p_{NIint} = 7.234 \ psf$	
	Surface 2:	$p_{N2ext} \coloneqq q_z \cdot G \cdot C_{pS} = -8.61 \ psf$	(side)
	Cundoo 2.	$p_{N2int} \coloneqq q_i \cdot \left((GC_{pi}) \right) = 2.6 \ psf$	
		$p_{N2plus} = p_{N2ext} + p_{N2int} = -6.004 \ psf$	
		$p_{N2minus} \coloneqq p_{N2ext} - p_{N2int} = -11.212 \ psf$	
	0 (0	$p_{N3ext} = q_z \cdot G \cdot C_{pLW} = -3.28 \ psf$	(leeward)
	Surface 3:	$p_{NSint} \coloneqq q_i \cdot \left(\langle GC_{pi} \rangle \right) = 2.6 \ psf$	
		$p_{N3plus} \coloneqq p_{N3ext} + p_{N3int} = -0.679 \ psf$	
		$p_{N3minus} \coloneqq p_{N3ext} - p_{N3int} = -5.887 \ psf$	
		$p_{N4ext} = q_z \cdot G \cdot C_{pLW} = -3.28 \ psf$	(leeward)
	Surface 4:	$p_{N4int} \coloneqq q_i \cdot \left(\langle GC_{pi} \rangle \right) = 2.6 \ psf$	
		$p_{N4plus} \coloneqq p_{N4ext} + p_{N4int} = -0.679 \ psf$	
		$p_{N4minus} \coloneqq p_{N4ext} - p_{N4int} = -5.887 \ psf$	
		$p_{NSext} \coloneqq q_z \cdot G \cdot C_{pLW} = -3.28 \ psf$	(leeward)
	Surface 5:	$p_{NSint} \coloneqq q_i \cdot \left(\langle GC_{pi} \rangle \right) = 2.6 \ psf$	
		$p_{N5plus} \coloneqq p_{N5ext} + p_{N5int} = -0.679 \ psf$	
		$p_{N5minus} \coloneqq p_{N5ext} - p_{N5int} = -5.887 \ psf$	
		$p_{N6ext} \coloneqq q_z \cdot G \cdot C_{pS} = -8.61 \ psf$	(side)
	Surface 6:	$p_{N6int} \coloneqq q_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ psf$	
		$p_{N6plus} \coloneqq p_{N6ext} + p_{N6int} = -6.004 \ psf$	
		$p_{N6minus} \coloneqq p_{N6ext} - p_{N6int} = -11.212 \ psf$	

Variables Needed for Table: $\begin{bmatrix} L \\ B \end{bmatrix} = 0.382$ External Pressure Coefficients: $\begin{bmatrix} P_{H}m \\ B \end{bmatrix} = 0.8$ $\begin{bmatrix} P_{H}m $	Wall	Pressures C	Coefficients: $\widehat{L} := L_B = 30.333 \ ft \qquad \widehat{B} :=$	$B_B = 79.333 \ ft$
Wall Pressures: $p = p_{Lex} + l - p_{Lint}$ Surface 1: $p_{Elever} = q_e \cdot G \cdot C_{pS} = -8.61 pSf$ (side) $p_{Elpus} = q_e \cdot (G C_{pS} = -6.004 pSf$ $p_{Elpus} = p_{Elever} + p_{Elim} = -6.004 pSf$ $p_{Elpus} = p_{Elever} + p_{Elim} = -11.212 pSf$ Surface 2: $p_{Elpus} = q_e \cdot (G \cdot C_{pW} = 9.84 psf$ (windward) $p_{Elpus} = q_e \cdot (G \cdot C_{pW} = 9.84 psf$ $p_{Elpus} = p_{Elever} + p_{Elim} = -11.212 pSf$ Surface 3: $p_{Elpus} = p_{Elever} + p_{Elim} = -2.248 pSf$ $p_{Elpus} = p_{Elever} + p_{Elim} = -2.248 pSf$ $p_{Elpus} = p_{Elever} + p_{Elim} = -6.004 pSf$ $p_{Elpus} = p_{Elever} + p_{Elim} = -6.004 pSf$ $p_{Elpus} = p_{Elever} + p_{Elim} = -6.004 pSf$ $p_{Elpus} = p_{Elever} + p_{Elim} = -11.212 pSf$ Surface 4: $p_{Elpus} = p_{Elever} + p_{Elim} = -11.212 pSf$ $p_{Elpus} = p_{Elever} + p_{Elim} = -11.212 pSf$ Surface 5: $p_{Elpus} = p_{Elever} + p_{Elim} = -11.212 pSf$ $p_{Elpus} = p_{Elever} + p_{Elim} = -6.004 pSf$ $p_{Elpus} = p_{Elever} + p_{Elim} = -11.212 pSf$ $p_{Elpus} = p_{Elever} + p_{Elim} = -11.212 pSf$ $p_{Elpus} = p_{Elever} + p_{Elim} = -11.212 pSf$ $p_{Elover} = q$	Va	riables Needed for	Table: $\begin{array}{c} L \\ B \end{array} = 0.382 \\ \end{array}$	
Surface 1: $p_{Elect} = q_2 \cdot G \cdot C_{pS} = -8.61 p_S f$ (side) $p_{Elmi} = q_1 \cdot ((GC_p)) = 2.6 p_S f$ $p_{Elpina} = P_{Elect} + P_{Elini} = -6.004 p_S f$ $p_{Elpina} = P_{Elect} + P_{Elini} = -11.212 p_S f$ Surface 2: $p_{Elect} + q_2 \cdot G \cdot C_{piw} = 9.84 p_S f$ (windward) $p_{Elminis} = P_{Elect} + P_{Elini} = -11.212 p_S f$ (side) $p_{Elminis} = p_{Elect} + P_{Elini} = 12.442 p_S f$ (side) $p_{Elminis} = P_{Elect} + P_{Elini} = -7.234 p_S f$ (side) $p_{Elminis} = p_{Elect} + P_{Elini} = -6.004 p_S f$ (side) $p_{Elminis} = p_{Elect} + P_{Elini} = -6.004 p_S f$ (side) $p_{Elminis} = p_{Elect} + P_{Elini} = -6.004 p_S f$ (side) $p_{Elminis} = p_{Elect} + P_{Elini} = -11.212 p_S f$ (side) $p_{Elminis} = p_{Elect} + P_{Elini} = -11.212 p_S f$ (side) $p_{Elminis} = p_{Elect} + P_{Elini} = -6.004 p_S f$ (side) $p_{Elminis} = p_{Elect} + P_{Elini} = -6.004 p_S f$ (side) $p_{Elminis} = p_{Elect} + P_{Elini} = -6.004 p_S f$ (side) $p_{Elminis} = p_{Elect} + P_{Elini} = -11.212 p_S f$ (side) $p_{Elminis} = p_{Elect} + P_{Elini} = -6.004 p_S f$ (p_{Elini} = q_i \cdot ((GC_p)) = 2.6 p_S f (side) $p_{Eloci} = q_i \cdot G \cdot C_{pS} = -8.61 p_S f$ (side) <th>Ext</th> <th>ternal Pressure Co</th> <th>efficients: $C_{pWW} \approx 0.8$ $C_{pLW} \approx -0.5$ $C_{pS} \approx -0.5$</th> <th>0.7 (ASCE 7-22: Figure 27.3-1</th>	Ext	ternal Pressure Co	efficients: $C_{pWW} \approx 0.8$ $C_{pLW} \approx -0.5$ $C_{pS} \approx -0.5$	0.7 (ASCE 7-22: Figure 27.3-1
$p_{Elimin} = q \cdot (\langle GC_{\mu} \rangle \rangle = 2.6 \ psf$ $p_{E1plus} := p_{E1ext} + p_{E1int} = -6.004 \ psf$ $p_{E1minus} := p_{E1ext} - p_{E1int} = -11.212 \ psf$ Surface 2: $p_{E2ext} = q_{z} \cdot G \cdot C_{\mu}w = 9.84 \ psf$ $p_{E2plus} := p_{E2ext} + p_{E2int} = 12.442 \ psf$ $p_{E2minus} := p_{E2ext} + p_{E2int} = 7.234 \ psf$ (windward) $p_{E3wi} = q_{z} \cdot G \cdot C_{\mu}s = -8.61 \ psf$ $p_{E3wi} = q_{z} \cdot G \cdot C_{\mu}s = -8.61 \ psf$ $p_{E3minus} := p_{E3ext} + p_{E3int} = -6.004 \ psf$ $p_{E3minus} := p_{E3ext} + p_{E3int} = -6.004 \ psf$ $p_{E3minus} := p_{E3ext} + p_{E3int} = -6.004 \ psf$ $p_{E3minus} := p_{E3ext} + p_{E3int} = -6.004 \ psf$ $p_{E3minus} := p_{E3ext} + p_{E3int} = -6.004 \ psf$ $p_{E4minus} := p_{E4ext} + p_{E3int} = -6.004 \ psf$ $p_{E4minus} := p_{E4ext} + p_{E3int} = -6.004 \ psf$ $p_{E4minus} := p_{E4ext} + p_{E4int} = -11.212 \ psf$ (side) $p_{E4minus} := p_{E4ext} + p_{E4int} = -6.004 \ psf$ $p_{E5minus} := p_{E4ext} + p_{E4int} = -11.212 \ psf$ (side) $p_{E5minus} := p_{E4ext} + p_{E4int} = -11.212 \ psf$ $p_{E5minus} := p_{E4ext} + p_{E4int} = -11.212 \ psf$ (side) $p_{E5minus} := p_{E5ext} + p_{E5int} = -11.212 \ psf$ $p_{E5minus} := p_{E5ext} + p_{E5int} = -11.212 \ psf$ (side) $p_{E5minus} := p_{E5ext} + p_{E5int} = -11.212 \ psf$ $p_{E5minus} := p_{E5ext} + p_{E5int} = -11.212 \ psf$ $p_{E5minus} := p_{E5ext} + p_{E5int} = -11.212 \ psf$ $p_{E5minus} := p_{E5ext} + p_{E5int} = -11.212 \ psf$ $p_{E5minus} := p_{E5ext} + p_{E5int} = -11.212 \ psf$ $p_{E5minus} := p_{E5ext} + p_{E5int} = -11.212 \ psf$ $p_{E5minus} := p_{E5ext} + p_{E5int} = -11.212 \ psf$ $p_{E5minus} := p_{E5ext} + p_{E5int} = -11.212 \ psf$ $p_{E5minus} := p_{E5ext} + p_{E5int} = -11.212 \ psf$ $p_{E5minus} := p_{E5ext} + p_{E5int} = -11.212 \ psf$ $p_{E5minus} := p_{E5ext} + p_{E5int} = -3.544 \ psf$	Wall	Pressures:	$p \coloneqq p_{iext} + - p_{iint}$	
$P_{E1plus} = P_{E1ext} + P_{E1int} = -6.004 \ psf$ $P_{E1minus} = P_{E1ext} - P_{E1int} = -11.212 \ psf$ (windward) $P_{E2m} = q_i \cdot ((GC_{pn})) = 2.6 \ psf$ $P_{E2plus} = P_{E2ext} + P_{E2int} = 12.442 \ psf$ $P_{E2minus} = P_{E2ext} + P_{E2int} = 12.442 \ psf$ (side) $P_{E2minus} = P_{E2ext} + P_{E2int} = 12.442 \ psf$ (side) $P_{E3plus} = P_{E2ext} + P_{E2int} = -6.004 \ psf$ $P_{E3plus} = P_{E3ext} + P_{E3int} = -6.004 \ psf$ $P_{E3plus} = P_{E3ext} - P_{E3int} = -11.212 \ psf$ (side) $P_{E4minus} = P_{E3ext} - P_{E3int} = -11.212 \ psf$ Surface 4: $P_{E4ext} = q_i \cdot (G - C_{ps} = -8.61 \ psf$ $P_{E4minus} = P_{E4ext} - P_{E3int} = -11.212 \ psf$ Surface 5: $P_{E4ext} = q_i \cdot (G - C_{ps} = -8.61 \ psf$ $P_{E4minus} = P_{E4ext} - P_{E4int} = -6.004 \ psf$ $P_{E4minus} = P_{E4ext} - P_{E3int} = -11.212 \ psf$ (side) $P_{E4ext} = q_i \cdot (G - C_{ps} = -8.61 \ psf$ $P_{E4minus} = P_{E4ext} - P_{E3int} = -11.212 \ psf$ (side) $P_{E4ext} = q_i \cdot (G - C_{ps} = -8.61 \ psf$ $P_{E4ext} = q_i \cdot (G - C_{ps} = -8.61 \ psf$ $P_{E4minus} = P_{E4ext} - P_{E3int} = -11.212 \ psf$ (side) $P_{E4ext} = q_i \cdot (G - C_{ps} = -8.61 \ psf$ $P_{E4ext} = q_i \cdot (G - C_{ps} = -6.004 \ psf$ $P_{E4ext} = P_{E4ext} - P_{E5int} = -11.212 \ psf$ (side) $P_{E5ext} = P_{E5ext} - P_{E5int} = -11.212 \ psf$ $P_{E5ext} = P_{E5ext} - P_{E5int} = -11.212 \ psf$ $P_{E5minus} = P_{E5ext} - P_{E5int} = -11.212 \ psf$ $P_{E5minus} = P_{E5ext} - P_{E5int} = -11.212 \ psf$ $P_{E5minus} = P_{E5ext} - P_{E5int} = -11.212 \ psf$ $P_{E5minus} = P_{E5ext} - P_{E5int} = -11.212 \ psf$ $P_{E5minus} = P_{E5ext} - P_{E5int} = -11.212 \ psf$ $P_{E5minus} = P_{E5ext} - P_{E5int} = -11.212 \ psf$ $P_{E5minus} = P_{E5ext} - P_{E5int} = -11.212 \ psf$ $P_{E5minus} = P_{E5ext} - P_{E5int} = -11.212 \ psf$ $P_{E5minus} = P_{E5ext} - P_{E5int} = -11.212 \ psf$ $P_{E5minus} = P_{E5ext} - P_{E5int} = -11.212 \ psf$		Surface 1:	$p_{Elext} \coloneqq q_z \cdot G \cdot C_{pS}$ = -8.61 <i>psf</i>	(side)
$P_{Elminus} = P_{Elext} - P_{Elint} = -11.212 p_{s}f$ (windward) $P_{Elminus} = q_{1} \cdot (GC_{p} _{y}) = 2.6 p_{s}f$ (windward) $P_{Elminus} = P_{Elext} - P_{Elint} = 12.442 p_{s}f$ $P_{Elphinus} = P_{Elext} - P_{Elint} = 12.442 p_{s}f$ $P_{Elphinus} = P_{Elext} - P_{Elint} = 7.234 p_{s}f$ (side) $P_{Elininus} = q_{1} \cdot (GC_{p} _{y}) = 2.6 p_{s}f$ (side) $P_{Elininus} = P_{Elext} - P_{Elint} = -6.004 p_{s}f$ $P_{Elininus} = P_{Elext} - P_{Elint} = -11.212 p_{s}f$ (side) $P_{Elininus} = P_{elext} - P_{elinit} = -11.212 p_{s}f$ (side) $P_{Elininus} = P_{elext} - P_{elinit} = -6.004 p_{s}f$ $P_{Elininus} = P_{elext} - P_{elinit} = -11.212 p_{s}f$ (side) $P_{Elininus} = P_{elext} - P_{elinit} = -11.212 p_{s}f$ (side) $P_{Elininus} = P_{elext} - P_{elinit} = -11.212 p_{s}f$ (side) $P_{Elininus} = P_{elext} - P_{elinit} = -11.212 p_{s}f$ (side) $P_{Elininus} = P_{elext} - P_{elinit} = -11.212 p_{s}f$ (side) $P_{elininus} = P_{elext} - P_{elinit} = -11.212 p_{s}f$ (side) $P_{elininus} = P_{elext} - P_{elinit} = -11.212 p_{s}f$ (side) $P_{elininus} = P_{elext} - P_{elinit} = -11.212 p_{s}f$ (side) $P_{elininus} = P_{elext} - P_{elinit} = -11.212 p_{s}f$ (side) $P_{elininus} = P_{elext} - P_{elinit} = -11.212 p_{s}f$ (side) $P_{elininus} = P_{elext} - P_{elinit} = -11.212 p_{s}f$ (side) $P_{elininus} = P_{elext} - P_{elinit} = -11.212 p_{s}f$ (side) $P_{elininus} = P_{elext} - P_{elinit} = -11.212 p_{s}f$ (side) $P_{elininus} = P_{elext} - P_{elinit} = -11.212 p_{s}f$ (side) $P_{elininus} = P_{elext} - P_{elinit} = -11.212 p_{s}f$ (side) $P_{elininus} = P_{elext} - P_{elinit} = -11.212 p_{s}f$ (side) $P_{elininus} = P_{elext} - P_{elinit} = -11.212 p_{s}f$ (side) $P_{elininus} = P_{elext} - P_{elinit} = -11.212 p_{s}f$ (side) $P_{elininus} = P_{elininus} = P_{elininus} = -11.212 p_{s}f$ (side) $P_{elininus} = P_{elininus} = P_{elininus} = -11.212 p_{s}f$ (side) $P_{elininus} = P_{elininus} = P_{elininus} = -11.212 p_{s}f$ (side) $P_{elininus} = P_{elininus} = P_{elininus} = -11.212 p_{s}f$ (side) $P_{elininus} = P_{eli$			$p_{Elint} \coloneqq q_i \cdot \left(\langle GC_{pi} \rangle \right) = 2.6 \ psf$	
Surface 2: $p_{E2ext} = q_z \cdot G \cdot C_{pWF} = 9.84 \ psf$ (windward) $p_{E2wt} = q_i \cdot (GC_{pi}) = 2.6 \ psf$ $p_{E2pths} = p_{E2ext} + p_{E2int} = 12.442 \ psf$ $p_{E2pths} = p_{E2ext} + p_{E2int} = 12.442 \ psf$ $p_{E2minus} = p_{E2ext} + p_{E2int} = 7.234 \ psf$ Surface 3: $p_{E3wt} = q_z \cdot G \cdot C_{pS} = -8.61 \ psf$ $p_{E3pilus} = p_{E3ext} + p_{E3int} = -6.004 \ psf$ $p_{E3minus} = p_{E3ext} - p_{E3int} = -11.212 \ psf$ Surface 4: $p_{E4ext} = q_z \cdot G \cdot C_{pS} = -8.61 \ psf$ $p_{E4minus} = p_{E3ext} - p_{E3int} = -11.212 \ psf$ Surface 5: $p_{E4ext} = q_z \cdot G \cdot C_{pS} = -8.61 \ psf$ $p_{E5minus} = p_{E4ext} - p_{E4int} = -11.212 \ psf$ Surface 5: $p_{E4ext} = q_z \cdot G \cdot C_{pS} = -8.61 \ psf$ $p_{E5minus} = p_{E3ext} - p_{E3int} = -11.212 \ psf$ $p_{E4ext} = q_z \cdot G \cdot C_{pS} = -8.61 \ psf$ $p_{E4minus} = p_{E4ext} - p_{E4int} = -6.004 \ psf$ $p_{E4minus} = p_{E4ext} - p_{E4int} = -11.212 \ psf$ $p_{E5minus} = p_{E4ext} - p_{E4int} = -11.212 \ psf$ $p_{E5minus} = p_{E5ext} - p_{E5int} = -11.212 \ psf$ $p_{E5minus} = p_{E5ext} - p_{E5int} = -11.212 \ psf$ $p_{E5minus} = p_{E5ext} - p_{E5int} = -11.212 \ psf$ $p_{E5minus} = p_{E5ext} - p_{E5int} = -11.212 \ psf$ $p_{E5minus} = p_{E5ext} - p_{E5int} = -11.212 \ psf$ $p_{E5minus} = p_{E5ext} - p_{E5int} = -11.212 \ psf$ $p_{E5minus} = p_{E5ext} - p_{E5int} = -11.212 \ psf$ $p_{E5minus} = p_{E5ext} - p_{E5int} = -11.212 \ psf$ $p_{E5minus} = p_{E5ext} - p_{E5int} = -11.212 \ psf$ $p_{E5minus} = p_{E5ext} - p_{E5int} = -11.212 \ psf$ $p_{E5minus} = p_{E$			$p_{E1plus} \coloneqq p_{E1ext} + p_{E1int} = -6.004 \ psf$	
$p_{E2mt} = q_i \cdot (\langle GC_{p_i} \rangle) = 2.6 p_i f$ $p_{E2phus} = p_{E2ext} + p_{E2int} = 12.442 p_i f$ $p_{E2minus} = p_{E2ext} + p_{E2int} = 7.234 p_i f$ Surface 3: $p_{E3ext} = q_i \cdot G \cdot C_{pS} = -8.61 p_S f$ $p_{E3min} = q_i \cdot (\langle GC_{p_i} \rangle) = 2.6 p_i f$ $p_{E3minus} = p_{E3ext} + p_{E3int} = -6.004 p_i f$ $p_{E3minus} = p_{E3ext} - p_{E3int} = -11.212 p_i f$ Surface 4: $p_{E4ext} = q_i \cdot G \cdot C_{pS} = -8.61 p_i f$ $p_{E4minus} = p_{E4ext} + p_{E4int} = -6.004 p_i f$ $p_{E4minus} = p_{E4ext} - p_{E4int} = -11.212 p_i f$ Surface 5: $p_{E4ext} = q_i \cdot G \cdot C_{pS} = -8.61 p_i f$ $p_{E5ext} = q_i \cdot G \cdot C_{pS} = -8.61 p_i f$ $p_{E4minus} = p_{E4ext} - p_{E4int} = -11.212 p_i f$ $p_{E4minus} = p_{E4ext} - p_{E4int} = -11.212 p_i f$ $p_{E5ext} = q_i \cdot G \cdot C_{pS} = -8.61 p_i f$ $p_{E5ext} = q_i \cdot G \cdot C_{pS} = -8.61 p_i f$ $p_{E4minus} = p_{E4ext} - p_{E4int} = -11.212 p_i f$ $p_{E5ext} = q_i \cdot G \cdot C_{pS} = -8.61 p_i f$ $p_{E5ext} = q_i \cdot G \cdot C_{pS} = -8.61 p_i f$ $p_{E5ext} = q_i \cdot G \cdot C_{pS} = -8.61 p_i f$ $p_{E5ext} = q_i \cdot G \cdot C_{pS} = -8.61 p_i f$ $p_{E5ext} = q_i \cdot G \cdot C_{pS} = -8.61 p_i f$ $p_{E5ext} = q_i \cdot G \cdot C_{pS} = -8.61 p_i f$ $p_{E5ext} = q_i \cdot G \cdot C_{pS} = -8.61 p_i f$ $p_{E5ext} = q_i \cdot G \cdot C_{pS} = -8.61 p_i f$ $p_{E5ext} = q_i \cdot G \cdot C_{pS} = -8.61 p_i f$ $p_{E5ext} = q_i \cdot G \cdot C_{pS} = -8.61 p_i f$ $p_{E5ext} = q_i \cdot G \cdot C_{pS} = -8.61 p_i f$ $p_{E5ext} = q_i \cdot G \cdot C_{pS} = -8.61 p_i f$ $p_{E5ext} = q_i \cdot G \cdot C_{pS} = -6.004 p_i f$ $p_{E5ext} = q_$			$p_{E1minus} = p_{E1ext} - p_{E1int} = -11.212 \ psf$	
$p_{E2nt} = q_{i} \cdot ((GC_{p_{i}})) = 2.6 p_{i} p_{i}$ $p_{E2phs} = p_{E2ext} + p_{E2ht} = 12.442 p_{i} p_{i}$ $p_{E2minus} = p_{E2ext} + p_{E2int} = 7.234 p_{i} p_{i}$ Surface 3: $p_{E3ext} = q_{i} \cdot G \cdot C_{p} = -8.61 p_{i} p_{i}$ $p_{E3phs} = p_{E3ext} + p_{E3int} = -6.004 p_{i} p_{i}$ $p_{E3minus} = p_{E3ext} - p_{E3int} = -11.212 p_{i} p_{i}$ (side) $p_{E4minus} = p_{E4ext} - p_{E4int} = -6.004 p_{i} p_{i}$ $p_{E4minus} = p_{E4ext} - p_{E4int} = -6.004 p_{i} p_{i}$ (side) $p_{E4minus} = p_{E4ext} - p_{E4int} = -11.212 p_{i} p_{i}$ (side) $p_{E4minus} = p_{E4ext} - p_{E4int} = -11.212 p_{i} p_{i}$ (side) $p_{E5minus} = p_{E4ext} - p_{E4int} = -11.212 p_{i} p_{i}$ (side) $p_{E5minus} = p_{E4ext} - p_{E4int} = -11.212 p_{i} p_{i}$ (side) $p_{E5minus} = p_{E4ext} - p_{E4int} = -11.212 p_{i} p_{i}$ (side) $p_{E5minus} = p_{E4ext} - p_{E4int} = -11.212 p_{i} p_{i}$ (side) $p_{E5minus} = p_{E4ext} - p_{E4int} = -11.212 p_{i} p_{i}$ (side) $p_{E5minus} = p_{E4ext} - p_{E4int} = -11.212 p_{i} p_{i}$ (side) $p_{E5minus} = p_{E5ext} - p_{E5int} = -11.212 p_{i} p_{i}$ (side) $p_{E5minus} = p_{E5ext} - p_{E5int} = -11.212 p_{i} p_{i}$ (side) $p_{E5minus} = p_{E5ext} - p_{E5int} = -11.212 p_{i} p_{i}$ (leeward) $p_{E6ext} = q_{i} \cdot G \cdot C_{pLW} = -6.15 p_{i} p_{i}$ (leeward) $p_{E6ext} = q_{i} \cdot ((GC_{p})) = 2.6 p_{i} p_{i}$ $p_{E6ext} = q_{i} \cdot ((GC_{p})) = 2.6 p_{i} p_{i}$				
$P_{E2plus} = P_{E2ext} + P_{E2lut} = 12.442 psf$ $P_{E2minus} = P_{E2ext} - P_{E2lut} = 7.234 psf$ $P_{E2minus} = P_{E2ext} - P_{E2lut} = 7.234 psf$ (side) $P_{E3minus} = q_z \cdot (G \cdot C_{ps} = -8.61 psf)$ $P_{E3minus} = P_{E3ext} + P_{E3int} = -6.004 psf$ $P_{E3minus} = P_{E3ext} - P_{E3int} = -11.212 psf$ (side) $P_{E4minus} = P_{E4ext} = q_z \cdot (G \cdot C_{ps} = -8.61 psf)$ $P_{E4minus} = P_{E4ext} + P_{E4int} = -6.004 psf$ $P_{E4minus} = P_{E4ext} + P_{E4int} = -6.004 psf$ $P_{E4minus} = P_{E4ext} + P_{E4int} = -11.212 psf$ (side) $P_{E5minus} = P_{E4ext} - P_{E4int} = -11.212 psf$ $P_{E5minus} = P_{E4ext} + P_{E4int} = -6.004 psf$ $P_{E5minus} = P_{E4ext} - P_{E4int} = -11.212 psf$ (side) $P_{E5minus} = q_z \cdot (G \cdot C_{ps} = -8.61 psf)$ $P_{E5minus} = P_{E5ext} + P_{E5int} = -6.004 psf$ $P_{E5minus} = P_{E5ext} - P_{E5int} = -11.212 psf$ $P_{E5minus} = P_{E5ext} + P_{E5int} = -3.544 psf$ (leeward) $P_{E5minus} = P_{E5ext} + P_{E5int} = -3.544 psf$		Surface 2:		(windward)
$p_{E2minus} = p_{E2ext} - p_{E2int} = 7.234 p_{S}f$ (side) $p_{E3minus} = q_{2} \cdot G \cdot C_{pS} = -8.61 p_{S}f$ (side) $p_{E3minus} = p_{E3ext} + p_{E3int} = -6.004 p_{S}f$ $p_{E3minus} = p_{E3ext} - p_{E3int} = -11.212 p_{S}f$ (side) $p_{E4minus} = q_{1} \cdot (\langle GC_{pi} \rangle) = 2.6 p_{S}f$ (side) $p_{E4minus} = q_{1} \cdot G \cdot C_{pS} = -8.61 p_{S}f$ (side) $p_{E4minus} = p_{E4ext} + p_{E4int} = -6.004 p_{S}f$ (side) $p_{E4minus} = p_{E4ext} + p_{E4int} = -11.212 p_{S}f$ (side) $p_{E4minus} = p_{E4ext} + p_{E4int} = -11.212 p_{S}f$ (side) $p_{E4minus} = p_{E4ext} + p_{E4int} = -11.212 p_{S}f$ (side) $p_{E5minus} = p_{E4ext} + p_{E4int} = -11.212 p_{S}f$ (side) $p_{E5minus} = p_{E5ext} + p_{E5int} = -11.212 p_{S}f$ (side) $p_{E5minus} = p_{E5ext} + p_{E5int} = -6.004 p_{S}f$ (p_{E5minus} = p_{E5ext} + p_{E5int} = -11.212 p_{S}f (side) $p_{E5minus} = p_{E5ext} + p_{E5int} = -6.004 p_{S}f$ (p_{E5minus} = p_{E5ext} + p_{E5int} = -11.212 p_{S}f (side) $p_{E5minus} = p_{E5ext} + p_{E5int} = -6.004 p_{S}f$ (p_{E5minus} = p_{E5ext} + p_{E5int} = -11.212 p_{S}f (side) $p_{E5minus} = p_{E5ext} + p_{E5int} = -6.004 p_{S}f$ (side) $p_{E5minus} = p_{E5ext} + p_{E5int} = -6.004 p_{S}f$ (side) $p_{E5minus} = p_{E5ext} + p_{E5int} = -6.004 p_{S}f$ (side) $p_{E5minus} = p_{E5ext} + p_{E5int} = -6.004 p_{S}f$ (side) $p_{E5minus} = p_{E5ext} + p_{E5int} = -11.212 p_{S}f$ (side) $p_{E5minus} = p_{E5ext} + p_{E5int} = -11.212 p_{S}f$ (leeward) $p_{E6minus} = p_{E6ext} + p_{E6int} = -3.544 p_{S}f$				
Surface 3: $p_{E3ext} = q_z \cdot G \cdot C_{pS} = -8.61 psf$ (side) $p_{E3but} = q_i \cdot (\langle GC_{pl} \rangle) = 2.6 psf$ $p_{E3ptus} = p_{E3ext} + p_{E3int} = -6.004 psf$ $p_{E3ptus} = p_{E3ext} + p_{E3int} = -11.212 psf$ Surface 4: $p_{E4ext} = q_z \cdot G \cdot C_{pS} = -8.61 psf$ $p_{E4ntrians} = p_{E4ext} + p_{E4int} = -6.004 psf$ $p_{E4ntrians} = p_{E4ext} + p_{E4int} = -6.004 psf$ $p_{E4ntrians} = p_{E4ext} + p_{E4int} = -6.004 psf$ $p_{E4minus} = p_{E4ext} + p_{E4int} = -11.212 psf$ Surface 5: $p_{E5ext} = q_z \cdot G \cdot C_{pS} = -8.61 psf$ $p_{E5minus} = p_{E4ext} + p_{E4int} = -11.212 psf$ $p_{E5minus} = p_{E4ext} + p_{E4int} = -11.212 psf$ $p_{E5minus} = p_{E4ext} - p_{E4int} = -11.212 psf$ $p_{E5minus} = q_i \cdot (\langle GC_{pl} \rangle) = 2.6 psf$ $p_{E5minus} = q_i \cdot (\langle GC_{pl} \rangle) = 2.6 psf$ $p_{E5minus} = p_{E5ext} + p_{E5int} = -6.004 psf$ $p_{E5minus} = p_{E5ext} - p_{E5int} = -11.212 psf$ $p_{E5minus} = p_{Eisext} - p_{E5int} = -11.212 psf$ $p_{E5minus} = p_{Eisext} - p_{E5int} = -11.212 psf$ $p_{E5minus} = p_{Eisext} - p_{E5int} = -11.212 psf$ $p_{E0pinus} = q_i \cdot (\langle GC_{pl} \rangle) = 2.6 psf$ $p_{E0pinus} = p_{Eisext} - p_{Eint} = -11.212 psf$ $p_{E0pinus} = p_{Eisext} - p_{Eint} = -11.212 psf$ $p_{E0pinus} = p_{Eisext} + p_{Eint} = -6.15 psf$ $p_{E0pinus} = q_i \cdot (\langle GC_{pl} \rangle) = 2.6 psf$ $p_{E0pinus} = p_{Eisext} + p_{Eint} = -3.544 psf$				
Surface 5: $p_{E3ptus} = q_{i} \cdot (\langle GC_{pt} \rangle) = 2.6 \ p_{Sf}$ $p_{E3ptus} = p_{E3ext} + p_{E3int} = -6.004 \ p_{Sf}$ $p_{E3minus} = p_{E3ext} - p_{E3int} = -11.212 \ p_{Sf}$ (side) $p_{E4ext} = q_{z} \cdot G \cdot C_{pS} = -8.61 \ p_{Sf}$ $p_{E4ptus} = p_{E4ext} + p_{E4int} = -6.004 \ p_{Sf}$ $p_{E4ptus} = p_{E4ext} + p_{E4int} = -6.004 \ p_{Sf}$ $p_{E4minus} = p_{E4ext} - p_{E4int} = -11.212 \ p_{Sf}$ (side) $p_{E5minus} = p_{E5ext} - p_{E4int} = -11.212 \ p_{Sf}$ (side) $p_{E5minus} = p_{E5ext} - p_{E4int} = -11.212 \ p_{Sf}$ (side) $p_{E5minus} = p_{E5ext} - p_{E4int} = -11.212 \ p_{Sf}$ (side) $p_{E5minus} = p_{E5ext} - p_{E4int} = -11.212 \ p_{Sf}$ (side) $p_{E5minus} = p_{E5ext} - p_{E5int} = -11.212 \ p_{Sf}$ (side) $p_{E5minus} = p_{E5ext} - p_{E5int} = -11.212 \ p_{Sf}$ (side) $p_{E5minus} = p_{E5ext} - p_{E5int} = -11.212 \ p_{Sf}$ (side) $p_{E5minus} = p_{E5ext} - p_{E5int} = -11.212 \ p_{Sf}$ (side) $p_{E5minus} = p_{E5ext} - p_{E5int} = -11.212 \ p_{Sf}$ (leeward) $p_{E6oxt} = q_{i} \cdot (\langle GC_{p_{i}} \rangle) = 2.6 \ p_{Sf}$ $p_{E6oxt} = q_{i} \cdot (\langle GC_{p_{i}} \rangle) = 2.6 \ p_{Sf}$ $p_{E6oxt} = q_{i} \cdot (\langle GC_{p_{i}} \rangle) = 2.6 \ p_{Sf}$ $p_{E6oxt} = p_{E6ext} + p_{E6int} = -3.544 \ p_{Sf}$				
$p_{E3but} = q_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ pSf$ $p_{E3plus} := p_{E3ext} + p_{E3int} = -6.004 \ pSf$ $p_{E3minus} := p_{E3ext} - p_{E3int} = -11.212 \ pSf$ (side) $p_{E4mt} := q_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ pSf$ $p_{E4mt} := q_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ pSf$ $p_{E4minus} := p_{E4ext} + p_{E4int} = -6.004 \ pSf$ $p_{E4minus} := p_{E4ext} + p_{E4int} = -6.004 \ pSf$ $p_{E4minus} := p_{E4ext} - p_{E4int} = -11.212 \ pSf$ (side) $p_{E5minus} := p_{E4ext} - p_{E4int} = -11.212 \ pSf$ (side) $p_{E5minus} := q_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ pSf$ $p_{E5minus} := q_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ pSf$ $p_{E5minus} := p_{E5ext} + p_{E5int} = -6.004 \ pSf$ $p_{E5minus} := p_{E5ext} + p_{E5int} = -11.212 \ pSf$ (side) $p_{E5minus} := p_{E5ext} - p_{E5int} = -11.212 \ pSf$ (leeward) $p_{E6ext} := q_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ pSf$ $p_{E5minus} := p_{E5ext} + p_{E5int} = -6.15 \ pSf$ (leeward) $p_{E6minus} := p_{E6ext} + p_{E6int} = -3.544 \ pSf$		Surface 3	$p_{E3ext} \coloneqq q_z \cdot G \cdot C_{pS} = -8.61 \ psf$	(side)
$P_{E3minus} := P_{E3ext} - P_{E3int} = -11.212 \ psf$ (side)Surface 4: $P_{E4ext} := q_z \cdot G \cdot C_{pS} = -8.61 \ psf$ $p_{E4nt} := q_i \cdot (GC_{pi}) = 2.6 \ psf$ $P_{E4pitus} := P_{E4ext} + P_{E4int} = -6.004 \ psf$ $P_{E4minus} := P_{E4ext} - P_{E4int} = -11.212 \ psf$ (side)Surface 5: $P_{E3ext} := q_z \cdot G \cdot C_{pS} = -8.61 \ psf$ 		Sunace 5.	$p_{E3int} \coloneqq q_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ psf$	
Surface 4: $p_{E4ext} \coloneqq q_z \cdot G \cdot C_{pS} = -8.61 \ psf$ $p_{E4mt} \coloneqq q_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ psf$ $p_{E4plus} \coloneqq p_{E4ext} + p_{E4int} = -6.004 \ psf$ $p_{E4minus} \coloneqq p_{E4ext} - p_{E4int} = -11.212 \ psf$ (side)Surface 5: $p_{E5ext} \coloneqq q_z \cdot G \cdot C_{pS} = -8.61 \ psf$ $p_{E5minus} \coloneqq p_{E5ext} + p_{E5int} = -6.004 \ psf$ $p_{E5minus} \coloneqq p_{E5ext} = q_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ psf$ $p_{E5plus} \coloneqq p_{E5ext} + p_{E5int} = -11.212 \ psf$ (side)Surface 5: $p_{E5ext} \coloneqq q_z \cdot G \cdot C_{pS} = -8.61 \ psf$ $p_{E5minus} \coloneqq p_{E5ext} + p_{E5int} = -6.004 \ psf$ $p_{E5plus} \coloneqq p_{E5ext} + p_{E5int} = -11.212 \ psf$ (side)Surface 6: $p_{E6ext} \coloneqq q_z \cdot G \cdot C_{pLW} = -6.15 \ psf$ $p_{E6minus} \coloneqq q_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ psf$ $p_{E6plus} \coloneqq p_{E6ext} + p_{E6int} = -3.544 \ psf$ (leeward)			$p_{E3plus} \coloneqq p_{E3ext} + p_{E3int} = -6.004 \ psf$	
Surface 4: $p_{E4int} \coloneqq q_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ psf$ $p_{E4plus} \coloneqq p_{E4puts} \coloneqq p_{E4ext} + p_{E4int} = -6.004 \ psf$ $p_{E4minus} \coloneqq p_{E4ext} - p_{E4int} = -11.212 \ psf$ Surface 5: $p_{E5ext} \coloneqq q_z \cdot G \cdot C_{pS} = -8.61 \ psf$ $p_{E5int} \coloneqq q_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ psf$ $p_{E5plus} \coloneqq p_{E5ext} + p_{E5int} = -6.004 \ psf$ $p_{E5minus} \coloneqq p_{E5ext} - p_{E5int} = -11.212 \ psf$ $p_{E6ext} \coloneqq q_z \cdot G \cdot C_{pLW} = -6.15 \ psf$ $p_{E6ext} \coloneqq q_z \cdot G \cdot C_{pLW} = -6.15 \ psf$ $p_{E6out} \coloneqq q_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ psf$ $p_{E6plus} \coloneqq p_{E6ext} + p_{E6int} = -3.544 \ psf$			$p_{E3minus} \coloneqq p_{E3ext} - p_{E3int} = -11.212 \ psf$	
Surface 4: $p_{E4int} \coloneqq q_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ psf$ $p_{E4plus} \coloneqq p_{E4pxt} + p_{E4int} = -6.004 \ psf$ $p_{E4plus} \coloneqq p_{E4ext} - p_{E4int} = -11.212 \ psf$ Surface 5: $p_{E5ext} \coloneqq q_z \cdot G \cdot C_{pS} = -8.61 \ psf$ $p_{E5int} \coloneqq q_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ psf$ $p_{E5plus} \coloneqq p_{E5ext} + p_{E5int} = -6.004 \ psf$ $p_{E5plus} \coloneqq p_{E5ext} - p_{E5int} = -11.212 \ psf$ $p_{E6ext} \coloneqq q_z \cdot G \cdot C_{pLW} = -6.15 \ psf$ $p_{E6ext} \coloneqq q_z \cdot G \cdot C_{pLW} = -6.15 \ psf$ $p_{E6ext} \coloneqq q_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ psf$ $p_{E6plus} \coloneqq p_{E6ext} + p_{E6int} = -3.544 \ psf$				
$p_{E4plus} \coloneqq p_{E4ext} + p_{E4int} = -6.004 \ psf$ $p_{E4minus} \coloneqq p_{E4ext} - p_{E4int} = -11.212 \ psf$ (side) $p_{E5ext} \coloneqq q_z \cdot G \cdot C_{pS} = -8.61 \ psf$ $p_{E5minus} \coloneqq q_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ psf$ $p_{E5plus} \coloneqq p_{E5ext} + p_{E5int} = -6.004 \ psf$ $p_{E5minus} \coloneqq p_{E5ext} - p_{E5int} = -11.212 \ psf$ (leeward) $p_{E6ext} \coloneqq q_z \cdot G \cdot C_{pLW} = -6.15 \ psf$ $p_{E6om} \coloneqq q_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ psf$ $p_{E6om} \coloneqq q_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ psf$		Surface 4:		(side)
$p_{E4minus} \coloneqq p_{E4ext} - p_{E4int} = -11.212 \ psf$ $p_{E5ext} \coloneqq q_z \cdot G \cdot C_{pS} = -8.61 \ psf$ $p_{E5int} \coloneqq q_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ psf$ $p_{E5plus} \coloneqq p_{E5ext} + p_{E5int} = -6.004 \ psf$ $p_{E5minus} \coloneqq p_{E5ext} - p_{E5int} = -11.212 \ psf$ $p_{E6ext} \coloneqq q_z \cdot G \cdot C_{pLW} = -6.15 \ psf$ $p_{E6int} \coloneqq q_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ psf$ $p_{E6int} \coloneqq q_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ psf$ $p_{E6int} \coloneqq p_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ psf$ $p_{E6int} \coloneqq p_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ psf$ $p_{E6int} \coloneqq p_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ psf$ $p_{E6int} \coloneqq p_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ psf$				
Surface 5: $p_{ESext} \coloneqq q_z \cdot G \cdot C_{pS} = -8.61 \ psf$ $p_{ESint} \coloneqq q_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ psf$ $p_{ESpint} \coloneqq p_{ESext} + p_{ESint} = -6.004 \ psf$ $p_{ESminus} \coloneqq p_{ESext} - p_{ESint} = -11.212 \ psf$ (side)Surface 6: $p_{E6ext} \coloneqq q_z \cdot G \cdot C_{pLW} = -6.15 \ psf$ $p_{E6int} \coloneqq q_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ psf$ $p_{E6int} \coloneqq q_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ psf$ $p_{E6int} \coloneqq q_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ psf$				
Surface 5: $p_{E5int} \coloneqq q_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ psf$ $p_{E5plus} \coloneqq p_{E5plus} \coloneqq p_{E5ext} + p_{E5int} = -6.004 \ psf$ $p_{E5minus} \coloneqq p_{E5ext} - p_{E5int} = -11.212 \ psf$ $p_{E6ext} \coloneqq q_z \cdot G \cdot C_{pLW} = -6.15 \ psf$ (leeward) $p_{E6int} \coloneqq q_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ psf$ $p_{E6int} \coloneqq p_{E6int} \coloneqq q_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ psf$				
Surface 5: $p_{E5int} \coloneqq q_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ psf$ $p_{E5plus} \coloneqq p_{E5plus} \coloneqq p_{E5ext} + p_{E5int} = -6.004 \ psf$ $p_{E5minus} \coloneqq p_{E5ext} - p_{E5int} = -11.212 \ psf$ $p_{E6ext} \coloneqq q_z \cdot G \cdot C_{pLW} = -6.15 \ psf$ (leeward) $p_{E6int} \coloneqq q_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ psf$ $p_{E6int} \coloneqq p_{E6int} \coloneqq q_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ psf$			$p_{ESext} \coloneqq q_z \cdot G \cdot C_{pS} = -8.61 \ psf$	(side)
$p_{E5minus} \coloneqq p_{E5ext} - p_{E5int} = -11.212 \ psf$ $p_{E6ext} \coloneqq q_z \cdot G \cdot C_{pLW} = -6.15 \ psf$ $p_{E6int} \coloneqq q_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ psf$ $p_{E6plus} \coloneqq p_{E6ext} + p_{E6int} = -3.544 \ psf$ (leeward)		Surface 5:	$p_{ESint} \coloneqq q_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ psf$	
$p_{E6ext} \coloneqq q_z \cdot G \cdot C_{pLW} = -6.15 \ psf$ (leeward) $Surface 6: \qquad p_{E6int} \coloneqq q_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ psf$ $p_{E6plus} \coloneqq p_{E6ext} + p_{E6int} = -3.544 \ psf$			$p_{E5plus} \coloneqq p_{E5ext} + p_{E5int} = -6.004 \ psf$	
Surface 6: $p_{E6int} \coloneqq q_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ psf$ $p_{E6plus} \coloneqq p_{E6ext} + p_{E6int} = -3.544 \ psf$			$p_{E5minus} \coloneqq p_{E5ext} - p_{E5int} = -11.212 \ psf$	
Surface 6: $p_{E6ptus} \coloneqq q_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ psf$ $p_{E6ptus} \coloneqq p_{E6ext} + p_{E6int} = -3.544 \ psf$				
$p_{E6plus} = p_{E6ext} + p_{E6int} = -3.544 \ psf$				(leeward)
		Surface 6:		
PE6minus PE6ext PE6int - 5.755 PSJ				
			PE6minus PE6ext PE6int - 0.135 psj	

Wall	Pressures C	Coefficients: $\widehat{L} := L_C = 79.333 ft$ $\widehat{B} :$	$=B_C = 30.333 ft$
Va	riables Needed for	Table: $\frac{L}{B} = 2.615$	
Ex	ternal Pressure Co	efficients: $C_{pWW} = 0.8$ $C_{pLW} = -0.267$ $C_{pS} = -0.267$	-0.7 (ASCE 7-22: Figure 27.3-
Wall	Pressures:	$p = p_{iext} + - p_{iint}$	
	Surface 1:	$p_{Slext} \coloneqq q_z \cdot G \cdot C_{pLW} = -3.28 \ psf$ $p_{Slint} \coloneqq q_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ psf$	(leeward)
		$p_{S1plus} \coloneqq p_{S1ext} + p_{S1int} = -0.679 \ p_{Sf}$ $p_{S1minus} \coloneqq p_{S1ext} - p_{S1int} = -5.887 \ p_{Sf}$	
	Surface 2:	$p_{S2ext} \coloneqq q_z \cdot G \cdot C_{pS} = -8.61 \text{ psf}$ $p_{S2int} \coloneqq q_i \cdot ((GC_{pi})) = 2.6 \text{ psf}$	(side)
		$p_{S2plus} \coloneqq p_{S2ext} + p_{S2int} = -6.004 \ psf$ $p_{S2minus} \coloneqq p_{S2ext} - p_{S2int} = -11.212 \ psf$	
	Surface 3:	$p_{S3ext} \coloneqq q_z \cdot G \cdot C_{pWW} = 9.84 \ psf$ $p_{S3int} \coloneqq q_i \cdot ((GC_{pi})) = 2.6 \ psf$	(windward)
		$p_{S3plus} \coloneqq p_{S3ext} + p_{S3int} = 12.442 \ psf$ $p_{S3minus} \coloneqq p_{S3ext} - p_{S3int} = 7.234 \ psf$	
	Surface 4:	$p_{S4ext} \coloneqq q_z \cdot G \cdot C_{pWW} = 9.84 \ psf$ $p_{S4int} \coloneqq q_i \cdot ((GC_{pi})) = 2.6 \ psf$	(windward)
		$p_{S4plus} \coloneqq p_{S4ext} + p_{S4int} = 12.442 \ psf$ $p_{S4minus} \coloneqq p_{S4ext} - p_{S4int} = 7.234 \ psf$	
	Surface 5:	$p_{SSext} \coloneqq q_z \cdot G \cdot C_{pWW} = 9.84 \ psf$ $p_{SSint} \coloneqq q_i \cdot ((GC_{pi})) = 2.6 \ psf$	(windward)
		$p_{SSplus} \coloneqq p_{SSext} + p_{SSint} = 12.442 \ psf$ $p_{SSminus} \coloneqq p_{SSext} - p_{SSint} = 7.234 \ psf$	
	Surface 6:	$p_{S6ext} \coloneqq q_z \cdot G \cdot C_{pS} = -8.61 \ psf$ $p_{S6int} \coloneqq q_i \cdot (\langle GC_{pi} \rangle) = 2.6 \ psf$	(side)
		$p_{S6plus} \coloneqq p_{S6ext} + p_{S6int} = -6.004 \ psf$ $p_{S6minus} \coloneqq p_{S6ext} - p_{S6int} = -11.212 \ psf$	

Wall	Pressures C	Coefficients:	$\widehat{L} \coloneqq L_D = 30.333 j$	$ft \qquad B \coloneqq B_D \equiv$	= 79.333 <i>ft</i>
Va	riables Needed for	Table: $\begin{array}{c} L\\ B \end{array} = 0.382 \end{array}$			
Ex	ternal Pressure Co	efficients: $C_{pWW} = 0.8$	$C_{pLW} \coloneqq -0.5$	$C_{pS} = -0.7$	(ASCE 7-22: Figure 27.3-1
Wall	Pressures:	$p \coloneqq p_{iext} + - p$	9 _{iint}		
	Surface 1:	$p_{Wlext} \coloneqq q_z \cdot G \cdot C_{p_t}$	_s = -8.61 <i>psf</i>	(\$	side)
		$p_{Wlint} \coloneqq q_i \cdot (\langle GC_{pi} \rangle)$	= 2.6 <i>psf</i>		
		$p_{W1plus} \coloneqq p_{W1ext} + p_{W1ext}$	$p_{Wlint} = -6.004 \ psf$		
		$p_{W1minus} \coloneqq p_{W1ext}$	$p_{Wlint} = -11.212 \ psf$		
	Surface 2:	$p_{W2ext} \coloneqq q_z \cdot G \cdot C_{pt}$		(1	eeward)
		$p_{W2int} \coloneqq q_i \cdot \left(\langle GC_{pi} \rangle \right)$	= 2.6 <i>psf</i>		
		$p_{W2plus} \coloneqq p_{W2ext} + p_{W2ext}$			
		$p_{W2minus} \coloneqq p_{W2ext}$	$p_{W2int} = -8.753 \ psf$		
					-:
	Surface 3:	$p_{W3ext} \coloneqq q_z \cdot G \cdot C_{p_i}$ $p_{W3int} \coloneqq q_i \cdot (\langle GC_{pi} \rangle)$		(side)
			$p_{W3int} = -6.004 \ psf$		
			$p_{W3int} = -11.212 \ psf$		
		1 w Sminus 1 w Sexi 1			
		$p_{W4ext} \coloneqq q_z \cdot G \cdot C_{p_z}$	$s = -8.61 \ psf$	(1	side)
	Surface 4:	$p_{W4int} \coloneqq q_i \cdot (\langle GC_{pi} \rangle)$			
		$p_{W4plus} \coloneqq p_{W4ext} + p_{W4ext}$	$p_{W4int} = -6.004 \ psf$		
		$p_{W4minus} \coloneqq p_{W4ext}$	$p_{W4int} = -11.212 \ psf$		
	Surface 5:	$p_{WSext} \coloneqq q_z \cdot G \cdot C_{p_z}$		()	side)
	Currace c.	$p_{WSint} \coloneqq q_i \cdot \left(\langle GC_{pi} \rangle \right)$			
			$p_{W5int} = -6.004 \ psf$		
		PW5minus - PW5ext	$p_{W5int} = -11.212 \ psf$		
		$p_{W6ext} \coloneqq q_z \cdot G \cdot C_{pW}$	$ww = 9.84 \ psf$	(windward)
	Surface 6:	$p_{W6int} \coloneqq q_i \cdot (\langle GC_{pi} \rangle)$			
		$p_{W6plus} \coloneqq p_{W6ext} + p$			
		$p_{W6minus} \coloneqq p_{W6ext} - p_{W6ext}$			

Normal Weight Concrete Composite Deck with Welded-Wire Reinforcements

1.5VL-36 COMPOSITE DECK-SLAB Normal Weight Concrete - 22 gage - 5" total depth - 3.5" topping

Link to Website: https://vulcraft.com/Products/Deck#composite-deck

Link to Datasheet:https://vulcraft.com/catalogs/Deck/CompositeDeck/ LRFD-1.5VL-36-1.5VLI-36-1.5PLVLI-36_Composite_Deck-Slab.pdf

$Dead_{CompositeDeck} = 50.3 \ psf$

		Maxin	num Uns	shored S	pans	Compos	Composite Deck-Slab Properties			
Slat	Depth	Deck		mum Unsl uction Cle		Concrete + Deck	Deflection $I_d = (I_{cr} + I_{u})/2$	Moment ØM _{no}	Shear ØV _{no}	
Total	Topping	Gage	1	2	3	(psf)	(in ⁴ /ft)	(kip-ft/ft)	(kip/ft)	
		22	6'-6"	7'-7"	7'-8"	32.2	2.64	2.73	3.02	
		20	7'-10"	9'-0"	9'-3"	32.6	2.85	3.22	3.02	
31/2"	2"	19	8'-4"	9'-11"	10'-3"	32.9	3.03	3.67	3.02	
		18	8'-9"	10'-7"	10'-11"	33.2	3.19	4.07	3.02	
		16	9'-6"	11'-10"	11'-8"	33.9	3.52	4.91	3.02	
		22	5'-8"	6'-7"	6'-8"	50.3	7.62	4.79	4.93	
		20	6'-9"	7'-9"	7'-11"	50.7	8.18	5.69	4.93	
5"	31/2"	19	7'-3"	8'-7"	8'-10"	51.0	8.68	6.54	4.93	
		18	7'-8"	9'-2"	9'-5"	51.3	9.12	7.30	4.93	
		16	8'-4"	10'-3"	10'-4"	52.0	10.02	8.92	4.93	
	00	22	5'-3"	6'-1"	6'-2"	62.4	13.11	6.30	6.41	
		20	6'-3"	7'-2"	7'-4"	62.8	14.02	7.51	6.41	
6"	41/2"	19	6'-10"	7'-11"	8'-2"	63.1	14.85	8.64	6.41	
		18	7'-2"	8'-5"	8'-9"	63.4	15.57	9.67	6.41	
		16	7'-10"	9'-6"	9'-8"	64.1	17.06	11.87	6.41	

Total Ramp Dead Load

 $Dead_{Ramp} \coloneqq Dead_{Membrane} + Dead_{CompositeDeck} = 51.3 \ psf$

The dead load for the ramp is approximately 52 psf

Snow Loads for Ramp

Balanced Snow Load

Exposure Coefficient

Table 7.3-1. Exposure Factor, Ce.

	Exposure of Roof*			
Surface Roughness Category	Fully Exposed ^b	Partially Exposed	Sheltered	
B (see Section 26.7)	0.9	1.0	1.2	
C (see Section 26.7)	0.9	1.0	1.1	
D (see Section 26.7)	0.8	0.9	1.0	
Above the tree line in windswept mountainous areas	0.7	0.8	N/A	
In Alaska, in areas where trees do not exist within a 2 mi (3 km) radius of the site	0.7	0.8	N/A	

The terrain category and roof exposure condition chosen shall be representative of the anticipated conditions during the life of the structure. An exposure factor shall be determined for each roof of a structure.

^a Partially Exposed: All roofs not Fully Exposed or Sheltered. Fully Exposed: Roofs exposed on all sides with no shelter^b afforded by terrain, higher structures, or trees. Roofs that contain several large pieces of mechanical equipment, parapets that extend above the height of the balanced snow load (h_b), or other obstructions are not in this category. Sheltered: Roofs located tight in among conifers that qualify as obstructions.

^b Obstructions within a distance of 10h_o provide "shelter," where h_o is the height of the obstruction above the roof level. If the only obstructions are a few deciduous trees that are leafless in winter, the "fully exposed" category shall be used. Note that these are heights above the roof. Heights used to establish the Exposure Category in Section 26.7 are heights above the ground.

Thermal Factor

Heated closed structure

without a ventilated roof

Table 7.3-2 Thermal Factor, C,

Thermal Condition ^a	C,
All structures except as indicated below	1.0
Structures kept just above freezing and others with cold, ventilated roofs in which the thermal resistance (R-value) between the ventilated space and the heated space exceeds $25^{\circ}F \times h \times fr^2/Bu (4.4 K \times m^2/W)$	1.1
Unheated and open air structures	1.2
Freezer building	1.3
Continuously heated greenhouses ^b with a roof having a thermal resistance (R-value) less than $2.0^{\circ}F \times h \times ft^2$ /Btu (0.4 K × m ² /W)	0.85
³ These conditions shall be representative of the anticipated cond winters for the life of the structure. ^b Greenhouses with a constantly maintained interior temperat	

$C_e \approx 1.0$

Surface Roughness B/Partially Exposed... because we're in downtown Maquoketa ASCE 7-16 Table 7.3-1 Exposure Coefficient, Ce

> $C_t = 1.2$ Unheated Open Air Structure

ASCE 7-16 Table 7.3-2 Thermal Factor, Ct

Didn't use ASCE 7-22 because C_t is requires known material properties

Used ASCE 7-16

Importance Factor

Table 1.5-2 Importance Factors by Risk Category of Buildings and Other Structures for Snow, Ice, and Earthquake Loads

Risk Category from Table 1.5-1	Snow Importance Factor, I _s	Factor— Thickness, I,	Ice Importance Factor—Wind, I _w	Seismic Importance Factor, I _e
1	0.80	0.80	1.00	1.00
Ш	1.00	1.00	1.00	1.00
ш	1.10	1.15	1.00	1.25
IV	1.20	1.25	1.00	1.50

Note: The component importance factor, I_p , applicable to earthquake loads, is not included in this table because it depends on the importance of the individual component rather than that of the building as a whole, or its occupancy. Refer to Section 13.1.3.

Ground Snow Load

ASCE 7 HAZARD TOOL

Location ASCE Hazard Tool Maquoketa, lowa, . 63rd St		· 77573-	
Elevation 704 ft with respect to North American Vertical Datum of 1988 (NAVD 88)Lat: 42.06926 Long: -90.6649 Standard:ASCE/SEI 7-22Risk Category:IISolit Class:DefaultSolit Class:DefaultStin/ft ² DetailsFULL REPORTSUMMARY	Location	63rd St	ASCE Hazard Tool
Elevation Vertical Datum of 1988 (NAVD 88) Lat: 42.06926 Long: -90.6649 Standard: ASCE/SEI 7-22 Risk Category: I Soil Class: Default Soil Class: Default Standard: Vertical Datum of 1988 (NAVD 88) Lung: -90.6649 Standard: ASCE/SEI 7-22 Risk Category: I I - Soil Class: Default Standard: Vertage Standard: Detaults		The -	
Long: -90.6649 Standard: ASCE/SEI 7-22 Risk Category: II Solil Class: Default Snow Overlay Overlay Image: Standard: Summary Still b/ft ² DETAILS FULL REPORT SUMMARY	Elevation	1 Sector	$p_g = 51 \ psf$
Long: -90.6649 Standard: ASCE/SEI 7-22 Risk Category: I Soil Class: Default Snow Overlay Overlay I Standard: Summary	Lat: 42.06926		No other snow load
Stantidard: ASCE/SET 7-22 Risk Category: Soil Class: Default Snow Overlay Sti Ib/ft ² DETAILS 64 Gategory: Image: Control of the second sec	_ong: -90.66 4 9	- Nd	indicated in the Maquoketa
Category: Soil Class: Default Snow Overlay DeTAILS 64 Category: Summary: FULL REPORT SUMMARY	Standard: ASCE/SEI 7-22	Star In	Code of Ordinances
Snow Overlay 51 lb/ft ² DETAILS FULL REPORT SUMMARY		1 and and	
51 Ib/ft ² DETAILS 64 FULL REPORT SUMMARY Hot was a concentration of the second of th	Soil Class: Default		
FULL REPORT SUMMARY	Snow Overlay	A STOC	
FULL REPORT SUMMARY All data are per the requirements of the ASCE/SEL7	51 lb/ft ² DETAILS	64	
FULL REPORT SUMMARY All data are per the requirements of the ASCE/SEL7		= 1	
All data are per the requirements of the ASOF/SEL7	FULL REPORT SUMMARY	A A	
All data are per the requirements of the ASCE/SEL7		HIGHWA COL	
	I data are per the requirements of the ASCE/SEL7	Alexandrate 1-3	

 $I_s \coloneqq 1.0$

Risk Category 2 ASCE 7-16 Table 1.5-2

Sloped Roof Factor

 $C_s = 1.0$ Using ramp slope as the roof slope

Sloped Roof Snow Load $p_s \coloneqq 0.7 \cdot C_s \cdot C_e \cdot C_t \cdot I_s \cdot p_g = 42.84 \ psf$

 $BalancedSnow_{Load} = p_s = 42.84 \ psf$

The snow load is approximately 43 psf

liv	/e	-0	a	ds	5
	_				

Used ASCE 7-22

Table 4.3-1. (Continued) Minimum Uniformly Distributed Live Loads, Lo, and Minimum Concentrated Live Loads

Occupancy or Use	Uniform, L _e psf (kN/m ²)	Live Load Reduction Permitted? (Sec. No.)	Multiple-Story Live Load Reduction Permitted? (Sec. No.)	Concentrated Ib (kN)	Also Section
occupancy of ose	onnonn, za par (kry/m)	(dec. No.)	Permiteur (dec. No.)	10 (114)	Section
Penal institutions					
Cell blocks	40 (1.92)	Yes (4.7.2)	Yes (4.7.2)		
Corridors	100 (4.79)	Yes (4.7.2)	Yes (4.7.2)		
Recreational uses					
Bowling alleys, poolrooms, and similar uses	75 (3.59)	No (4.7.5)	No (4.7.5)		
Dance halls and ballrooms	100 (4.79)	No (4.7.5)	No (4.7.5)		
Gymnasiums	100 (4.79)	No (4.7.5)	No (4.7.5)		
Residential					
One- and two-family dwellings					
Uninhabitable attics without storage	10 (0.48)	Yes (4.7.2)	Yes (4.7.2)		4.12.1
Uninhabitable attics with storage	20 (0.96)	Yes (4.7.2)	Yes (4.7.2)		4.12.2
Habitable attics and sleeping areas	30 (1.44)	Yes (4.7.2)	Yes (4.7.2)		
All other areas except stairs	40 (1.92)	Yes (4.7.2)	Yes (4.7.2)		
All other residential occupancies		(
Private rooms and corridors serving them	40 (1.92)	Yes (4.7.2)	Yes (4.7.2)		
Public rooms	100 (4.79)	No (4.7.5)	No (4.7.5)		
Corridors serving public rooms	100 (4.79)	Yes (4.7.2)	Yes (4.7.2)		
Roofs	100 (4.73)	103 (4.7.2)	103 (4.7.2)		
	20 (0.05)	Vac (1 8 2)			4.8.1
Ordinary flat, pitched, and curved roofs	20 (0.96)	Yes (4.8.2) Yes (4.8.3)			4.0.1
Roof areas used for occupants	Same as occupancy served		_		
Roof areas used for assembly purposes Vegetative and landscaped roofs	100 (4.70)	Yes (4.8.3)			
Roof areas not intended for occupancy	20 (0.96)	Yes (4.8.2)			
Roof areas used for assembly purposes	100 (4.70)	Yes (4.8.3)	_		
Roof areas used for other occupancies Awnings and canopies	Same as occupancy served	Yes (4.8.3)	1000 C		
Fabric construction supported by a skeleton structure	5 (0.24)	No (4.8.2)			
Screen enclosure support frame	5 (0.24) based on the tributary area of the roof supported by the frame member	No (4.8.2)	_	200 (0.89)	
***	00.00.00	17 11 A A			101
$ve_{Load} = 100 \ psf$	For roof area used				
	assembly purpos	es			
nce the roof won't be occu	pied at the same tir	ne as			
owstorm, use the larger n	umber load (snow o	r live load).			
Line 100 per	>>	BalancedS	$noW_{Load} = 42.8$	Anef	
$Live_{Load} = 100 \ psf$		Durunceus	$nOw_{Load} = 42.0$	μη psj	
Regardless, we will tes	t each load combi	nation for suf	ficient streng	th of mem	nbers

1.5VL-36 COMPOSITE DECK GRADE 50 STEEL

Link to Website: https://vulcraft.com/Products/ Deck#composite-deck

Link to Datasheet: https://vulcraft.com/catalogs/Deck/CompositeDeck/ LRFD-1.5VL-36-1.5VLI-36-1.5PLVLI-36_Composite_Deck-Slab.pdf 1.5VL-36

Nested

Side-lap

Slab Makeup: Total - 5" Topping - 3.5" of Normal weight concrete (145 pcf) Deck Gauge - 22

Superimposed Load: Based on LRFD Load Combinations

LC	LRFD	ASD
1	1.4D	D
2	$1.2D + 1.6L + 0.5(L_r \text{ or } S \text{ or } R)$	D+L
3	$1.2D+1.6(L_r \text{ or } S \text{ or } R) + (L \text{ or } 0.5W)$	$D+(L_r \text{ or } S \text{ or } R)$
4	$1.2D + W + L + 0.5(L_r \text{ or } S \text{ or } R)$	$D + 0.75L + 0.75(L_r \text{ or } S \text{ or } R)$
5	0.9D+ W	D+0.6W
6	$1.2D + E_v + E_h + L + 0.2S$	$D + 0.75L + 0.75(0.6W) + 0.75(L_r \text{ or } S \text{ or } R)$
7 8	$0.9D-E_v + E_h$	0.6D+0.6W D+0.7E _v +0.7E _b
8		$\frac{D+0.7E_{v}+0.7E_{h}}{D+0.525E_{v}+0.525E_{h}+0.75L+0.75S}$
10		$\frac{D^{+}(0.525E_{y}^{-}+0.525E_{h}^{-}+0.75E^{-}+0.755}{0.6D^{-}0.7E_{y}^{-}+0.7E_{h}^{-}}$
Where:		0.05 0.720 0.720
D= Dead Load L= Live Load Lr= Roof Live S= Snow Load W= Wind Loa R= Rain Load	Load	
$Dead_{Membrane} \coloneqq 1 \ psf$		$Dead_{CompositeDeck} \coloneqq 50.3 \ psf$
$D \coloneqq Dead_{Membrane} = 1 psj$	Superimposed	
$L \approx 100 \ psf$		
$S \coloneqq 43 \ psf$		
$W = 12.442 \ psf$		
W_{uplift} =-11.212 psf		

		ombos:							
.4 <i>D</i> = 1	1.4 <i>p</i> .	sf					(1)		
.2 <i>D</i> + '	1.6 <i>L</i>	+0.5 S:	= 182.7	psf			(2)		
.2 <i>D</i> +	1.6 <i>S</i>	+ <i>L</i> =17	0 <i>psf</i>				(3)	Ne	glect wind load in combo 3
.2 <i>D</i> +	W+L	, +0.5 S	= 135.1	42 <i>psf</i>			(4)	beo	cause it is smaller than L
.9 (\D	+Dee	ad_{Compos}	iteDeck/\-	+ W _{uplift}	= 34.95	8 <i>psf</i>	(5)	Up	lift is not an issue
laxLoa	$d \coloneqq 1$	82.7 <i>psj</i>	r						
					AED				
llowat	ole Su	uperimp	osed		AER	IAL VIEV		ASE 2	
pan:									
esignir	ng for	max spa	an of 11	'-6"	т	5.ET			
					11 FT 6 IN	5 FT RAMP SPAN 1 FT 6 IN			
llowab	le≔ 1	92 <i>psf</i>			11 FT 6 IN Max Span				
					11 FT 6 IN Max span	1 FT 6 IN WALL THICKNESS 5 FT RAMP SPAN			
		92 <i>psf</i> 82.7 <i>psf</i>		<	11 FT 6 IN MAX SPAN	1 FT 6 IN WALL THICKNESS 5 FT RAMP SPAN	wable =	= 192 <i>p</i>	sf
laxLoa	<i>d</i> = 18				MAX SPAN	Allo			
laxLoa ufficie	ad = 18 ent fo	82.7 <i>psf</i>	able D	eflectic	Dn wh	Allon	the lim		factor!
axLoa ufficie	d = 18 ent fo	82.7 <i>psf</i>	able D	eflectic	Dn wh	Allon Allon	the lim	niting	factor!
(axLoa ufficie Super	ed = 18 ent fo rimpose Deck Gage	82.7 <i>psf</i> or Allow ed Design L 4'-0"	able Do .oad, øW _n , 5'-0"	eflectic / Deflectic 6'-0"	Dn wh on at L/360 Span (ft- 7'-0"	Allon Allon nich is 1 0 (psf) in.) 8'-0"	NWC (14	niting ' 5 pcf), f' _c = 10'-0"	factor! 3000 psi
axLoa ufficie Super Total Slab	ad = 18 ent fo rimpose Deck Gage 22	82.7 <i>psf</i> or Allow ed Design L 4'-0" 1327/1804	able Do .oad, øW _n , <u>5'-0"</u> 835/923	eflectic / Deflectio 6'-0" 568/534	Dn Wh on at L/360 Span (ft- 7'-0" 407/336	1 FF B M WALL THICKNESS 5 FT RAMP SPAN Allon nich is 1 0 (psf) in.) 8'-0" 302/225	NWC (14 9'-0" 231/158	10'-0" 179/115	3000 psi 12'-0" 113/66
axLoa ufficie Super Total Slab Depth	d = 18 ent fo rimpose Deck Gage 22 20	82.7 <i>psf</i> or Allow ed Design L 4'-0" 1327/1804 1471/1944	able D .oad, øW _n , <u>5'-0"</u> 835/923 990/995	eflectic / Deflectio 6'-0" 568/534 676/576	Dn wh on at L/360 Span (ft- 7'-0" 407/336 486/362	1 FF B M WALL THICKNESS 3 SFT RAMP SPAN Allon hich is 1 0 (psf) in.) 8'-0" 302/225 363/243	NWC (14 9'-0" 231/158 278/170	10'-0" 179/115 218/124	3000 psi 12'-0" 113/66 139/72
axLoa ufficie Super Total Slab	d = 18 ent fo rimpose Deck Gage 22 20 19	82.7 <i>psf</i> or Allow ed Design L <u>4'-0"</u> 1327/1804 1471/1944 1471/2071	able D .oad, øW _n , <u>5'-0"</u> 835/923 990/995 1135/1060	eflectic / Deflectio 6'-0" 568/534 676/576 776/613	Dn Who on at L/360 Span (ft- 7'-0" 407/336 486/362 560/386	Allon Allo Allo Allo Allo (psf) in.) 8'-0" 302/225 363/243 419/258	NWC (14 9'-0" 231/158 278/170 323/181	10'-0" 10'115 218/124 254/132	Factor! 3000 psi 12'-0" 113/66 139/72 164/76
axLoa ufficie Super Total Slab Depth	d = 18 ent fo rimpose 22 20 19 18	82.7 <i>psf</i> or Allow ed Design L 1327/1804 1471/1944 1471/2071 1471/2179	able De .oad, øW _n , <u>5'-0"</u> 835/923 990/995 1135/1060 1168/1115	eflectic / Deflectio 6'-0" 568/534 676/576 776/613 864/645	on at L/360 Span (ft- 7'-0" 407/336 486/362 560/386 624/406	Allon Allon o(psf) in.) 8'-0" 302/225 363/243 419/258 469/272	NWC (14 9'-0" 231/158 278/170 323/181 362/191	10'-0" 179/115 218/124 254/132 285/139	5 3000 psi 12'-0" 113/66 139/72 164/76 186/80
axLoa ufficie Super Total Slab Depth	d = 18 ent fo rimpose Deck Gage 22 20 19	82.7 <i>psf</i> or Allow ed Design L 1327/1804 1471/1944 1471/2071 1471/2179 1470/2401	able De .oad, øW _n , <u>5'-0"</u> 835/923 990/995 1135/1060 1168/1115 1168/1229	eflectic / Deflectio 6'-0" 568/534 676/576 776/613	AX SPAN Dn Wr Dn at L/360 Span (ft- 7'-0" 407/336 486/362 560/386 624/406 761/448	Allon Allon (psf) in.) 8'-0" 302/225 363/243 419/258 469/272 573/300	NWC (14 9'-0" 231/158 278/170 323/181 362/191 444/210	10'-0" 10'115 218/124 254/132	5 3000 psi 12'-0" 113/66 139/72 164/76 186/80 232/88
axLoa ufficie Super Total Slab Depth	ent fo rimpose 22 20 19 18 16	82.7 <i>psf</i> or Allow ed Design L 1327/1804 1471/1944 1471/2071 1471/2179	able D .oad, øW _n , 5'-0" 835/923 990/995 1135/1060 1168/1115 1168/1229 1473/2665	eflectic / Deflectic 568/534 676/576 776/613 864/645 966/711 1004/1542	on at L/360 Span (ft- 7'-0" 407/336 486/362 560/386 624/406	Allon Allon o(psf) in.) 8'-0" 302/225 363/243 419/258 469/272 573/300 538/650	NWC (14 9'-0" 231/158 278/170 323/181 362/191	10'-0" 10'-0" 179/115 218/124 254/132 285/139 352/153 323/333	Factor! 3000 psi 12'-0" 113/66 139/72 164/76 186/80 232/88 205/192
axLoa ufficie Super Total Slab Depth	ent fo rimpose 22 20 19 18 16 22	82.7 <i>psf</i> or Allow ed Design L <u>4'-0"</u> 1327/1804 1471/1944 1471/2071 1471/2071 1470/2401 2336/5206	able Do .oad, øW _n , <u>5'-0"</u> 835/923 990/995 1135/1060 1168/1115 1168/1229 1473/2665 1761/2859	eflectic / Deflectic 568/534 676/576 776/613 864/645 966/711	MAX SPAN Dn Wr Dn at L/360 Span (ft- 7'-0" 407/336 486/362 560/386 624/406 761/448 722/971	Allon Allon (psf) in.) 8'-0" 302/225 363/243 419/258 469/272 573/300	NWC (14 9'-0" 231/158 278/170 323/181 362/191 444/210 412/457	10'-0" 10'-0" 179/115 218/124 254/132 285/139 352/153	5 3000 psi 12'-0" 113/66 139/72 164/76 186/80 232/88
axLoa ufficie Super Total Slab Depth 3½"	ed = 18 ent fo rimpose 22 20 19 18 16 22 20	82.7 <i>psf</i> ad Design L 4'-0" 1327/1804 1471/1944 1471/2071 1471/2071 1470/2401 2336/5206 2405/5585	able Do .oad, øW _n , <u>5'-0"</u> 835/923 990/995 1135/1060 1168/1115 1168/1229 1473/2665 1761/2859	eflectic / Deflectic 568/534 676/576 776/613 864/645 966/711 1004/1542 1204/1654	MAX SPAN Dn Wr Dn at L/360 Span (ft- 7'-0" 407/336 486/362 560/386 624/406 761/448 722/971 868/1042	Allon Allon 0 (psf) in.) 8'-0" 302/225 363/243 419/258 469/272 573/300 538/650 650/698	be lim NWC (14 9'-0" 231/158 278/170 323/181 362/191 444/210 412/457 501/490	10'-0" 10'-0" 179/115 218/124 254/132 265/139 352/153 323/333 394/357	Factor! 3000 psi 12'-0" 113/66 139/72 164/76 186/80 232/88 205/192 255/206
axLoa ufficie Super Total Slab Depth 3½"	d = 18 ent fo peck Gage 22 20 19 18 16 22 20 19	82.7 <i>psf</i> a Allow a b c a b c a c d d c d d d d d d d d d d	able Do .oad, øW _n , <u>5'-0"</u> 835/923 990/995 1135/1060 1168/1115 1168/1229 1473/2665 1761/2859 1911/3035	eflectic / Deflectic 568/534 676/576 776/613 864/645 966/711 1004/1542 1204/1654 1391/1756	MAX SPAN Dn Wr Dn at L/360 Span (ft- 7'-0" 407/336 486/362 560/386 624/406 761/448 722/971 868/1042 1006/1106	Allon Allon Allon bich is 1 0 (psf) in.) 8'-0" 302/225 363/243 419/258 469/272 573/300 538/650 650/698 756/741	be lim NWC (14 9'-0" 231/158 278/170 323/181 362/191 444/210 412/457 501/490 584/520	10'-0" 10'-0" 179/115 218/124 254/132 254/132 254/132 352/153 323/333 394/357 461/379	Factor! 3000 psi 12'-0" 113/66 139/72 164/76 186/80 232/88 205/192 255/206 302/219
axLoa ufficie Super Total Slab Depth 3½"	d = 18 ent fo rimpose 22 20 19 18 16 22 20 19 18	82.7 <i>psf</i> a A low a b c b c c b c c d b c c d b c c d d c d d c d d d c d d d d d d d d d d	able Do .oad, øW _n , <u>5'-0"</u> 835/923 990/995 1135/1060 1168/1115 1168/1229 1473/2665 1761/2859 1911/3035 1911/3188	eflectic / Deflectic 568/534 676/576 776/613 864/645 966/711 1004/1542 1204/1654 1391/1756 1559/1845 1559/1845	MAX SPAN Dn Wr Dn at L/360 Span (ft- 7'-0" 407/336 486/362 560/386 624/406 761/448 722/971 868/1042 1006/1106 1129/1162	Allon Allon Allon bich is 1 0 (psf) in.) 8'-0" 302/225 363/243 419/258 469/272 573/300 538/650 650/698 756/741 850/778	9'-0" 231/158 278/170 323/181 362/191 444/210 412/457 501/490 584/520 659/546	10'-0" 10'-0" 179/115 218/124 254/132 254/132 352/153 323/333 394/357 461/379 522/398	factor! 3000 psi 12'-0" 113/66 139/72 164/76 186/80 232/88 205/192 255/206 302/219 343/230
axLoa ufficie Super Total Slab Depth 3½"	d = 18 ent fo rimpose 22 20 19 18 16 22 20 19 18 16	82.7 <i>psf</i> a Allow a b c a b c a b c a b c a b c a c b c a b c b c c d b c c d b c c d c d c d c d c d c d d c d d d d d d d d d d	able Do .oad, øW,, 5'-0" 835/923 990/995 1135/1060 1168/1125 1168/1229 1473/2665 1761/2859 1911/3035 1911/3188 1910/3503	eflectic / Deflectic 568/534 676/576 776/613 864/645 966/711 1004/1542 1204/1654 1391/1756 1559/1845 1559/1845	MAX SPAN Dn Wr Dn at L/360 Span (ft- 7'-0" 407/336 486/362 560/386 624/406 761/448 722/971 868/1042 1006/1106 1129/1162 1346/1276	Allon Allon Allon (psf) 302/225 363/243 419/258 469/272 573/300 538/650 650/698 756/741 850/778 1052/855	be lim NWC (14 9'-0" 231/158 278/170 323/181 362/191 444/210 412/457 501/490 584/520 659/546 818/600	10'-0" 10'-0" 179/15 218/124 254/132 254/132 252/153 323/333 394/357 461/379 522/398 651/437	factor! 3000 psi 12'-0" 113/66 139/72 164/76 186/80 232/88 205/192 255/206 302/219 343/230 433/253
axLoa ufficie Super Total Slab Depth 3½"	d = 18 ent fo rimpose 22 20 19 18 16 22 20 19 18 16 22 20 19 18 16 22 20 19	82.7 <i>psf</i> a Allow a Design L a b c a c a b c a c d c a c d c d c d c d c d c d c d c d d d c d d d d d d d d d d	able Do .oad, øW,, 5'-0" 835/923 990/995 1135/1060 1168/1115 1168/1229 1473/2665 1761/2859 1911/3035 1911/3188 1910/3503 1911/3188 1910/3503 1941/4585 2327/4902 2488/5190	eflectic / Deflectic 6'-0" 568/534 676/576 776/613 864/645 966/711 1004/1542 1204/1654 1391/1756 1559/1845 1559/1845 1581/2027 1325/2653 1593/2836 1845/3003	MAX SPAN Dn WP Dn at L/360 Span (ft- 7'-0" 407/336 486/362 560/386 624/406 761/448 722/971 868/1042 1006/1106 1129/1162 1346/1276 953/1670 1150/1786 1335/1891	Allon Allon Allon bich is 1 0 (psf) in.) 8'-0" 302/225 363/243 419/258 469/272 573/300 538/650 650/698 756/741 850/778 1052/855 712/1119 863/1196 1004/1267	be lim NWC (14 9'-0" 231/158 278/170 323/181 362/191 444/210 412/457 501/490 584/520 659/546 818/600 547/786 666/840 777/889	10'-0" 179/15 218/124 254/132 254/132 254/132 352/153 323/333 394/357 461/379 522/398 651/437 429/573 525/612 615/648	3000 psi 12'-0" 113/66 139/72 164/76 186/80 232/88 205/192 255/206 302/219 343/230 433/253 275/331 341/354 404/375
axLoa ufficie Super Total Slab Depth 3½"	d = 18 ent fo rimpose 22 20 19 18 16 22 20 19 18 16 22 20 20 20	82.7 <i>psf</i> a Allow a Design L a b c b c b c b c b c b c b c b c b c c b c c c d c d c d c d c d c d d c d d d d d d d d d d	able Do .oad, øW,, 5'-0" 835/923 990/995 1135/1060 1168/1115 1168/1229 1473/2665 1761/2859 1911/3035 1911/3188 1910/3503 1941/4585 2327/4902	eflectic / Deflectic 6'-0" 568/534 676/576 776/613 864/645 966/711 1004/1542 1204/1654 1391/1756 1559/1845 1559/1845 1581/2027 1325/2653 1593/2836 1845/3003 2060/3149	MAX SPAN Dn WP Dn at L/360 Span (ft- 7'-0" 407/336 486/362 560/386 624/406 761/448 722/971 868/1042 1006/1106 1129/1162 1346/1276 953/1670 1150/1786	IFF BM WALL THICKNESS SFT RAMP SPAN Allon nich is 1 0 (psf) in.) 8'-0" 302/225 363/243 419/258 469/272 573/300 538/650 650/698 756/741 850/778 1052/855 712/1119 863/1196	9'-0" 231/158 278/170 323/181 362/191 444/210 412/457 501/490 584/520 659/546 818/600 547/786 666/840	10'-0" 10'-0" 179/15 218/124 254/132 285/139 352/153 323/333 394/357 461/379 522/398 651/437 429/573 525/612	3000 psi 3000 psi 113/66 139/72 164/76 186/80 232/88 205/192 255/206 302/219 343/230 433/253 275/331 341/354

Allowable Reaction at Supports (Based on LRFD Load Combinations) Treat as a one way slab since the length is much much longer than the width Design Reactions at Supports Based on Web Crippling, øR (lb/ft) 16 Deck Gauge Bearing Length of Webs One Flange Loading One-Flange Loading Two-Flange Loading End bearing is 4"+ Deck _ End Bearing Interior Bearing End Bearing Interior Bearing Gage 11/2" 2" 3" 4" 3" 4" 11/2" 2" 3" 4" 3" 4" $Allowable = 1563 \ plf$ 2954 3221 3669 3959 5334 5699 3515 4417 6762 $b_{tributary} = 5 ft + 0.5 \ 1.5 ft = 5.75 ft$ $Actual := MaxLoad \cdot b_{tributary} = 1050.525 \ plf$ *Actual* = 1050.525 *plf Allowable* = 1563 *plf* < Sufficient for Web Crippling, will not be an issue

Shear Stud Spacing

https://vulcraft.com/DesignTools/HighPerformanceDeckSlabDiaphragmStrength

Required Shear

 $WindLoad_{Max} = 12.442 \ psf$

 $Shear_{Required} \coloneqq ((WindLoad_{Max})) \cdot 7 \ ft = 87.094 \ plf \qquad \text{Round up to 90 plf}$

(Half of largest wall height)

Input

Input D	esign Cı	iteria								VULCRA	FT			6/1.5PLVLI-3		2.4	Recomm	ended Rei ature and	inforcing	_e = 3000 p
Design I Unit Syst						Imp	erial			Print	(Total		Theoretical			(0.5)		Dramix [®] S	
Design N						LRF	D					Slab Depth	Cover Depth	Concrete Volume	Min. A. for T&S	WWR	(OR)	Alterna		n (ib/yu-)
Required	Factored	Diaphra	m Shear, v	(plf)		0	90					(in.)	(in.)	(yd3/100 ft2)	(in.²)				4D 65/60B	G
														ete (145 pcf)	0.000	0.0144	14/4 4		00	
Deck Se												3½ 4	2 21/2	0.78 0.94	0.028	6x6-W1.4x			23 18	
Deck Op							mposite I	Deck		*		41/2	3	1.09	0.028	6x6-W1.4x			15	
Deck Ty Deck Ga						22	VL-36			~		5	31/2	1.24	0.032	6x6-W2.1x			15	
Deck Gra	ade					Gr	ade 50		1	~		51/2	4	1.40	0.036	6x6-W2.1x			15	
Concret	e Slab											6	41/2	1.55	0.041	6x6-W2.1x	W2.1		15	
Total Sla	b Thickn							7.5					ht Concrete							
		e Unit We e Strength	ght (pcf) (psi)		25			160 5000				31/2	2	0.78	0.028	6x6-W1.4x			33	
					4.							4 41/2	2½ 3	0.94	0.028	6x6-W1.4x			25 20	
		ement Ty	orcement			Dr	amix® St	eel Fiber	s	~		41/2	3	1.09	0.028	6x6-W1.4x 6x6-W2.1x			20	
Fiber Ty	pe					4D	65/60BG	6		~		-474	31/2	1.24	0.029	6x6-W2.1x			20	
Fiber Do	sage (pcy	.)				15 ≤	35.00 ≤	66				5¾	41/4	1.48	0.038	6x6-W2.1x			20	
			Shear S						Ы	UC	DR'									
22 ga 1.	.5VL-36	Grade 50	Shear S Compos 3000 psi,	ite Deck	IWC					VULCRA										
22 ga 1. 5 in. tota	.5VL-36 al slab de	Grade 50 opth, fc =	Compos	ite Deck 145 pcf N		orcing *														
22 ga 1. 5 in. tota	.5VL-36 al slab de	Grade 50 opth, fc =	Compos 3000 psi,	ite Deck 145 pcf N		orcing *														
22 ga 1. 5 in. tota	.5VL-36 al slab de	Grade 50 opth, fc =	Compos 3000 psi,	ite Deck 145 pcf N		orcing *														
22 ga 1. 5 in. tota	.5VL-36 al slab de	Grade 50 opth, fc =	Compos 3000 psi,	ite Deck 145 pcf N		orcing *														
22 ga 1. 5 in. tota	.5VL-36 al slab de	Grade 50 opth, fc =	Compos 3000 psi,	ite Deck 145 pcf N		orcing ⁴														
22 ga 1. 5 in. tota	.5VL-36 al slab de	Grade 50 opth, fc =	Compos 3000 psi,	ite Deck 145 pcf N		orcing *														
22 ga 1. 5 in. tota	.5VL-36 al slab de	Grade 50 opth, fc =	Compos 3000 psi,	ite Deck 145 pcf N		orcing *														
22 ga 1. 5 in. tota	.5VL-36 al slab de	Grade 50 opth, fc =	Compos 3000 psi,	ite Deck 145 pcf N		orcing ⁴														
22 ga 1. 5 in. tota	.5VL-36 al slab de	Grade 50 opth, fc =	Compos 3000 psi,	ite Deck 145 pcf N		orcing *														
22 ga 1. 5 in. tota	.5VL-36 al slab de	Grade 50 opth, fc =	Compos 3000 psi,	ite Deck 145 pcf N		orcing 4														
22 ga 1. 5 in. tota	.5VL-36 al slab de	Grade 50 opth, fc =	Compos 3000 psi,	ite Deck 145 pcf N		orcing •														
22 ga 1. 5 in. tota	.5VL-36 al slab de	Grade 50 opth, fc =	Compos 3000 psi,	ite Deck 145 pcf N		orcing *														
22 ga 1. 5 in. tota	.5VL-36 al slab de	Grade 50 opth, fc =	Compos 3000 psi,	ite Deck 145 pcf N		orcing *														
22 ga 1. 5 in. tota	.5VL-36 al slab de	Grade 50 opth, fc =	Compos 3000 psi,	ite Deck 145 pcf N		orcing 4														
22 ga 1. 5 in. tota	.5VL-36 al slab de	Grade 50 opth, fc =	Compos 3000 psi,	ite Deck 145 pcf N		4 a la l														
22 ga 1. 5 in. tota	.5VL-36 al slab de	Grade 50 opth, fc =	Compos 3000 psi,	ite Deck 145 pcf N		4														
22 ga 1. 5 in. tota	.5VL-36 al slab de	Grade 50 opth, fc =	Compos 3000 psi,	ite Deck 145 pcf N		4														
22 ga 1. 5 in. tota	.5VL-36 al slab de	Grade 50 opth, fc =	Compos 3000 psi,	ite Deck 145 pcf N		orcing 4														
22 ga 1. 5 in. tota	.5VL-36 al slab de	Grade 50 opth, fc =	Compos 3000 psi,	ite Deck 145 pcf N		orcing 4														
22 ga 1. 5 in. tota	.5VL-36 al slab de	Grade 50 opth, fc =	Compos 3000 psi,	ite Deck 145 pcf N		• concing •														
22 ga 1. 5 in. tota	.5VL-36 al slab de	Grade 50 opth, fc =	Compos 3000 psi,	ite Deck 145 pcf N		• vorcing •														
22 ga 1. 5 in. tota	.5VL-36 al slab de	Grade 50 opth, fc =	Compos 3000 psi,	ite Deck 145 pcf N		• vorcing •														
22 ga 1. 5 in. tota	.5VL-36 al slab de	Grade 50 opth, fc =	Compos 3000 psi,	ite Deck 145 pcf N		A A														

			0 u	tp ut							
Deck-Slab Di	anhraum Si	hear Stren	ath					100			
22 ga 1.5VL-36									JC	DR ®	
5 in. total slab d								۷	ULCR	AFT	
35 pcy of Elekae	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				4						
				9							
			101								
1/2" Steel Heade	d Stud Anchor	at Chords & (Collectors	s for Shear	Transfer						
Pci	pendicular Cor	nnection Patt	ern ¹					1 c	very 6th ril	;	
Pau	allel Connectio	on Attachmer	it (maxin	num)			1	row at	16	in. o.c.	
Minimum Conne	tions to Surm	ori ing March	2								
Minimum Come	.uons to supp	orting Memo	ci a								
	nimum connec								et welds,		
PA	F's, screws, Sh	earnex® and	nors, we	ided studs	or other i	nechanica	ii conne	ections".			
Per	pendicular Cor	nnection Patt	ern ¹					1 eve	ry other ril	2	
	allel Perimeter			spans gre	ater than	5 ft			36	in. o.c.	
0											
Governing Deck-	slat) Strength a	and Stiffness			_						
ÂV	ailable Diaph	ragm Design	1 Streng	th			Va	= ΦQN =	1401	pif	
Cor	ntrolled by Cor	nnections to (hords ar	nd Collecte	ors						
Do	k-Slab Diaphra	agm Docign S	hear Stif	fnees				G' =	1170	kip/in	
Data	к-знар іларіна	agin Disign s	aicai Stii	1110.33				u -		Kip/ III	
Deck-Slab Shear S	trength										
Des	k-Slab Diagon	al Tanulan De	nei m Cha	an Chronet	h			ФSn =	11593	plf	
Dis	K-Stab Diagon	an rension by	sign one	ai strengt				4.3H -	1137.0	pin	
Chords & Collecte	or Shear Trans	fer Strength									
Chu	ord & Collector	n Doniem Cha		an Demonst	h			ΦC/N =	1401	plf	
Chi	ind & Collector	s Design Sne	ar transi	er strengt						DII	
				<u></u>	Dia	gonal Te	nsion S	hear Stren	gth		
	Perpend	licular	/				12				
	Shear Th			77	\geq	1	1	7			
			2		1		ÿ	>			
	6	~~~~~	diana		123						
	-	<u> </u>	7.2			Para	llel				
		⊽				Shea	r Trans	fer			
Notes:		anere erene		20		sen me					
	For UL Fire rat finimum conn										
	Support welds										
4. 1	Dramix Steel F	ibers up to 6									
) Series Design					202 have		1	1/2:-		
	Sidelap connec 1-1/2 in. top at										
	i i i i i i i i i i i i i i i i i i i				T I I I I I		0.0			8783 T.S. U	
Calculations gene	rated Per 201	8 IBC & LAFM	10 ER-06	52 using c	alculator	1.1		Date:	3/3	0/2023	
MOTICE. De clan de fecte that	could cause injury or d										
document is provided "AS IS and the information in it.	. Nucor Corporatio 1 a	nu ny annany expres	siy disclaim: (i	,,							

Finding Required Stren	-		
Factored Distributed		$(3, w_4, w_5) / \cdot l_s = 0.244 \ ki_s$	
Load Bearing on one	e Angle: $P_u \coloneqq w_u \cdot l \div 2 = 0.61 \ k_l$	ip (Load distributed to angles of	on each side of ramp)
	$ax \coloneqq w_u \cdot l^2 \div 12 = 0.508 \ kip \cdot fi$ $ax \coloneqq w_u \cdot (l \div 2) = 0.61 \ kip$	(AISC TABLES - CASE 15 - ENDS WITH UNIFORMLY [
Angle Selection			+ D
Angle:	L3x3x1/2		
Length of Legs:	$b \coloneqq 3$ in		
Leg Thickness:	<i>t</i> = 0.5 <i>in</i>		
Plastic Section:	$Z_x = 1.91 \ in^{3}$		1 aug
Grade of Steel:	A36	Ļ	Smortland Bon
Steel Yield Strength	n: $F_y = 36 \ ksi$	(m)	- MANUTARIUS
Ultimate Strength:	$F_u = 58 \ ksi$		100 S
Modulus of Elasticity	y: <i>E</i> ≔ 29000 <i>ksi</i>		← c →
Bolt Selection		<u> </u>	
Bolt Type:	Bent Bar Anchor Bolt		D×L×C×T
Bolt Grade:	F1554 Grade 36		
Yield Strength:	$F_{yb} = 36 \ ksi$	And	hor Bolt Size (D x L x C x T)
Ultimate Strength:	$F_{yb} \coloneqq 58 \ ksi$	Diam.	LengthHookThread824
Bolt Diameter:	$d_b \coloneqq 0.5 \ in$	1/2	6
Bolt Hole:		lard holes)	
	(X bolts) or included (N bolts) in t		= "N!"
Check Flexural Strength	h based on Flange Local Buckli	ng	
Width to Thickness	Ratio: $\lambda_f \coloneqq b \div$	<i>t</i> = 6	
Limiting flange slend	derness parameter: $\lambda_{pf} = 0$.	54 $\sqrt{E \div F_{yb}} = 15.326$	
Limiting flange slend	derness parameter: $\lambda_{rf} = 0$.	54 $\sqrt{E \div F_{yb}} = 15.326$ 91 $\sqrt{E \div F_{yb}} = 25.828$	
For Compact Flang	$ge (\lambda_f \le \lambda_{pf}):$		
		r zo hin A	
Plastic Moment ab	bout x-axis: $M_p \coloneqq F_y \cdot Z_x =$	5.15 Mp - Ji	
Flexural Strength b	based on FLB: $\phi M_n \coloneqq 0.9 \cdot M_n$	$p = 5.157 \ kip \cdot ft$	
Required Flexural	Strength: $M_{max} = 0.508$	kip · ft	
The section IS a	adequate for flexure since M_{max}	$ux < \varphi W n$	

Appendix F: Restroom Phase Three Design Calculations

HASE 3 ROOF CALCULATI	ONS
ASCE 7-16 Chapters 26 and 27	
Open Structure Wind Calculations with	a Monoslope Roof
$V = 108 \frac{mi}{r}$	
hr	Chapter 26
$Kd \coloneqq 0.85$ $Ke \coloneqq 1$ $Kz \coloneqq 0.60$	
$q \coloneqq 0.00256$ $psf \cdot Kz \cdot Kd \cdot Ke \cdot$	$V_{2} = 15355 \text{ nsf}$
<i>mph</i> ²	, = 15.555 p.3
South Wind Loads	
$CnW \coloneqq 1.2$ $G \coloneqq 0.85$	
$p \coloneqq q \cdot G \cdot CnW = 15.663 \ psf$	
North Wind Loads	Figure 27.3-4
$CnW \approx -1.1$ $G \approx 0.85$	
$p \coloneqq q \cdot G \cdot CnW = -14.357 \ psf$	
East Wind Load	
$Cn \coloneqq 0.3$ $G \coloneqq 0.85$	
$p \coloneqq q \cdot G \cdot Cn = 3.916 psf$	
West Wind Load	Figure 27.3-7
$\boxed{Cn} \coloneqq 0.3 \qquad \qquad \boxed{G} \coloneqq 0.85$	
$p \coloneqq q \cdot G \cdot Cn = 3.916 \ psf$	
p - q = 0 $C = 3.510 ps$	
Balanced Snow Load	
Exposure Coefficient	
Table 7.3-1. Exposure Factor, C _e .	
Fully Partially Surface Roughness Category Exposed [®] Exposed Sheltered	
B (see Section 26.7) 0.9 1.0 1.2 (see Section 26.7) 0.9 1.0 1.1	$C_e \coloneqq 0.9$
C (see Section 26.7) 0.8 0.9 1.0 C (see Section 26.7) 0.8 0.9 1.0 Above the tree line in windswept 0.7 0.8 N/A mountainous areas	
In Alaska, in areas where trees do not 0.7 0.8 N/A exist within a 2 mi (3 km) radius of the site	Surface Roughness B/Partially Exposed because we're in downtown Maquoketa
	ASCE 7-16 Table 7.3-1 Exposure Coefficient

Importance Factor

Table 1.5-2 Importance Factors by Risk Category of Buildings and Other Structures for Snow, Ice, and Earthquake Loads

Risk Category from Table 1.5-1	Snow Importance Factor, I _s	Ice Importance Factor— Thickness, I,	Ice Importance Factor—Wind, I _w	Seismic Importance Factor, I _e
I	0.80	0.80	1.00	1.00
Ш	1.00	1.00	1.00	1.00
ш	1.10	1.15	1.00	1.25
IV	1.20	1.25	1.00	1.50

Note: The component importance factor, I_p , applicable to earthquake loads, is not included in this table because it depends on the importance of the individual component rather than that of the building as a whole, or its occupancy. Refer to Section 13.1.3.

 $I_s \coloneqq 1.0$

Risk Category 2 ASCE 7-16 Table 1.5-2

 $p_s \coloneqq 0.7 \cdot C_s \cdot C_e \cdot C_t \cdot I_s \cdot p_g = 18.9 \ psf$

e 3 Roof Calculations			Uniform E For Butted		Table, LRF						JLCRAFT	GROU
			36 / 4 Con #12 Screw	nection Patterr	1 to Supports	with			Support Me 0.25 ≤ t ₂ (in	mber A992 G 1.) ≤ 0.5	R50	
Metal Deck				<u></u>	î	Ť	↑ - or -	Ť	î	Ť	Outward	
				1	Ļ	Ļ	1	Ļ	Ţ	Ļ	Inward	
60 solar panels at 40	0 lbs each or 2.8psf		ŭ	→ 4.00 End Bearing (i	← n.)	1.5B-36	Roof Deck	→ Inter	4.00 rior Bearing	← (in.)		
5.5 ft x 3.25 ft												
$A \coloneqq 5.5 ft \cdot 3.25 ft =$	= 17.875 <i>ft</i> ²		Inward Un Span	iform Design (ft-in)	n Load Table 8'-0"	e, LRFD (psf) 8'-6"	9'-0"	9'-6"	10'-0"	10'-6"	11'-0"	11'-6'
			1	ΦWn L/240	143 35	127 30	113 25	102 21	92 18	83 16	76 14	69 12
Uplift Calculations(Igno	oring Weight of solar	panels)	2	ΦWn L/240 ΦWn	148 89 185	131 75 164	117 63 146	105 53 131	95 46	86 40 108	79 34 98	72 30 90
			3	L/240	70	58	49	42	119 36	31	27	24
	for metal deck and		Uplift (Ou	tward) Unifo	rm Design I	oad Table, L	RFD (psf)					
steel slates	s(keep water off decki	ing)	Span 1	(ft-in) ΦWn	8'-0" 149	8'-6" 132	9'-0" 118	9'-6" 106	10'-0" 95	10'-6" 87	11'-0" 79	11'-6 72
			2	L/240 ΦWn L/240	37 92	31 87	26 82	22 77	19 74	16 70	14 67	13 64
$DeckDead \approx 2.5 ps$			3	ΦWn L/240	85 105 67	71 98 56	60 93 47	51 88 40	44 84 34	38 80 30	33 76 26	29 73 23
$WL \approx -14.375 \ psf$			_	-/		a vec	16					6566
w.U.n.lift. 0.6 Deel	blogd off of U			Properties Fy	wdd	Id+	Id-	Se+	Se-	ФMn+	ФMn-	ΦVı
Deck can support up	$kDead + 0.75 \cdot 0.6 \cdot V$	VL = -4.369 ps	in 0.0474	ksi 50	psf 2.6	in.*/ft 0.277	in.4/ft 0.29	in. ³ /ft 0.306	in. ³ /ft 0.318	lbs-ft/ft 1148	lbs-ft/ft 1193	lbs/ 639
Deck can support up	Jint, design OK		Where:	W ≤ ΦWn								
Joists Supporting Deck					/ = Required n = Design St	strength of th rength	e governing	LRFD load c	ombintaion			
Joists Supporting Deck Using W10x12							e governing	LRFD load o	ombintaion			
Using W10x12	$a \coloneqq 4.5 ft$						e governing	LRFD load c	ombintaion			
Using W10x12 $L \coloneqq 20 \text{ ft} = 20 \text{ ft}$	$a \coloneqq 4.5 \ ft$ of down: 3 psf from c	leck, 1 psf from (panels,	ΦWr	n = Design St	rength		LRFD load c	ombintaion			
Using W10x12 $L \coloneqq 20 \text{ ft} = 20 \text{ ft}$ 6 psf acting from roo				⊕wr 2 psf	from	rength	3	LRFD load c	ombintaion			
Using W10x12 $L \coloneqq 20 \ ft = 20 \ ft$ 6 psf acting from roo $wDead \coloneqq 6 \ psf$	of down: 3 psf from c	wSnow = 19	psf	⊕wr 2 psf	from	panels	3	LRFD load of	ombintaion			
Using W10x12 $L \coloneqq 20 \ ft = 20 \ ft$ 6 psf acting from roo $wDead \coloneqq 6 \ psf$	of down: 3 psf from c $wLive \coloneqq 0 \ psf$	wSnow = 19	psf	⊕wr 2 psf	from	panels	3					
Using W10x12 $L \coloneqq 20 \ ft = 20 \ ft$ 6 psf acting from roo $wDead \coloneqq 6 \ psf$ $wu \coloneqq 1.2 \cdot wDead + tb \coloneqq 8 \ ft$	of down: 3 psf from c $wLive \coloneqq 0 \ psf$	wSnow ≔ 19 wind = 45.45 psj	psf	⊕wr 2 psf	from	panels	3					
Using W10x12 $L \coloneqq 20 \ ft = 20 \ ft$ 6 psf acting from roo $wDead \coloneqq 6 \ psf$ $wu \coloneqq 1.2 \cdot wDead +$ $tb \coloneqq 8 \ ft$ $w \coloneqq wu \cdot tb = 363.6 \ p$ $MI \coloneqq W \cdot L + a$	of down: 3 psf from c $wLive \coloneqq 0 \ psf$ 1.6 $\cdot wSnow + 0.5 \cdot w$	$wSnow \coloneqq 19$ $wSnow \coloneqq 19$ $wind = 45.45 \ psychological descent for the second second$	psf	⊕wr 2 psf	from	panels	3					
Using W10x12 $L \coloneqq 20 \ ft = 20 \ ft$ 6 psf acting from roo $wDead \coloneqq 6 \ psf$ $wu \coloneqq 1.2 \cdot wDead + tb \coloneqq 8 \ ft$ $w \coloneqq wu \cdot tb = 363.6 \ psi$	of down: 3 psf from c $wLive \coloneqq 0 \ psf$ 1.6 $\cdot wSnow + 0.5 \cdot w$ plf $Rroof \coloneqq w$ $^{2} \cdot L - a^{-2} = 16.386$	$wSnow \coloneqq 19$ $wSnow \coloneqq 19$ $wind = 45.45 \ psychological descent for the second second$	psf	⊕wr 2 psf	from	panels	3					
Using W10x12 $L \coloneqq 20 \ ft = 20 \ ft$ 6 psf acting from roo $wDead \coloneqq 6 \ psf$ $wu \coloneqq 1.2 \cdot wDead +$ $tb \coloneqq 8 \ ft$ $w \coloneqq wu \cdot tb = 363.6 \ p$ $MI \coloneqq \frac{w}{2} \cdot L + a$ $M2 \coloneqq \frac{w \cdot a}{2} = 3.681$	of down: 3 psf from c $wLive \coloneqq 0 \ psf$ 1.6 $\cdot wSnow + 0.5 \cdot w$ plf $Rroof \coloneqq w$ $2 \cdot L - a^{-2} = 16.386$ $ft \cdot kip$	$wSnow \coloneqq 19$ $wSnow \coloneqq 19$ $wind = 45.45 \ psychological descent for the second second$	psf	⊕wr 2 psf	from	panels	3					
Using W10x12 $L \coloneqq 20 \ ft = 20 \ ft$ 6 psf acting from roo $wDead \coloneqq 6 \ psf$ $wu \coloneqq 1.2 \cdot wDead +$ $tb \coloneqq 8 \ ft$ $w \coloneqq wu \cdot tb = 363.6 \ p$ $MI \coloneqq \frac{w}{2} \cdot L + a$ $M2 \coloneqq \frac{w \cdot a}{2} = 3.681$ $Fy \coloneqq 50 \ ksi$ $E \equiv$	of down: 3 psf from c $wLive \coloneqq 0 psf$ 1.6 · $wSnow + 0.5 \cdot w$ plf $Rroof \coloneqq w$ $^{2} \cdot L - a^{-2} = 16.386$ $ft \cdot kip$ $\approx 29000 ksi$	$wSnow \coloneqq 19$ $wSnow \coloneqq 19$ $wind = 45.45 \ psychological descent for the second second$	psf	⊕wr 2 psf	from	panels	3					
Using W10x12 $L \coloneqq 20 \ ft = 20 \ ft$ $6 \ psf acting from roo wDead \coloneqq 6 \ psf wu \coloneqq 1.2 \cdot wDead + tb \coloneqq 8 \ ft w \coloneqq wu \cdot tb = 363.6 \ p MI \coloneqq \frac{w}{2} \cdot L + a M2 \coloneqq \frac{w \cdot a}{2} = 3.681$	of down: 3 psf from c $wLive \coloneqq 0 psf$ 1.6 · $wSnow + 0.5 \cdot w$ plf $Rroof \coloneqq w$ $^{2} \cdot L - a^{-2} = 16.386$ $ft \cdot kip$ $\approx 29000 ksi$	$wSnow \coloneqq 19$ $wSnow \coloneqq 19$ $wind = 45.45 \ psychological descent for the second second$	psf	⊕wr 2 psf	from	panels	3					

$$c_{bo} = 0.572 \qquad c_{c} = 0.456$$

$$ho \qquad d \qquad f = 2 \cdot \binom{c}{d} = 0.912$$

$$k! = \max_{c} f \cdot k, 1.61 = 5.046$$

$$\lambda p = 0.475 \cdot \underset{Fy}{k! \cdot E} = 25.696$$

$$Fy \qquad \cdot ho - tf$$

$$h! = bf \cdot tf \cdot ho - 0.5 \cdot tf + tw \cdot ho - tf \qquad \cdot ho - tf$$

$$h! = bf \cdot tf + tw \cdot ho - tf$$

$$Inet = \frac{1}{12} \cdot bf \cdot tf^{2} + bf \cdot tf \cdot ho - hI - 0.5 \cdot tf^{2} + \frac{1}{12} \cdot tw \cdot ho - tf^{2} + tw \cdot ho - tf \quad \cdot ho - tf - hI^{2} = 15.314 \text{ in}$$

$$Snet = \frac{Inet}{hI} = 2.911 \text{ in}^{2}$$

 $My \coloneqq Fy \cdot Snet = 12.129 \ ft \cdot kip$

$$\phi Mn \coloneqq 0.9 \left(\left| Mp - Mp - My \cdot \begin{pmatrix} \lambda \\ \lambda p \end{pmatrix} \right| = 14.173 \, ft \cdot kip$$

Since flexural strength phi Mn is greater than Mu, a W10X12 member with a cope length of 4.5 in and depth of 2 in is suitable

Girders Supporting Joists

Only load it is supporting is from the joists, which acts at the mid point

$$Mmax \coloneqq \frac{RJoist \cdot L}{18.68 ft \cdot kip}$$

Zx := Mmax.483 *in* ³

$$=4$$
.
Fy

Use W12X14 to allow for single coped beam.

Columns Supporting Girders

Using W12x14

 $Pcolumn \coloneqq 2.5 \cdot RJoist = 9.34 \ kip$

$$\widehat{L}$$
 = 9.5 ft A = 3.54 in

 $Lcx \coloneqq L = 9.5 ft$

$$\frac{db}{8} \stackrel{\text{in}}{=} \frac{Ab}{4} \stackrel{\text{in}}{=} \frac{Ab}{4} \stackrel{\text{in}}{=} 0.307 \text{ in}^{2}$$

 $FuBolt = 120 \ ksi$

 $Fnv \coloneqq 0.45 \cdot FuBolt = 54 \ ksi$

Joist to Column

Start with half inch plate, 7 in height, 7 in width 3 5/8 in standard bolts, A325N

Shear Strength of Bolt

 $\frac{db}{db} \coloneqq \frac{5}{8} in \qquad Ab \coloneqq \frac{\pi}{4} \cdot db^2 = 0.307 in^2$

 $FuBolt = 120 \ ksi$

 $Fnv = 0.45 \cdot FuBolt = 54 \ ksi$

 $\phi RnShear = 0.75 \cdot Fnv \cdot Ab = 12.425 kip$

Strength of Connection

 $Le \coloneqq 1.5 \ in$ $dh \coloneqq db + \frac{1}{16} \ in = 0.688 \ in$

 $Lce := Le - 0.5 \cdot dh = 1.156$ in

t = 0.225 *in*

 $Fu = 65 \ ksi$

 $\phi RnEndBolt := 0.75 \cdot min \ 1.2 \cdot Lce \cdot t \cdot Fu, 2.4 \cdot db \cdot t \cdot Fu = 15.219 \ kip$

 $s \coloneqq 2$ in $Lc \coloneqq s - dh = 1.313$ in

 $\phi RnIntBolt = 0.75 \cdot min \ 1.2 \cdot Lc \cdot t \cdot Fu, 2.4 \cdot db \cdot t \cdot Fu = 16.453 \ kip$

 $\phi RnBearing := \phi RnEndBolt \cdot 3 = 45.657 kip$

 $ConnectionStrength = min \ \phi RnShear, \phi RnBearing = 12.425 \ kip$

This value is larger than the force experienced, so OK

Girder to Column

Welding the girder to 0.5 in plate, then weld plate to column flange 11 in transverse weld, one on each side of girder web

L = 11 in Fy = 50 ksi Fu = 65 ksi t = 0.5 in

 $\phi RnBM \coloneqq min \quad 1 \cdot 0.6 \cdot Fy \cdot t \cdot L, 0.75 \cdot 0.6 \cdot Fu \cdot t \cdot L = 160.875 \ kip$

 $W := t - \frac{1}{16}$ in = 0.438 in L = 25.143 Fexx := 70 ksi

$$l = \max \left(\frac{N - 0.95 \cdot d}{2}, \frac{B - 0.8 \cdot bf}{2}, \frac{1}{4} \cdot \sqrt{d \cdot bf} \right) = 4.416 in$$

$$lp = l \cdot \frac{2 \cdot Pu}{0.9 \cdot B \cdot N \cdot Fy} = 0.242 in$$
Anything 2/8 inches or more will suffice
Anchor Bolts
Start with 3/4 in
4 anchors
$$P = Pcolumn = 9.34 \ kip$$

$$Fwind = wWind \cdot 16 \ ft \cdot 9.5 \ ft = 2.386 \ kip$$

$$Mo = Fwind \cdot 9.5 \ ft = 22.671 \ ft \cdot kip$$

$$Pw = \frac{Mo}{16 \ ft} = 1.417 \ kip$$

$$Pul = P = 9.34 \ kip$$

$$Uplift = 0.9 \cdot Pu - Pw = 6.989 \ kip$$

$$Tu = Uplift = 6.989 \ kip$$

$$FuRod = 58 \ ksi$$

$$db = \frac{3}{4} \ in$$

$$\phi Rn = 0.75 \cdot 0.75 \cdot FuRod \cdot \left(\frac{\pi}{4} \cdot db^2\right) = 14.413 \ kip$$

$$Tu = 1.747 \ kip$$

= L

Anchor rods have enough strength, design OK